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PREFACE AND SUMMARY

In a recent article R. Wengert suggested a technique for machine

evaluation of the partial derivatives of a function given in analyti-

cal form. In solving nonlinear boundary-value problems using

quasilinearization many partial derivatives must be formed analytically

and then evaluated numerically. Wengert's method appears very

attractive from the programming viewpoint and permits the treatment

of large systems of differential equations which might not otherwise

be undertaken.

In this Memorandum we show how to apply the technique to some

problems of orbit determination, though our ultimate goal is to

handle much more complex problems, such as arise in adaptive control.
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I. INTRODUCTION

The method of quasilinearization for the numerical solution of

nonlinear multi-point boundary-value problems is discussed in Refs.

1-3. Applications to system identification, cardiology and design

and control are given in Refs. 4-6. The determination of orbits is

discussed in Ref. 1. The method involves the calculation of many

partial derivatives which can be quite onerous sa, the source of er-

rors. In a recent note(7 ) R. Wengert suggested a procedure for the

calculation of partial derivatives which relieves the analyst and the

programmer of much routine differentiation. The purpose of this

Memorandum is to show the usefulness of the Wengert scheme in carrying

out the quasilinearization procedure. Our discussion is built around

the orbit determination problem discussed in Ref. 1.
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II. ORBIT DETERMINATION

Consider a heavenly body H moving about the sun in a planar or-

bit, the x-y plane. The equations of motion are

'I 6' - =2I2 1.5 = f(x,y), (1)
(x 2+ y )

Sy = -Y • =g(x'y)' (2)

2 21.5(x2+ y2)1.

At various times ti, i=l,2,...,N, the angle between the vector from a

fixed observer at (1,0) and the x--axis is measured, tan e(t) bi,

which results in the multi-point boundary conditions

bi = tan e(ti) = Y(ti) /(x(ti)-l), i=l,2,...,N. (3)

We wish to determine a set of conditions on x, C, y and at an

"initial instant" t=t 1 so that the solution of Equations (I) and (2),

subject to these conditions, agrees as well as possible with the ob-

servations in the sense of the method of least squares; i.e., we wish

to minimize the sum S, where

N 2

S X {y(t-) - b, [x(t1 ) 1](
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III. QUASILINEARIZATION

(1,2,4)
Our computational formalism proceeds as follows:

We first select an initial approximation to the initial conditions and

integrate the Equations (1) and (2) numerically to produce the func-

tioni x (t) and y (t) on the interval t I  t . Then we proceed
t t:

recursively. The (k+l)st approximation is produced from the k
th by

solving the linear multi-point boundary-value problem

Xk+l(t) = f(xk, Yk) + (xk+l - xk ) fx(xk , Yk)

(5)

+ (Yk+l- Yk) fy(xk' Yk)

Yk+l(t) = g(xk, Yk) + (Xk+ I - xk ) gXx(k , Yk)

(6)

+ (Yk+l" Yk) g(xk' Yk)

N

Min X {yk+l(t) b i [xk+l(ti) i] }2 (7)

i=l

where-the minimization is over xk(tl), xk(tl), yk(tl), and yk(tl).

Particular and homogeneous solutions of Equations (5) and (6) are

readily produced numerically, and the initial conditions are chosen

so as to minimize the sum in Equation (7). See Ref. 2.
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IV. WENGERT'S METHOD

Forming the partial derivatives called for in Equations (5) and

(6) is not especially formidable. If other sources of the gravita-

tional field were present, this would not be the case. Let us now

see how we can have the computing machine evaluate the needed partial

derivatives.

Wengert's method ( 7 ) is based on the chain rule,

--= _ L + 2+ ... + budn (8)du 1x dt u 2 u n

where u is a function of xl, x2, ... , Xn, and xl, x2 , .. , xn are func-

tions of t. By putting dxl/dt = 1 and dx i/dt = 0 for i=2,...,N, we

find, for example, bu/6x I = du/dt. In addition, the technique uses

the elementary formulas of differentiation. The reader is referred to

the paper by Wengert and to that by Wilkins. (8) The elementary dif-

ferentiation subroutines INTEXP, ADD, MCNST, and DIV used in the pre-

sent orbit determination program have been described in Ref. 8. These

are the integer exponentiation, addition, multiplication by a constant,

and division routines. In addition to these, we have written subroutine

POW for non-integer exponentiation,

c .=c x -1
Z = X z = c ,

as here listed.

SUBROUTINE POW(XC,Z)

DIMENSION X(2), Z(2)

Z(l) = X(l)**c (z = x c)

Z(2) = C*X(1)**(C-1.0)*X(2) ( = c xc-I

RETURN

END
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Let us now combine Wengert's method with quasilinearization and

incorporate the resultant scheme into the FORTRAN orbit program. But

first, let us write the linear differential equations for the particu-

lar and homogeneous solution3 of Equations (5) and (6). Let p(t) be

the particular solution corresponding to the variable x(t), and let

q(t) be that for the function y(t). Let the four homogeneous solutions

for x(t) be represented by h (t), h 2(t), h 3(t), and h 4(t). Similarly

for y(t), we have the homogeneous solutions w (t), w 2(t), w (t), and

4
w (t). Then the equations for the particular and homogeneous solutions

are

p = f(xk, Yk) + (p - xk) fx(xk, Yk) + (q - yk) (x k) ,(9)

"q = g(xk, yk) + (p - xk) gx(xk, yk) + (q - yk) gy(xk, yk) (10)

h i = hifx(xk, yk) + w f(Xi y k' (1])

w = (+ (xk, k, (12)w=hgx(xk, yk) + w i''~k'Y)

i = 1, 2, 3, 4.

