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DYNAMICS OF FLEXIBLE ROTORS 

I. introduction-summary 

The present program had several, somewhat disparate, goals In the 

general subject area of Rotor Dynamics. Primary among these was an 

inquiry into the effect of gyroscopic and rotatory inertial effects on the 

whirling of rotating shafts. The secondary goals included the development 

of a computer program for the prediction of whirling of stepped shafts, the 

completion of an inquiry into an approximate method of analysis which is 

used widely in Naval predictions of shaft whirling phenomena, and the 

development of a very versatile and dependable test rig for the experimental 

investigation of primary and secondary effects in Rotor Dynamics. 

An appendix contains a complete derivation of equation, of motion 

for shafts which rotate at constant speed. The equations of motion reflect 

a quite general characterization of such shafts. Hence, while it is assumed 

that the cross section, of the shafts have equal inertial moment, e. g., cir¬ 

cular or square cross section, this cross section a. assumed to vary arbi¬ 

trarily as a function of axial position. The assumption of equal inertial 

moment is not considered to be unduly restrictive inasmuch as previous 

investigations have clearly pointed out the disruptive whirling effect, which 

can be experienced if this is not the case. The rotor is supported in lubri¬ 

cated massive bearings on flexible damped supports. Material damping in 

the shaft, and external damping such as that provided by air. are assumed 

small in comparison with the support damping. Although the effect, of 

deformation due to transverse shear forces were neglected in this analysis 

attention was paid to the effect, of gyroscopic moment and rotatory inert« 
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of the shaft (and incidentally of any disk or disks which are carried by this 

shaft). 

Sections II and in of this report contain analyses of specific shaft 

systems which were performed with the use of the basic differential equations. 

The critical speeds and mode shapes were found for a uniform undamped 

rigidly supported cylindrical rotor with gyroscopic and rotatory inertia 

effects included. The cylindrical rotor was analyzed in fixed short bearings 

as well as in fixed long bearings. 

A second analysis inquired into the critical speeds of a system con¬ 

sisting of a single disk loaded at an arbitrary location on a uniform continuous 

shaft which was mounted on short fixed bearings. Critical speeds were 

found for various disk sizes and locations. 

In general, it was found that there are two critical speeds for each 

order of flexible mode shape. Furthermore, the rotor does not deform in 

a plane curve as is normally assumed in classical analysis. 

The frequency equation for the uniform cylindrical rotor in either 

mounting can be uncoupled, yielding two equations which represent the two 

sets of critical speeds associated with backward and forward whirl of the 

rotor. The critical speeds for each mode order were found as a function 

of r (the ratio of the rotor or shaft radius to its length). The effects of 

roUtory inertia and gyroscopic forces effectively broaden the apparent 

resonance at lower order modes. However, as the rotational speed of the 

rotor increases, the resonance peaks separate and become distinct. The 

equations predict that, at larger values of r, it is possible to encounter a 

backward whirl of higher order before one encounters a forward whirl of 

lower order. Hence, for example, a mode shape with five nodes may occur 

at a lower speed than will a mode^ shape with four nodes. This produces a 
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unusual situation at value, of r where the curve, for different order critical 

speeds intersect. The mode shape at these critical speed, appear to be 

indeterminant when using linear, undamped, analysis. 

At this point, it should be emphasised that the analysis under dis- 

cussion concern, itself with the rotatory inertia and gyroscopic moments 

which are distributed in a uniform shaft. The effects of these perturbing 

influence, become increasingly pronounced a. the rotational speed increase, 

and similarly, as the ratio of rotor diameter to rotor length increases. On 

the other hand, at higher values of these parameter, the effect of shear 

deformation in the shaft becomes significant. Hence, the quantitative pre¬ 

dictions of this theory must be held in question. There is, of course, every 

reason to believe that the prediction, are qualitatively correct, inasmuch 

as an elementary analysis will show that the primary effect of shear defor¬ 

mations is that of increasing the apparent value of r which appear, in the 

results. 

The gyroscopic effect, of the rotor tend to alternately advance and 

retard its whirling motion as the rotational speed is increased. The rotor 

mounted on short bearings has quite simple mode shapes. These mode 

shapes are more complicated when the rotor is mounted on long bearings. 

In operation the critical speeds of backward whirl should be avoided, since 

a fatigue problem is encountered when the rotor assumes this whirl config¬ 

uration. For example, a point on the periphery of the shaft undergoes two 

complete reversed stress cycles per revolution while »„rating at the first 

critical speed in the backward whirl configuration. 

The result, which were obtained for the rotor when mounted on long 

bearings were, in general, similar to those which were obtained for short 
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bearings. The solution of the frequency equation is more complicated. Both 

the critical speeds associated with backward and forward whirl are, again 

uncoupled. Therefore, the shaft exhibits the same general behavior namely, 

a critical speed at which forward whirl occurs and a critical speed at which 

backward whirl occurs at each order mode. 

The critical speeds of the system consisting of a single disk mounted 

on a continuous shaft depend upon the disk size and location. The gyroscopic 

and rotatory inertia effects of the shaft were neglected since they are small 

compared to the gyroscopic and rotatory effects of the disk. The two major 

influences on the critical speeds are the "mass effect," which is the ratio 

of the mass disk to the mass of the shaft, and the "disk effect," which is 

the ratio of the radius of the disk to twice the length of the shaft. The 

mass effect tends to lower the critical speeds of the system, when not 

located at a nodal point, as the mass of the disk is increased and the disk 

effect may increase or decrease the critical speed of the system. The disk 

effect tends to effectively stiffen or soften the spring constant of the shaft, 

when the shaft is thought of as a single spring, giving double criticais at 

each order mode shape except when the disk is mounted at an antinode. 

