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(1)  „A „(2) if x},'  and x},'  are of the same directions,   and ij "'" Aij 

xij ij 
x(?) 

if x}.' and xif" are of the opposite directions and x},' 

is of the greater magnitude.  We say that two flow patterns 

are conformal if and only if 

x(3) _ x(l) +x(2) xij  ~ xij  + xij 

for all arcs. 

A particular flow pattern, called a "flow path,'* is a 

flow pattern with x, * x-, 0 - ... = x . = 1.  If the cost r si    il nt 

of a flow pattern with value v is known, and we superpose 

a flow path on this given flow pattern, the resulting 

pattern has value v + 1.  The total cost of the flow 

pattern with value v + 1 is the sum of the cost of the 

flow pattern with value v,plus the sum of u.. and d.. used 

in the flow path.  The sum of u. . and d. . used in the flow 

path is called the incremental cost of the flow pa;h. 

2.  ALGORITHM 

The algorithm for solving the minimum convex-cost flow 

problem can be simply described as follows. 

Starting with all x.. = 0, send one unit of flow from 

N to Nt along the path whose incremental cost relative to 

the existing flow pattern is minimum.  (This can be done 

by many of the existing shortest—path methods with u. . and 

d^ as the lengths; see, for example, [6], [10]).  Redefine 
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the u,. and d.. based on the new flow pattern obtained, and 

send one additional unit of flow along the path with minimum 

incremental cost-  The process of using the minimum incre- 

mental cost path is repeated until the total outflow of N 

is v (or the total inflow of N. is v). 

Many proofs are known for the case where the objective 

function (1) is a linear function.  In Beale [1], an algorithm 

is given for a bipartite network with convex cost, and it starts 

with a feasible solution.  It is easy to convert the existing 

proofs and ideas into the case of an arbitrary network and 

convex-cost functions, and to show that at every successive 

stage of the algorithm,.the flow pattern is optimum for the 

corresponding parameter v.  This will be discussed later. 

Let us give one example to illustrate the algorithm. 

2 
Consider Fig. 1.  The cost function of each arc is c.. x.., 

with c. . writton beside the arc and c. = c... 
iJ ij   ji 

Fig. 1 
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r-v for j = s 
( 7 ) 2: x .. -2: xj k = l 0 i ~J k ! 

f or j + s , t 

L, v for j = t , 

and 

(8) 0 ~ X •. ~ b .. for all i, j . 
~J ~J 

This problem can be formulated as a minimum c onvex-

cost flow problem as in (1) and (2) by defining 

u .. (x .. ) = 0 i f x .. < b .. 
~J ~J ~J ~J 

d .. (x .. ) = 0 if x . . :?:. 0 J ~ ~J ~ , 
) 

u .. ( x .. ) = CX) if x .. = b . . 
~J ~J ~J ~J 

and min z = 2: c . . ( x .. ) 
~J ~J 

subject t o e quation ( 2) . The 

cost func tion o f an arc is shown in Fig . 5. 

Cost 

_______ __.,. _____ .._ ___ __. Vo lue of 

bij o re flow 

Fig. 5 
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Th · v in (2) is taken as a parameter. The maximum flow v 

is ob tained when the value of the objective function z 

becomes infinity for v + 1. This means when the value in 

(2) is v, there is no arc in the network with infinity 

cost, and when the value is v + 1, at least one arc is 

with infinity cost. Since we are minimizing z, there 

mus t be a set of arcs which form a cut in the flow pattern 

with value v in which all x . . =b ... Hence, the value vis 
~J ~J 

the maximum-flow value. A proof as well as an algorithm 

is shown in Busacker and Gower [3]. We can generalize the 

approach used in [3] to solve the following case: 

(9) min z = ~ c . . (x .. ) 
~J ' ~J 

subject to r 
-v j = s ) 

(10) ~ X ~ xjk = 0 j + j ,t i ij k I v j = t ) 
1 .... 

(ll) 0 ~ x .. ~ b .. 
~J ~J 

where in (9) z is a sum of any convex-cost functions. The 

algorithm of a lways choosing the flow path with minimum 

incremental cost works for the case when the objective 

function is a linear func tion (see, for example, [3]) , and 

its validity does not depend on how many arcs connect the 

two nodes. We shall transform equations (9), (10 ) , and (ll) 

into a linear c ase as follows. 

Consider an arc b .. as a set of arcs, each with unit 
~J 

branch capacity. Index those arcs with positive integers 
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i . e.,with a given budget , we want to maximize the flow f r om 

Ns to Nt by allocating yij appropriately. 

This problem also can be solved by the algorithm of 

minimal incremental cost path. Let us define the up-cost and 

down-cost of arc flow as follows: 

u .. (x .. ) = 0 if X. • < b .. 
~J ~J ~J ~J 

u .. (x . . ) = c .. if X. • > b .. 
~J ~J ~J ~J ~J 

J 

d .. (x .. ) = 0 if 0 < X •• < b .. 
J~ ~J - ~J - ~J ' 

d .. (x .. ) =-c .. if x .. > b . . 
J ~ 1J ~J ~J ~J 

Then the solution is to always send f r om Ns to Nt one unit 

of flow along the minimal incremental cost path (sinc e we can 

c onsider the problem as min ~ c .. ,y . . and treat vas a para­
~J ~J 

meter) , until the total amount of money used up i s c. Then 

y .. = X •• b .. if X .• > b . . 
~J ~J ~J ~J ~J 

Y·. = 0 if x .. < b . . 
~J ~J - ~J 

J.J. Electrical Network 

Consider a passive electr ical network with on currenr-

input source at N and one current-output sour ce at N . s t 

From Ohm 's law. the elec trical current x .. f r om N. toN. i s 
~J ~ J 

pr oportional to the potential d i ffer e nce c .. and invers ely 
~J 

proportional t o the r esistance r .. of that arc. i .e. , 
~J 

X •• 
~J 

c .. 
= .:...J...l 

r .. 
~J 
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3.4. Laplace Equations 

The consideration of a network problem as a boundary­

value problem was done in [2]. Let us consider the Laplace 

equation in a region G: 

with ~ ~ prescribed on the boundary of G. I f we use 

difference equations to replace (12) and use a uniform 

grid, then the value of 00 at a poin t is the average v a lue 

of its foLir neighbors (see Figs. 6a and 6b), i.e., 

Fig . 6a 

X EO 

Xos 

Fig . 6b 
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4.  DISCUSSION 

We have assembled several problems in different areas 

and shown that all of them can be solved by algorithms 

of shortest—path type.  The distance functions (or cost 

functions of arcs), however, are not fixed but depend on 

the current existing flows in the network, and can be 

negative.  Hence, we must use iterative-type, shortest-path 

algorithms such as in [6], [10].  As the flow patterns always 

maintain their optimality, there will never be any cycle 

of arcs in the network for which the total cost of going 

around the cycle is negative. 
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