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PREFACE

Part of the Project RAND research program consists of
basic supporting studies in mathematics. 1In this Memorandum
the author shows that several problems which are usually
treated by other methods can be regarded as problems of
minimum cost flows, and that an algorithm of shortest—
path type can be used to solve all of them,

Dr. T. C. Hu, on leave from the IBM Research Center,
is currently teaching at the Operations Research Center of
the University of California at Berkeley. He was a
Consultant to the Mathematics Department of The RAND

Corporation during the summer of 1964,



SUMMARY

An algorithm is given for solving minimum cost flow
problems where the shipping cost over an arc is a convex
function of the number of units shipped along that arc.

This provides a unified way of looking at many seemingly
unrelated problems in different areas. For example, problems
associated with electrical networks, with increasing the
capacity of a network under a fixed budget, with Laplace
equations, and with the Max—Flow Min-Cut Theorem may all be

formulated into minimum convex—cost flow prublems.
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MINIMUM CONVEX—COST FLOWS IN NETWORKS

1. INTRODUCTION

Consider a connected network consisting of nodes N
and arcs Aij leading from N, to Nj' Among the nodes N,
there is a special node Ns called the source, and a
special node N, called the sink. The flow from N, to Nj
in the arc Aij is denoted by X5 We consider the follow-

ing problem:

(1) Min z = 3 Cij(xij)’

subject to
-v for j = s,

(2) 2X5-2 %X =<0 forjts,t,
[,V for j =t ,

where Cij(xij) are nonnegative convex functions of xij’
and the arc flows xij are required to be positive integers
or zero. Note that Eqs. (2) express the conservation of
flow at nodes other than the source and the sink, and that
the objective function (1) is a sum of convex functions
(not necessarily strictly convex), and is thus convex.

We shall discuss in Sec. 3 how this problem is related
to problems of finding maximum flow in a network with arc-
capacity restrictions, problems in the synthesis of traffic
or communication systems, electrical-network problems,

and certain boundary-value problems. Similar work has been

done in this area (See (1],[3],[7], and [10]). 1In [3],linear
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cost functions €43 (xij) are considered ; the method of
[1] deals with bipartite networks and starts with a feasible
solution.

The algorithm presented in this paper deals with
general convex—cost functions in an arbitrary network and
gives a feasible solution which is optimal for the parameter
v. In spirit, it is closely related to that of [1] and [3].

A set of positive x;. satisfying (2) is called a flow

i
pattern with value v. A glow pattern which minimizes (1)
for fixed v is called an optimal flow pattern corresponding
o v. Since the cost of shipping the flow along an arc is
a convex function of the amount of flow shipped, the cost
of shipping one additional unit of flow along the arc will
depend on how much flow already exists on the arc. Follow—
ing Beale [1], we define the so-called "up-costs" of an
arc as follows. For an arc Ai'

J
the up—cost of that arc is the cost of sending one addi-

with xij > 0 in the arc,

tional unit of flow from Ni to Nj’ i.e.,

(3) uij(xij) = Cij(xij + 1) - Cij(xij) for X, ; >0

If we want to send one unit of flow from Nj to N. where
there already exists Xij 2 0 in the arc, then the one
additional unit of flow from Nj to Ni will cancel one unit
of xij without affecting the value v in (1). Hence, the
cost of sending one unit of flow from Nj to N,,where there

already exists xij 2 0,1is actually negative.
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We shall call this the "down—cost" of an arc, i.e.,
the cost of sending one unit of flow from Nj to Ni' In

symbols,

( ) = X::) — ¢

(4) i (x5 = 1) for x;. > 1.

J1 1j271ij ij

We shall assume throughout the Memorandum that c; (0)

then it follows from the convexity of the cost functlons that

Cij(o) -l--[cij(xij + 1) — Cij(o)]xij/(xij +1) > Cij(xij) for Xi5 > 0.

Since cy (O) = 0, we have

cij(xij + 1) > (xij +1) cij(xij)/xij

This means the up—cost of an arc is always positive.
Similar reasoning shows that the down—cost of an arc ig

always negative. Furthermore, for any tw. nonnegative

integers a and b with a < b, we have
(3) uij(a) =< uij (b) ,
(6) dj1(a) < dy; (b)

For a given network, let a flow pattern with value vy
be given and denote its arc flows by xi;). Let another

flow pattern with Vs be given and denote its arc flow by
x(2) -
1J
a flow pattern with value v, + Vy. Let xé?) be the arc

If we superpose the two flow patterns, then we get

flow of this new flow pattern. Then

3) _ 1 2
D = XD, x|
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) & xg}) and xgg) are of the same directions, and
L(3) .

1
3 o |u(D

i

2
_e

b

. (1) (2) : : : (1)
if xij and xij are of the opposite directions and xij
is of the greater magnitude. We say that two flow patterns
are conformal if and only if
(3) - (1) (2)
xij _xij -l--xij
for all arcs.