In the classical approach of finding the critical speeds of the disk- 

shaft system, only as many critical speeds as the number of disks on the 

shaft can be found. This does not mean other critical speeds of the system 

do not exist but only that the classical mathematical model does not fit the 

physical model accurately. The present representation does fit the physical 

model and these higher order criticais were found. 

The critical speeds of the system were found with the disk at three 

different locations and the size of the disk used at each location was varied. 

Ilf RESEARCH INSTITUTE 
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The critical speeds of a system with the disk located at the bearing 

show no "mass effect" because this is a nodal point. The "disk effect" tends 

to spread the critical speeds as the size of the disk increases and the 

x\if 
critical speeds become asymptotic to p = — , where n = 5, 9» 13, etc. 

When the disk is mounted at the quarter point on the shaft, the 

critical speeds corresponding to the first and second order modes are in 

general decreased by the "mass effect" and two critical are obtained due to 

the "disk effect." The third order critical speeds show only slight "mass 

effect" and a large "disk effect" because in the fourth order mode shape 

the disk is located near an antinode. 

For the disk mounted at the center of the shaft, only one critical speed 

is obtained for the odd order modes which indicates only "mass effects" are 

important, while for the even order modes two critical speeds are obtained 

indicating the presence of both "mass and disk" effects. Finally as the 

rotational speed and the size of the disk is increased the critical speeds 

approach: the value n tf/2, where n = 5, 9, 13, etc. 

Experimental runs were made to check on the predictions of the 

analysis. No conclusions could be reached in the case of the bare rotor 

since the ratio of rotor radius to length (approximately 0.015) was too small 

to permit separation of the forward and reverse whirl speeds. However, the 

first critical speed, forward whirl, showed good agreement with the analytical 

results considering the fact that transverse shear effects were omitted. 

Good agreement was obtained in the case of the rotor-disk system with both 

forward and backward whirling modes being identified. In each case the 

backward whirling modes were difficult to detect and had relatively small 

amplitudes of displacement, while the forward whirling modes were easy to 
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identify and had relatively large amplitudes of displacement. A gravity 

critical speed was obtained when the disk was mounted at the mid point 

and at the quarter point. Again, here, an attempt was made to increase the 

operating speed to a point at which the forward and reverse whirls would 

theoretically coincide, in order that this phenomenon could be observed 

experimentally. The power capabilities of the drive system were not found 

to be equal to the task. An attempt should be made to study this phenomenon 

at a later date. 

The secondary goals are completely reported upon in the appendices. 

Little not need be made of them here. It should, however, be pointed out 

that the computer program which is reported upon has been completely de¬ 

bugged and is operational. A complete program listing together with FORTRAN 

and operating decks for the IBM 7090-7094 computer systems have been com¬ 

pleted and delivered to Code 345, Bureau of Ships. It will be observed that 

this program is very general and should find immediate applicability. 

Several areas of continued work in this area of Rotor Dynamics are 

apparent. Included among these are the following: 

L Extension of the basic mathematical model and system of equations 

to include the effect of transverse shear forces on deformations. Not only 

should this information be of value in the analysis of relatively uniform heavy 

rotors; the prediction of higher critical speeds for rotors of small diameter 

which support rotating disks of large inertia should also be improved. 

2. Further experimental work should be performed with a view 

towards actually attaining the speed at which forward and reverse whirl 

modes theoretically coincide. Information in this area can be obtained 

analytically only with great difficulty. Since it appears possible that operation 
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in the neighborhood of euch a phenomenon may be quite disruptive it is 

certainly germane to study such operation in detail. 

3. Most studies of Rotor Dynamics have concerned themselves with 

rotors which operate under constant speed and have completely neglected the 

kinetics of such operation. Since useful rotating shafts transmit torque the 

effect of such torque on the whirling of shafts should be studied. It is 

apparent that not only is the transmission of torque of constant magnitude 

of importance, load fluctuations can have important effect on the operation 

of power transmission systems. Hence, it is recommended that both 

theoretical and experimental studies be made on the effects of fluctuating 

and steady state torque on rotating systems. 
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n‘ CYLINDRICAL rotors WITH GYROSCOPIC EFFECTS 

Previou. investigations have resulted in the determination of critical 

.p..d. of simplified model, of continuous shafts. Prominent among the 

simplifications utilised is one which assumes that the rotor dynamic, of 

uniform shaft, are little affected by rotatory inertia and gyroscopic effects. 

In the preaen, section of this repor, we inquire into this assumption, it. 

ba«i«, and the range of its validity. 

The model for this study is the shaft of Appendix A. which, for the 

immediate study, will be assumed to be uniform and circular. Thus, we 

conclude the following specializations. 

I (x) = constant 
0 

A (x) = constant 

r (x) = constant n 
(¿ • 1 ) 

p (x) = constant 

S (x) = constant 

The equation, of motion now assume a form which appear, tractable. For 

convenience, we introduce the following notation. 

¿ 
P = 

A* 0¿L4 
- 

h = -ÍL. 
LIT 

The equation, of motion have the following form in space-fixed coordinates. 

u.¿) 

1 X ± Ul 
dx dr 

¿ r 
X ¿¿7 (2.3) 

* *1 COB ‘ ,in 

• 4u __2 »S 
rr 17 -V -V- ( bxòr I 

èU2 
dr 2 u 

dx^dr 
= Sj stn r ♦ a¿ cos^ - h 
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The first task is the determination of natural rotor frequencies. We 

consider the homogeneous form of (2.3), (2.4), with a = a. = h = 0 and 
1 ¿ 

following the procedure of Contract NObs — 86805, introduce trial solutions 

of the form 

u = A 
1 e 

u, = B 
2 e 

(A X + i f 

+ i*V f 
(2.5) 

where A, B,W , and “V are, in general, complex constants to be determined 

by the end conditions. Equation (2.5) and similar expressions are inter¬ 

preted as meaning that u^ and u¿ are the real parts of the right hand sides. 