Equations (9), (10), (11), (12) show that the functions f, f,

f ' 3 gx' gy must be evaluated at each integration step. We write

subroutine FUNI to evaluate the function f(x,y) = -x/(x 2+ y 2) , by

calling the appropriate elementary differentiation subroutines. When-

ever this subroutine is executed, the derivative of f is simultaneously

computed. The following is a listing of FUN1. Beside each FORTRAN

statement, we have added the equivalent mathematical expressions.
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SUBROUTINE FUNl(X,YANS)

DIMENSION x(2), Y(2), ANS(2), Zl(2), Z2(2), Z3(2)

CALL INTEXP(X,2,ZI) Zl= x2 I = 2xk

CALL INTEXP(Y,2,Z2) Z2 = Y2 2 ' 2y

CALL ADD(Zl,Z2,Z3) z3 = Z1 + z2 3 = Zi + i 2

CALL POW(Z3,1.5,Zl) z= (z3) 1.5 1 =15(z 3)0 5 z3

CALL MCNST(-I.0,X,Z2) z2 = X 2 = x

CALL DIV(Z2,Zl,ANS) f = zf ( 2-f.di)/z

RETURN

END

Similarly, we write subroutine FUN2(X,Y,ANS) to evaluate the function

g(x,y) = - y/(x2+ y2)1.5.

Next, we write the corresponding partial derivative evaluation

subroutines. For example, the following subroutine PTDRI(X,Y,PD) com-

putes f and f and stores these values in PD(1) and PD(2), respec-x y

tively.

SUBROUTINE PDRI(X,YPD)

DIMENSION X(2), PD(2), A(2)

X(2) = 1.0 ,- 1

Y(2) = 0.0 0

CALL FUN1(X,Y,A) fx - f. since = 1, 0

PD(l) - A(2)

X(2) -0.0 -0

Y(2) -1.0 y- 1

CALL FUNl(X,Y,A) f - f, since i - 0, 9 " 1

_T)(2) - A(2)

RETURN

M)D
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We write also the partial derivative routine for gx and g, subroutine

PDR2.

The major steps involved in producing the right-hand sides of the

differential Equations (9) to (12) are

1) CALL FUNl to produce f(xk, yk)

2) CALL PDRI to produce fx , f

3) Evaluate j, Ii, Ii, h ,h

4) CALL FUN2 to produce g(xk, yk)

5) CALL PDR2 to produce gx, g

.. l .. 2 .3 .46) Evaluate , w ) w w , w.
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V. NUMERICAL RESULTS

We repeated one of the numerical experiments mentioned in our ear-

lier paper(1) . The 1962 experiment was carried out on the IBM 7090 by

means of a FORTRAN II source program. This time, using Wengert's me-

thod, we ran the problem on the IBM 7044 with a FORTRAN IV program.

The initial approximation to the orbit is a fixed point over all time,

this point coinciding with the position of the earth. Seven iterations

were carried out, and the results in both runs converged to the correct

solution as shown in Table 1.

Table 1

1962 1964 { True
Experiment ExperimentI Values

x(2.5) 1.19358 1.19358 1.19361

k(2.5) -.664268 -.664267 -.664263

y(2.5) 1.06063 1.06063 1.06070

(2.5) .247466 .247466 .247499

The computer execution times involved are I minute 20 seconds in 1962,

and 2 minutes 35 seconds in 1964. It is difficult to estimate the in-

crease in computing time with the use of Wengert's method, since the

computing machines and the source languages differed in these two runs.

In the intermediate iterations 1 through 5, the predicted values of x,

c, y and at time 2.5 varied from 6 figures of agreement between runs,
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to only 2 fig-ires of agreenent. The final results, however, did agrf.e

to at least 5 significant figures.

The use of Wengert's method in quasilinearization calculations

appears promising, and additional experiments will be carried out.



10

REFERENCE S

1. Bellman, R. E., H. H. Kagiwada, and R. E. Kalaba, "Orbit Determi-
nation as a Multi-Point Boundary-Value Problem and Quasilineari-
zation," Proc. Nat. Acad. Sci., Vol. 48, No. 8, August 1962,
pp. 1327-1329.

2. Bellman, R. E., H. H. Kagiwada, and R. E. Kalaba, Quasilineariza-
tion, System Identification, and Prediction, The RuAND Corporation,
RM-3812-PR, August 1963.

3. Bellman, R. E., H. H. Kagiwada, and R. E. Kalaba, Quasilineariza-
tion, Boundary-Value Problems and Linear Progtamming, The RAND
Corporation, RK-4284-PR, September 1964.

4. Bellman, R. E., H. H. Kagiwada, and R. E. Kalaba, On the Identifi-
cation of Systems and the Unscrambling of Data - I: Hidden
Periodicities, The RAND Corporation, RM-4285-T'R, September 1964.

5. Bellman, R. E., C. R. Collier, H. H. Kagiwada, R. E. Kalaba, and
R. H. Selvester, Estimation of Heart Parameters Using Skin
Potential Measurements, The RAND Corporation, IM-4138-NIH,
June 1964.

6. Bellman, R. E., H. H. Kagiwada, and R. E. Kalaba, "A Computational
Procedure for Optimal System Design and Utilization," Proc. Nat.
Acad. Sci., Vol. 48, No. 9, September 1962, pp. 1524-1528.

7. Wengert, R. E., "A Simple Automatic Derivative Evaluation Program,"
Comm. AC2, Vol. 7, No. 8, August 1964, pp. 463-464.

8. Wilkins, R. D., "Investigation of a New Analytical Method for
Numerical Derivative Evaluation," Comm. AC24, Vol. 7, No. 8,

August 1964, pp. 465-471.