A particular flow pattern,called a ''flow path," is a

flow pattern with Xg1 = X9 = -+ =X 1. If the cost

nt

of a flow pattern with value v is known, and we superpose
a flow path on this given flow pattern, the resulting
pattern has value v + 1. The total cost of the flow
pattern with value v + 1 is the sum of the cost of the

flow pattern with value v, plus the sum of uij and dij used

in the flow path. The sum of uij and dij used in the flow

path is called the incremental cost of the flow pa:h.
2. ALGORITHM

The algorithm for solving the minimum convex—cost flow
problem can be simply described as follows.

Starting with all xij = 0, send one unit of flow from

N, to N, along the path whose incremental cost relative to

the existing flow pattern is minimum. (This can be done

by many of the existing shortest—path methods with u; 5 and

dji as the lengths; see, for example, (6], [10]). Redefine
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the uij and d.i based on the new flow pattern obtained, and
send one additional unit of flow along the path with minimum
incremental cost. The process of using the minimum incre—
mental cost path is repeated until the total outflow of NS

is v (or the total inflow of N, is v).

Many proofs are known for the case where the objective
function (1) is a linear function. 1In Beale [1], an algorithm
is given for a bipartite network with convex cost. and it starts
with a feasible solution. It is easy to convert the existing
proofs and ideas into the case of an arbitrary network and
convex—cost functions, and to show that at every successive
stage of the algorithm, the flow pattern is optimum for the
corresponding parameter v. This will be discussed later.

Let us give one example to illustrate the algorithm.

Consider Fig. 1. The cost function of each arc is c;. x?.

ij i3’

with c.. written beside the arc and ¢c.. = c...
ij 1] Ji

Fig. 1
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Assume a given flow pattern as shown in Fig. 2.

Fig. 2

Then the up—costs and down—costs of every arc are
calculated from (3) and (4) with the result shown in Fig. 3,
where the first number beside an arc is the up—cost, the
second number is the down—cost, and the directions of up—

costs are the same as in the flow pattern of Fig. 2.

Fig. 3
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For example, the up—cost of A12 is 2‘22 - 2‘12 = 6. If an
arc has no flow, like AsZ’ the cost of flow from both
directions will be 4'12 - 4‘02 = 4. 1If we want tc send one
additional unit flow with minimum incremental cost, we
should use the arcs AsZ’ A21, and Alt with total incre-
mental cost 4 + (-2) + 5 = 7, with the resulting flow

pattern as shown in Fig. 4,

3. APPLIC...IONS

3.1. Maximum-F1lcw Min—Cut Theorem

The problem of finding maximum flow through a network
with bij as the branch capacities of arcs can be formulated

as follows:

Max v

subject to



i | =V for j = s
(7) ? iy~ i “jk T 0 for j % s,t
| v for j =t
and
(8) 0 < Xy 5 < bij for all i, j.

This problem can be formulated as a minimum convex-

cost flow problem as in (1) and (2) by defining

uij(xij) =0 if X, 3 & bij

dji(xij) =0 if X4 5 >0,

u,.(x..) == if x,. = b,. ,
1] 1] 1] 1]

and min z = 2 Cij(xij) subject to equation (2). The

cost function of an arc is shown in Fig. 5.

Cost

|

L ——— Volue Of

i arc flow

Fig. 5



The v in (2) is taken as a parameter. The maximum flow v
is obtained when the value of the objective function z
becomes infinity for v + 1. This means when the value in
(2) is v, there is no arc in the network with infinity
cost, and when the value is v + 1, at least one arc is
with infinity cost. Since we are minimizing z, there

must be a set of arcs which form a cut in the flow pattern
with value v in which all xij = bij' Hence, the value v is
the maximum—flow value. A proof as well as an algorithm

is shown in Busacker and Gower [3]. We can generalize the

approach used in [3] to solve the following case:

(9) min z = 2 Cij(xij)
@ r
subject to —v =3
(10) Zx =2 xy =90 j# it
i iy kI ; -
| v j=t,
(11) ngijgbij g

where in (9) z is a sum of any convex—cost functions. The
algorithm of always choosing the flow path with minimum
incremental cost works for the case when the objective
function is a linear function (see, for example, {[3]), and
its validity does not depend on how many arcs ccnnect the
two nodes. We shall transform equations (9), (10), and (11)
into a linear case as follows.