When equation (2. 5) is substituted in (2. 3) and (2. 4), it is found that these 

constants are related by equations (2.6), 

[$■ 

ft 

V2 + 4 . 2 2 <* -y 

] A - l.r f V B. 0 

* B + i 

(¿.6) 

•V 
1 

A = 0 

The determinant of coefficients of A and B must vanish. This leads to the 

following relation between Ql and V • 

* 

P 

4 > 2,-2..2 \ 
r¿<*¿y 
—2- 

a 0 (2.7) 

Equation (2.7) permits (A to be expressed explicity in terms of . Let C^, 

^ 3 independent constants, all of which can assume values 4 1; 

3 1. 
.2 
’2 1. (2.8) 

Then 

/ fr¿p(V+ l * ) Í rV(Vie.»2' 
* *, /vp-1-5--n-— (2.9) 

HT lltlAICN INSTITUTI 
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For each possible value of V. There are eight values of C* and sixteen 

constants A^, B.. These constant values are not independent, by (2.6) they 

are related. Equations (2.6), (2.9) yield the following simple relationship. 

Bj= ic! Aj. 0= 1,2,3,...8) (2.10) 

The exponentials (X . and the relation (2. 10) are made specific by 

means of Table 1. For each unknown value ofV the solution has the form 

u 
1 

cMV)x + iyx 
A.e J 

J 

(‘i’V 
eyvu + .yr 

(¿.ii) 

In general, it is clear that the shaft does not deform in a plane curve, as is 

normally concluded. 

The constants of inte -ation must be found from the boundary condi¬ 

tions. In cases where these conditions are homogeneous compatibility leads 

to an eigenvalue equation for V and p. 

Table 1 

Parameter Values Corresponding to Solution Indices 

Index j Cj C? 

1 

2 

3 

4 

5 

6 

7 

8 

1 

1 

-1 

-1 

1 

1 

-1 

-1 

1 

-1 

1 

-1 

1 

-1 

1 

•1 

We shall examine the shaft behavior for different sets of end conditions. 
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A- RIGID SUPPORTS, SHORT BEARINGS. NO LUBRICANT 

Thu i» the classical case of "pinned bearings." The end conditions 

of Appendix A reduce the following. 

On X = 0: u, = u2 * 0 

o u. 

dx‘ 

d2U. 
= 0 

dx‘ 

On X = 1 : U, = u2 * 0 

_ a2u2 
= 0 

(2.12) 

dx“ dx 

Substitution of (2.11) into (2.12) yields the following algebraic system. 

f A. = 0 
j=l J 

8 
Z A = 0 

j = 5 J 

8 

A. = 0 
j = 1 J j rtIAj=° 

(i. 13) 
a. 8 ». 

^Ae J=o J] A. eJ = 
j' I J j = 5 I 

.Ç/ív'1-” 
Two independent sets of equations for the A. are apparent. The frequency 

equations are obtained by setting the product of the determinants of these 

systems equal to aero, thus producing the environment for nontrivial deter- 

mination of A^. Thus, we have 

A1 A2 = 0 (2.14) 

= 0 

C* 

III lit (ARCH INSTITUTI 

-11- 



Al = 

o 

1 

2 
1 

CM 

& 
2 

^2 

1 

3 

0^3 Ä4 
e 

A2 = 

,2^ 

1 

2 

.2 *2 .2 ^3,.2 <^4 
^2e ^36 ^46 

1 

l2 

<^5 016 e e 

8 

Ä8 

By Table 1, and (2.9) we see that 1 + V—H-V ): 

and 

°v 

^5' 

.^31 

A, 

8 

Ot 8 

(2.15) 

(2.16) 

(2.17) 

*2“* *1 

If y satisfies the frequency equation for specific values of r and p then 

(- "y ) also satisfies the equation. Thus, V must be real if solution ampli¬ 

tudes remain bounded with time. Of primary interest are the, cases V = 1 

and y = -1 which, of course, give rise to the same frequency equation. Since 

U1 + 1 U2 s (V! + i V2) e 1 (2>18) 
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it ia clear from (2. 5) that V = 1 can imply that there is no time variation 

of the displacements of the rotating system. For V = 1, the solution is 

neatest when expressed in terms of the following parameters. 

For V = 1 define 

ßr * 

|3,‘ * 

/ V' * I 4-1 ï 
• 1’ •■F n 

“
O

 

1 
The determinants and can be written in terms of the fi : 

Al = 

1 

»ï 

A 

1 

>2 

1 

,2 
A -A -*2 

-0i -‘/A 

U.19) 

U.20) 

A, = /3 

i 1 

.2 

1 

2 

/3 3 '/3 e e 

A2 ^3 .2 ’^3 Ä2 Ä2 
^3e /33e -/94e -«4* 4 

^4 ' ^2 

J/34 ^/04 

(¿.¿I) 

Reduction yields the frequency equation: 

2 2^ 2 2^ 
* Æ 1 + /3 g) (/33+^4) sinh sin ^ sinh /9 3 «in /$4 « 0 (2.22) 

lit IISKAICH INtTITUTI 
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Now 

A¿4>2= 16 ^* I»”'2 ’3 - m4/ = io p i i + |- gP 

which is only zero for p = 0. The remaining factors yield the 

expressions 

2 2 

following 

)1 
Æ, = in , ß2= njf, ß}= inff, ß* = n fl* 

(n = 0, 1, 2, . ..) 

The whirl frequencies are thus described by the following sequences 

„2 -2 n ;r 

p+=r^ 27f¿ 

(a) 

2 w2 

p.=H= (b) 

(n = 0, 1, 2, . ..) 

These roots are plotted in figure 1. 

As r-^0, both sequences assume the classical values 

«0: Pc=n2rf¿ 

(2.23) 

(2.24) 

(2.25) 

(n = 0, 1, 2, ...) 

In general r. which is the ratio of the shaft radius to the shaft length, 

is small. Should this not be the case, equations (2.¿5) are not valid, since 

deformation due to shear is important and should be included. For the lower 

mode, the effect of rotatory inertia and gyroscopic forces on a uniform 

round shaft is therefore effectively one of broadening the apparent resonance. 

A different effect becomes apparent as the rotational speed of the shaft in¬ 

creases. The resonance peaks separate and become distinct. 

(2.26) 
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An interesting conclusion can be drawn from figure 1. It is clear 

that one can encounter backward whirls of high order before one encounters 

forward whirls of lower order. For example, for r = 0.1 it is seen that 

the fifth and sixth order backward whirls occur at lower shaft speeds than 

does the fourth order forward whirl. This effect may cause confusion in 

the interpretation of experimental results. 

An effect of gyroscopic moments can be observed if it is noted that 

the critical frequencies have the following form when only the rotatory 

inertia of the cross sections is considered: 

(2.27) 

Comparison of (2.27) with (2.25) reveals that 

P+ > n ^ > pr ^ p- (2.28) 

The gyroscopic moments thus tend to alternately advance and retard the 

shaft as the rotational speed increases. 

The displacements are best found with a redefinition of coefficients. 

Define 

ci= V A¿ C2 = V 

C3 " A3 + A4 

C5 ^ A5 + A6 

C7 = A7 + A8 

C4 ~ 1 (A* • A J 

C6" A5 ’ A6 
(2.29) 

C8 " 1 ^A7 ’ A8^ 
The following two systems of equations then hold. 

Cj + Cj = 0 

fife. 
Cj cosh 

1 02C3=O 
Pj + C¿ sinh P1 + C3 cos = -C sin 

(2.30) 
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(¿.31) 

Cç + = O 

*3C5- OÍS’ 0 

C5 cosh p3 + C6 sinh ^ + C7 eos ^ = -C8 8in ^ 

At thi. point, some care is requtred. For p = p_ equat.ons (2.30) hold and 

c5. C6. C7, Cg must vanish. SimUarly, for p = p+equat.ons (2. 31) hold 

and Cr CV Cy C4 mu*‘ v»n‘*h. Thus, the mode shapes are intrinsically 

different for advance and retardation. 

Equations (2.30) for p = p yield the following. 

sin /3 

C2 C4 sinh ß j 

C1 = C3 = C5 ' C6 " C7 ' S ' 0 

Similarly, equations (2.31) for p = p+ yield 

8in ß A 

C6 = ’C8 smK ¿3 

C1 = c2 = c3 = c4 = C5 - C7 = 0 

Both - inTf and - nil y.eld the same value of p , while (S^ = i n Jf 

and /J4 = nff yield the same value of pv Thus, to be specif,c we take 

ßy ~ nTf for p = p 

ß4 - nrf for p - p+ 

= 0 for p - p 

- 0 for p -: 

This displacements Uj and u¿ are real. Let Cg and be real. Then 

for p = p 
uj = cos T sin n X 

(2.32) 

(2.33) 

(2.34) 

u> = -C4i8in f sin n if 
(2.35) 
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J 

r 

r 
r 

for p = p+ 
Uj = Cg cos “f sin n tf x 

= Cg sin sin n TT x 
(¿.36) 

The nondimensional coordinates which rotate with the shaft are y and V 
l 

where 

Vj = Ul cos T + sin Y 

y, = u, COS f + U. sin 
(237) 

The displacements and are shown below. 

ul^ 

Looking at an arbitrary cross section (u^) while the shaft rotates with 

rotational speed JT, : 

/ 6 
« 

III RESEARCH INSTITUTE 
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The displacements in rotating coordinates have the following simple form 

for p s p 

for p = p4 

Vj x cos 2 X sin njfx 

r9¿ = -C^sinZT sinnff x 

V, = Cg «in n If X 

(2.38) 

(2.39) 

The frequency p+ is a "froren whirl" in which the shaft distorts in a single 

plane which then rotates at the applied speed. Conversely, p = p is a 

"backward whii 1." 

The displacements as a function time in rotating coordinates are 

shown. Again, an arbitrary cross section of the shaft is shown in motion. 

(Yj. y¿) rotate with speed il. 

yl 

Reverse Whirl p = p 
Forward Whirl p = p+ 
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B. RIGID SUPPORTS, LONG BEARINGS, NO LUBRICANT 

Next, consider the case of "fixed bearings," whose boundary 

conditions are those of a fixed-fixed beam. Then the end conditions of 

Appendix A can be written as follows: 

onx*0: u su.sO ^ 
I £ 

on X s 1 ; 0 

/ 

(¿.40) 

Again, substitution of (¿.11) into (¿.40) leads to equations to be satisfied. 

4 

CX.J A = 
1 J 

0 

Z A = 0 
j= 5 J 

► 

8 

^ <*jA. = 0 
j = 5 J J 

(¿.41) 
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^ «X.i ® 
Í Aje J x 0 r A.e^xO 

J- ‘ js 5 

(2.41) 

8 «i 
£ <cjAj* s 0 

j * 5 

Two independent «eta of equatione for the Aj are obtained. The frequency 

equationa are now found by .etting the product of the determinante of these 

systems equal to *ero. 