Consider an arc bij as a set of arcs, each with unit

branch capacity. Index those arcs with positive integers
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1,2,...,p. The cost of the k—th arc from N, to Lj is

cyy() = ¢y (k1) if Xy =0,

and the cost is «» if xij = 1. It follows from the convexity
of Cij(xij) that the up—costs of arcs from Ni to Nj are
always monotonically increasing with the index of the arcs,
while the down—cost of the k—th arc is negative if
it has flow. Assume that xij > 0; then if we want to send
additional flow from Ni to Nj’ we always use the arc with
smallest index if that arc is not saturated; if we want to
send flow from NB to Ni’ we always use the saturated arc
with largest index. Then (9) becomes a set of linear cost
functions of those unit—capacity arcs, since in no case
would we use an arc with infinity cost.
S aci a wo

This problem solved in [8] can be stated as follows.
A network with branch capacity bij is given. Now, we want
to increase the branch capacity or construct new arcs such
that the maximum flow from NS to Nt is increased. The cost

of increasing or constructing a unit branch capacity from

Ni to Nj is Cij' The problem is to find
Max z = V
subject to ¢ = cij yij
v for j = s ,
S %, — 2 xe =4 0 for j % s,t |
{ 1] Kk jk
VvV for j =t ,
O S KiyC Piy h gy




i.e., with a given budget, we want to maximize the flow from
N, to N, by allocating ¥ij appropriately.

This problem also can be solved by the algorithm of
minimal incremental cost path. Let us define the up—cost and

down—cost of arc flow as follows:

u,.(x,.) =0 i1f ®.. < Bas .

133713 ij ij
= i >
Mpg(Rig) = eyy 1T X5 2 By,
d..(x.,.) =0 if 0 < x,. £ by,
jitij 1] 1)
dji(xij) = = cij if xij > bij

Then the solution is to always send from N, to Nt one unit
of flow along the minimal incremental cost path (since we can

consider the problem as min = and treat v as a para—

“13*713
meter), until the total amount of money used up is c¢. Then

Vouw = Xow — bz X, . b,
ij ij ij 13 ij

y.. =0 IE Ko £ By
1] 1] 1]

3.3. Electrical Network

Consider a passive electrical network with one current—
input source at NS and one current-output source at Nt'
From Ohm's law, the electrical current X 5 from N, to Nj is
proportional to the potential difference éi. and inversely

proportional to the resistance rij of that arc, 1.e.,

o D14
r

®s 5
ij 13



The work done by that arc is X4 5 dij =Ty xfj. To solve

an electrical network of the above type, we can solve the
simultaneous equations given by Kirchoff's node law and
Kirchoff's loop law. Alternatively, we can regard Kirchoff's
node law as linear constraints of the currents xij’ and
minimize the total work done. This then becomes the fol-

lowing quadratic programming problem (see [5]):
Min z = rij x.j

subject to
—v for j = s ,
i~ p) X5k = O for j # s,t ,

v for j =t .

This problem can again be handled by the minimum incremental
cost—path algorithm by defining costs of arcs as follows:

Let

2
where

uij(xij) = rij(zxij + 1) if xij >0,

dji(xij) = _rij(zxij - 1) if xij > 1

For given strengths of inflow current source and outflow
current sinks, we send the current along the minimum
incremental cost path for source tc the sink until the

inflow rate is v.
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3.4. Laplace Equations

The consideration of a network problem as a boundary-
value problem was done in [2]. Let us consider the Laplace

equation in a region G:

12) y2é=0
with %% prescribed on the boundary of G. If we use

difference equations to replace (12) and use a uniform
grid, then the value of do at a point is the average value

of its four neighbors (see Figs. 6a ard 6b), i.e.,

P
d)i ¢O Cb E

Ps

Fig. 6a

NO
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(13) by — by — dg — . - 4, = 0.

Rewriting (13) and letting Xgg = dE - éo, etc., we have

(14) *E0 T ¥ow * Xyo ~ Xpg = 0.

of-flow equation, with XEo the arc flow from node E to

node 0. The boundary condition of Prescribing %g is then
interpreted as the condition of inflow and outflow at

sources and sinks in a network. The Dirichlet principle

(see for example [9]) for solving a Laplace equation can then be

regarded as that of minimizing a quadratic objective function,

2

(15) min z = 3 xij ;

subject to equation (14) at interior points of region G
and satisfying the boundary condition xij = %g at the
boundary of G.

We have the objective function

A -ZXij )
where
uij(xij) - inj + 1 if xij >0,
- — . 1.
dji(xij) inj + 1 if le 2>

Then the Laplace equation can be solved by min incremental
cost path from sources to sinks, as done Previously. Special

examples can be given to show that this approach ig better.




4. DISCUSSION

We have assembled several problems in different areas
and shown that all of them can be solved by algorithms
of shortest—path type. The distance functions (or cost
functions of arcs), however, are not fixed but depend on
the current existing flows in the network, and can be
negative. Hence, we must use iterative—type, shortest—path
algorithms such as in [6], [10]. As the flow patterns always
maintain their optimality, there will never be any cycle
of arcs in the network for which the total cost of going

around the cycle is negative.
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