4 

l 
j. i 

* i 

Ai A2s0 (2. 42) 

where 

«X-jC 
^2* oC je 

s* 

(2.43) 
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1 1 1 1 

a2« 
5 

oCt 

oC^e 

oc 6 

of. 

*6e 

7 

oC. 

0C*7e 

Now using (2. 17), (2. 18), and (2. 19) 

oC 8 

oí 8 

'8 

(2.43) 

*1* 

I 

K 1 

SPl 

ßjC 
Pi 

ù2- 

1 

eP3 

P i® 
P 

- P 1 

’Pi 

- P 

* P 

-P*e 
- P 

iß 2 

* P 2 

i P 4 

i P, 

i P4e 
i P 

1 

-iP2 

‘^2 

- P 1 » P 2 -i ß . 
•P Ie iß 2e "i P 2e 

-i ß 

-iß 4 

-i P 4e 
P, 

»(2.44) 
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1 

Aj = 4i ^ sin p 2*inh ßj ( ßj2-^ 22) + 2ß j ß 2(l-cos ß 2coah ß^J 

= 4i 2.2 
2 = 4i I sin ß4sinh ß3( ß3 - ß4 ) + 2 ß3 ß4(l-cos ß4cosh ß3) 

>^.45) 

A1 Ä2 - 0 

By using equations (2. 19), find 

2 2 2 2 
= ^2 ’ ^3*^4’ ^2' ^3 'n term® r an<^ P* 

ft 2 « 2 3 2 2 
P1 * P2 = - Tr P 

Pj2 - P42 

ß3 ß4 -p 

2 2 

(2.46) 

and r and p in terms of ßj, ß2» ß 3 and ß4 are shown below 

p’ = ß , ß 1 K2 (a) 

> (2.47) 

P ' Pj P4 (b) 

MT RESIAICH INSTITUTE 
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(c) 
2 

r 

2 
r = 4 

2 
4 

(2.47) 

From equations 2,45, the frequency equation is obtained. 

-8 £sin p2sinh ^2. ß22) + ß2(l-cos ß2cosh 

(2.48) 

^sin ß4sinh ß 3( ß 32- ß42) + 2 ß 3 ß4(l-cos ß 4cosh ß 3) J =0 

It is evident from equations 2.47 that if ßt = ß2 or ß3 = ß 4, then r must 

be aero and the frequency equation 2.48 reduces to cosh ßcos ß = 1. This 

is the case of a fixed-fixed nonrotating beam whose roots lie on a forty 

five degree line labeled r = 0 in figure 2. Therefore for the case of a 

rotating shaft where rotatory inertia and gyroscopic effects are considered, 

r ¿ o and thus ßj ^ ß2 and ß3 i ß4» 

The other extreme case in the range of values of r shown in 

figun. ¿ is r—^oo which implies that either ß = 0 or ß = 0. 
1 r4 

^1 = = ^ 3 = ^4 ^ 0 since this is the trivial case p = 0 by equations (2. 47). 

= Í-1 ß 2 0r P 3 = 1' ^4’ equation 2. 48 is satisfied, but this 

solution has no physical meaning because by equations (2.46) p is 

imaginary. 
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Then the frequency equation (2. 48) is satisfied only if: 

2 2 
sin ß2sinh ßj( ß j - ß 2 ) + 2 ß t ß2(l -cos ß 2cosh ß j) = 0 

or 

2 2 
sin ß^sinh ß3(ß^ _ß4)+2ß^ß^(l -cos ß ^cosh ß = 0 

where only real values of ß^, ß2, ß ß^ are admissible. Roots to 

equations 2. 49 are shown in figure 2 for a r a n ge of values of r. 

There are two basic parts of this graph corresponding to the critical 

speeds p* «.nd p . The roots of ß^ ß2 correspond to p , the critical 

speed of backward whirl. These roots all lie below the forty five degree 

line r = 0 and therefore > ß i* roots 0f correspond to 

p+, the critical speed of forward whirl. These roots lie above the forty 

five degree line r = 0 and therefore ß^>^. In each case the roots are 

plotted for a range of values of r varying between r = 0 and r—►oo. 

According to equations (2.47), p~ = ß^ ß2 and p* = ß ^ ß^ are 

the critical speeds. Therefore for a given shaft ( r is known), n discrete 

values of ß^ and ß2 and n discrete values of ß^ and ß^ can be found. 

Therefore 2n critical speeds are obtained for each value of r. 

Figure 3 shows the relationship between the critical speeds (p) 

and the shaft parameter r. This plot shows that as the ratio of the shaft 

radius to shaft length increases from the limiting case of r = 0 to r =0. 1. 

the critical speed progresses from one discrete critical to a wide critical 

and finally to two discrete critical speeds. 

To find the displacements, the coefficients A. will be redefined 
J 

similar to (2. 29). 
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C1 s A1 + A2 

c3 s A3 + A4 

c5 = a5 + a6 

g? = À? + Ag 

c2 = A1 ‘ A2 

c4 ~ ^ 

c6 = A5 ” A6 

c8 = 1 (A7 ‘ A8) 

(2.29) 

Then by utilizing the set of equations (2.41), the following systems of 

equations hold. 

Cj + Cj = 0 

^1 c2 + ^2 c4 =0 

)(2. 50) 

Cj cosh ßj + c2 sinh P j + cos ß2 + c^ sin ß ? = 0 

ßjCj sinh P ! + PjC2 cosh ßj - ß2c3 sin ß2 + ß2c4 cos ß 2 = 0 

c5 + c? = 0 

ß3C6+ ß4c8 = 0 
>(2.51) 

c5 cosh ß3 + CgSinh ß3 + c7 cos ß4 + Cg sin ß4 = 0 

ß3C5 Sinh ß3 + ß3C6 COsh ß3 " ß4c7 sin ß 4 + ß4cg cos ß ^ = 0 
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Either equations (2. 50) or equations (2. 51) are admissible in 

describing the motion of the shaft at a critical speed p. If equation (2.49a) 

is satisfied and values of p¿ are obtained, then the motion corresponding 

to the critical speed of retardation <p‘) is obtained by allowing equations 

(2. 50) to hold and lettine c ~ c, = c - c = 0 
6 5 6 7 8 

Equations (2. 50) yield: 

^2 
C2=‘TT C4 

) (2.52) 

c J cosh + c2 sinh ßj + c3 cos ß2 + c^in ß2 = 0 

ß2 ß 
c 1 Slnh + c2 cosh f3! " c3 sin ß2 + — c4 cos ß2 = 0 

where ßt and ß2 are known for specific values of the shaft parameter r. 

Rearranging (2. 52) 

c 
1 

cos 

sinh ß j - sin 

ß2 - cosh ßj 

( 

ßz_ sinh Pi - sin P2 

^1 cos P2 - cosh ß j ^ 

III RESEARCH INSTITUTE 
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Now using equations (2. 11) with = = = Cg = 0 Uj and u^ are 

obtained: 

oC2x 0C3X of4x 
UjMAje +A2e + A3e + A4e 4 ) e1 T 

(2.54) 

ç^2x Q( X gc X 

u2=i(A1e + A2e + A3e + A4e )e 

and 

1 T 
= cos t + i sin t 

Replace the constants A. by C. using equations (2.29) and express c. in 
J J J 

terms of c4 using equations (2. 53). Then the equations for the displacements 

Uj and u2 at a critical speed (p ) become: 

r 
u , = C. COS T 1 4 sin ß2x - —sinh ß + ^ 

' p~- sinh ßj - sin 
1 

y COS ß ^ -cosh ß J 

(cos ß2x - cosh ßjX) 
(2 

U2 = 
•c. sin t 

4 sin ß2x - 

yt 

1' 8inh Pi . 8in p \ 

4 sinhPjX+l-r-I-1 
cos -cosh ßj 1 

(cos ß - cosh ßjX) 
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The motion corresponding to the critical speed of advance (p+) is obtained 

next by allowing equation (2. 49b) to be satisfied for values of 0, and ß 
3 4 

and further by allowing equations 2. 51 to hold with c. = c, = c, = c, = 0. 
1 2 3 4 

The descriptions of the motion (uj.u^) of advance have a form similar to 

the latter set of equations except that different values are obtained for 

P3 and P4- 

Then for p the motion is 

U1 = Cg COS T 

sinh p j-sin ß ^ 

sinp4x- -bt sinhp3x + —;-— 
. K3 y cos - cosh ß^ 

(cos ß^x - cosh ß^x) 
(2.56) 

u2 = ‘c8 8in T 

ß 

^4 sin ß^x - -jj— sinh ß x + 

sinh ß3 -sin ß4 

4A T7 ..ry x 
3 V cos p4 - cosh p 3 

(cos p^x - cosh ß^x) 
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III. SINGLE DISK ON A CONTINUOUS SHAFT 

WITH GYROSCOPIC EFFECTS 

The classical method of calculating the critical speed for a single 

disk mounted on a rotating shaft utilizes the assumption that the shaft is 

a massless spring and that the disk is the sole mass of the system. 

Rotatory inertia, and gyroscopic forces of the disk are sometimes 

included in the calculation. In this section of the report, we will find 

the critical speeds of a system composed of a disk mounted on a rotating 

shaft mounted in short bearings. In this analysis, the shaft mass will 

be considered but the gyroscopic and rotatory inertia effects of the shaft 

will not be considered since they are negligible in comparison to the 

gyroscopic and rotatory inertia forces of the disk. 

The equations of motion, continuity conditions, and boundary 

conditions for a straight circular shaft with a disk attached at an arbitrary 

location will be obtained. The expressions for the kinetic and potential 

energy for a round shaft were given in Appendix A. The expression given 
/ *' 

as equation (20), in Appendix A, will be modified to include the energies 

of the disk. 

let 

Mp = mass of the disk 

ID = mass moment of inertia of the disk about Y¿ 
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1 2 n 
*D = T mdRD ’ this imPlic8 that -2" << ^ 

Rjj = radius of disk 

rD = LRD 

The energies of the system are divided into three parts: the energy 

of the disk, the energy of the left hand portion of the shaft up to the disk, 

and the energy of the right hand portion of the shaft. 

, (T-U) 
L “3 2 

L ÍT ■I * ^ 0U1 2 8u2 2 2 2 
AP +ai +a2 +2 

8 u_ 8Uj 
al(cosT7__.8in T^pp) 

8u. 8u. 
•a2(sin + cos r 

L4Ap 0Z 

82u. 2 8 2u2 2 

<—r» +(— 
8 X 9 X 

? 
Ô u. 8 u- 8 ui 8uo 

teVT* + (T7Ft) +2 +2 J7pr -fT ' 2 

82u a 2 8 u, 82u2 8ul 

1 a 2.2 8u, 8u. T J dai du2 ? 2 du2 9ul 
+ J AP^(Tt") +(T?")+al +a2 42[al(c08T"FT ‘ sin TTt_) 

8 X 0 t 9 X dx 

L* 
(3.1) 

8u2 ÔU1 1 S - a2(sinr^_ + cos t ^_) - —^- 
J L Apn 

2 2 2 ^ ^ 
8 u. 8 u. 

(-7“) ( ? •) 
8 x‘ 8 X “2 

r 2 2 
_2 I 8 u, ®**u5 8“u, 8u- 

+ir [‘-rarP + ' ‘ 

2 Ä2 - u2 8 u. 

+2+2TxFt‘ -2 
8 u2 8ui 

8 xô t tit 

— 
Denotes left portion of the shaft 

dx 
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/ '"[[hrr1 •Itt-i 
dr; d t¡ 

hrr' +'-^ ^-.1 
dx 

2 ; / 9U2 ^ -T ) 
+a2 +2{a1(c°8 r-grr 

- sin T 
ÔUj (^ , T) (^, T) v 

~a7 (sin T -X + COS T —- 
¿ 9 T 8 T 

9 u. (^. t) 

2 2 2 
/8u.(Í,t)I d u- 

2+|-n^T j+<-ra^> + 2 
9 u, 3u¿ 5 8‘ 

Ò xè T Ò X ’z 8 XÔ 
'“I 8ull 
<8 T d X I 

x=^ 
t = T 

2Mj^ g u 

L2 n¿ ' J ^11^1 + K12 ? 22 + K21’’l2 + ^21) 22) dx 

1 

•/ KA p 
2 2 2 

(u^o, tMj) + (u2(o,t)- ^2) + 

(u2(l, T) - T) 2) I dx ] 

Using Hamilton s principle and taking the variation with respect to u^, 

2 , 
8 u, 2 

* y s + a . cos t - a sm r-— (_?_. 1 9 

2. ä3“, 2 8 . 2 8 u. 

<r ''’’¡TT1 +1PX ApraT) = 0 

Equation of motion for left hand side. 
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The same equation of motion obtained for right hand side. 

Boundary conditions at x = 0, 

Uj is prescribed or 

2 
. c Ô u, Z. 8 / S 1 , A r Ap 
ir 7TT7 —r»+ —f- 

L n a x 8 xa T 

83u, , 2 . 82u, 
1 t 2r p A 2 

r- +-?- “SîTST 

1 

/ KA p dx (uj- I j) = 0 

8 u 
is prescribed or 0 x 

82u 1 
= o 

8 x" (3.2) 

Boundary conditions at x = 1, 

Uj is prescribed or 

82u 

JT (■ 

8 x 

1 v r2A p 
T"' ' —T" 

83u 1 

8 x8t 

2r2pA 8S 
Î- TxTt" 

1 

•/ KA p dx (u j -T) ^) = 0 

8ui 
8 x is prescribed or 

82u 1 

8 x 
r = o 
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Continuity conditions at x = £ , 

Uj must be prescribed or 

a , S 
Tx (~ 4“"2 

a2 a u 

L ß a X 
1 2a 
Î r AP 

3 a u i 
axa-r 

2r o A 
a 2 a u2 

âxô i 

MD 9 U1 
+ —I— (--J- + a. cos T- a, sin t) 

a T 1 ¿ 

»2 a . s 8 u 
'1^ “ax 

3 
2a 9 U1 r A p 

axar- 
2r p A 

Q 2 a u2 
TxFt7 = 0 

R 

Continuity condition at x = £ 

8ui 
a X is prescribed or 

a2u 

a X 

a2 a u i 
T 
‘D 

a 3 .2 
du. du. 

a X a r 

The variation with respect to u^ yields 

a2u 

a t 
+ a, sin t + a, cos t-a 1 a 

~-i—T —I 
Ln“ pAL ax^ 

8 U2 
( S -J-) 

dx¿ 

i a 
4A p 8 X p Ar aS 2iS_ 

a x8r2 8x8 T 
= 0 

Right 
Left 
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I 

Boundary conditions x ■ 0. 

is prescribed or 

8 S % . 
-8x ,+ 

r2Ap 
3 

d 3u 

ÔXÔ T 

¿ A 8 u, 
, r Ap 1 
2_r^ srrr 

i 

-K J pAdx (u2 (o, r) - $2) = 0 

ôu2 
-g x is prescribed or (3.3) 

82u 

8 x 
§-*0 

Boundary conditions at x = 1, 

u2 is prescribed or 

8 , S 
3 . 

8 U, , , 8 U, n A 
2 \ 1 _2 a « 2 . i r P A 
7-)-4 r AP 7 + 2  ^— 

8 x dxdr 

8 2u I 
TxT? 

•«/ p A d x(u2 - 77 ¿) = 0 

8 u. 
is prescribed or 

8 U2 

¡V 
= 0 
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Continuity at x = Ç 

i» prescribed or 

d 
d X 

a2 9 u 2 
7“ 

{ 

•t 

r2 pA »S 

2 92u, r pA 1 
—r- 57*7 

dx 

r^ pA 
“1- 

M 

a2 9 U 

J L L 

a3 
a u¿ 

3x3 r2 

9x I L4a¿ 3 X 
2 
r 

2r¿ RA * “1 
' "4 57*7 

D 
“IT 

JR 

a2u. 

3r 

+ a 8in T + a, sin T - 
¿1 2 

3u 

[• 

2_ 
X 

is prescribed or 

tttt 
L Cl 

d2u. 

T7 

S 
“TTT 
L Cl 
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A. RIGID SUPPORTS, SHORT BEARINGS, NO LUBRICANT 

For this case, the gyroscopic and rotatory inertia terms of the shaft 

will now be neglected. The system is assumed to be placed in a vertical 

position and there is no unbalance in the disk. Therefore r = 0, a^ (¢)= 0 

) = 0 and the gravity term in u¿ disappears leaving the new equations 

of motion from equations (3.2) and (3. 3). 

a2 o u aV 

ar 

1 . s - -1 „ 
T+ — ,4rt2 TT - 0 pA L 9x 

a2 9 U. 
a4 
d u. 

T r~ + A , 4^2 T T èr pA L ri d X 
= 0 

(3.4) 

The boundary conditions for short bearings, 

X = 0 

X = 1 

ux= u2= 0 

a2 a u d4u. 
= 0 = 0 

(3.5) 

The continuity conditions are, 

r a 3 *• a u. 

Ô X 

a3u 
1 

T 

raV C .3 
d u. 

l3md O.2 

l3mdû2 

a2 O u 1 

dr 

R 2 O u 

ÔT 

= 0 

(3.6) 

= 0 
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md\ - r ^ d u, 
L “V ’ ô3ui . ., A 1 

-
J

 
i_

 

A 2 O X 
m m 

s 1 _dxd r¿ dxftr 

L R 
(3.7) 

r a2 i d u2 
+ 
r»2 '\ d u2 

t L ^'o I [ 9S +, 9S 1 "J 1_ A 2 
. ®X 5 1 . »x9t1 *x*r . 

L R 

(3.8) 

(3.9) 

The equations of motion are satisfied by the following assumed solution 

equations (3. 10), if equations (3.11) hold. 

Let 

where 

Uj = Xj sin Tf 

u2 = X2 cos T 

* = at 

(3. 10) 
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Substituting into equations oí motion (3. 4) 

and 

-X 1 
s 
..4 2 

pAL O 
= 0 

= 0 

4 pAL402 
p =-g- 

Xj = Cj sin px + cos px + Cj sinh px + cosh px 

t 

Then to describe the motion completely we need 

i 

X2 = Cg sin px + C6 cos px + C? sinh px i Cg cosh px J 
» 

X^ = Left Hand Side 

X^ = Right Hand Side 

X^ = Left Hand Side 

X? = Right Hand Side 
Ct 

and the constants are 

cf i « 1.8 
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The boundary conditions are: 

= 0 ( 

e2x|- 

¡7" 
= 0 

VL 
X j * 0 

77~ 
= 0 

xj- = 0 

(3.14) 

= 1 < 

Ö Xj c 0 

¡7“ 

xj1 * 0 

•2X^ = 0 

¡7" 

X2 ' 0 

(3.15) 

and continuity conditions at x = ^ are. 

Let 

md 
»*i ‘pin; 

rd ' 
‘ •te* 

83X^ 

8 X 
3 +)*lP 

< VL 8 3xf : X 
i = o 

0 x" 

«S'" 

tx 
r- +PiP'x 

4„L •**? 
2 TT 0x 

= 0 

8 2xJ- 8 2xf 
—T- + 

8 x Sx 
2 + PlP2P 

sx}“ 8X^ 1 

-rr- + 2 -rr-J * 
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»2x2L 

77“ 

.2xf 
8 X 

r- 
8 X 

= 0 

X*- - XR 
1 X1 

VL VR - X2 - X2 = 0 

8 X 8X 
= 0 

8X, 8 X _2_ 
X 

= 0 

(3.16) 

The solution was given previously in terms of constants as equations 

X1 8 Cj- >in Px + cos px «► Csinh px + cosh px 

X2 s C*> ,in Px + C6 co, px + C7 ,inh Px + C8" co,h Px 

CR sin px + CR cos px + CR sinh px + CR cosh px 

(3.13) 

X2 * C5 ,in px + C6 COB px + C7 ,inh Px + C8 co,h Px 

Inserting these values for x| into the boundary and continuity conditions/ 

the following set of homogeneous equations is obtained. 
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From equations (3.14) 

c2l + c4l = 0 

-pzcj; + p2c4 = o 

c6 + c8 * 0 

-P2C6L 4 P2C¿- = 0 

C2 = c4 * c6 

conditions at x s 0. 

(3.17) 

Cg = 0 if the solution is to satisfy the boundary 

From equations (3.16), 

■ L . 3 
V cos p* Cj- + pJ cosh p* + fi¡P4 (cj' sin p* + sinh p£) ' ,L , 

3_R 3-R 
+ p Cj cos p^ • p C2 »in p^ - p^ cosh p£ - C^p-5 sinh p| = 0 .R 3 

» (3.18) 

L . 3 r 
-p’ cos pi C" + p~Cy cosh p^ + pjp4 (C^ sin p| + sinh p^ > ■ L . 

.R 3 R 3 , 
+Cgp cos pi - Cgp sin pi - p C* cosh p£ - sinh p^ = 0 3_R 
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cjp »in p| - c^p2«inh p{ - cfp2»in p{ - C^p^o« p{ + C^p2s¡nh pi 

+ cJp2co»h pi + J»iP2P4 fpcf'co. p{ + pCjCosh p{ + ZC^pcoa pi 

+ ZC^p coah pi J = 0 4 

cj-p2.^ p{ - C^p2ainh pi - C^p2ain p{ - c“p2coa p{ + c“p2 ainh pi 

+ Cg p2coah p{ + p,p2p4 jcj'p coa p{ + cjp coah pi + ZC^p coa pi ' 

+ 2C^p coah pij s 0 

t 

C1 8in + P4 - C^sin - C^co» - C^sinh p( - C^cosh p^ 

C5 8in PÉ + C7 «inh PÍ - C^sin p^ - C^cos p| - C^sinh p^ - C^cosh p$ 

I • 

Cj p coa pi + pCjL coah p{ - C^p coa p{ + C*p ain pi - C®p coah p{ 

* C^p sinh p£ = 0 

C^P cos PÍ + pC^co»h p^ - c^p Co» p£ + Cfp »in p$ - C^p cosh p^ 

- CgRp sinh p^ s 0 
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and finally from equations (3. 15) 

R R R R 
Cj sin p + cos p + sinh p + cosh p r 0 

- p Cj sin p - p ' C2 cos p 4 p sinh p + p^ cosh p = 0 

sin p 4- cos p + sin p 4 cosh p ^ 0 

-C^p sinp - Cf p cos p ^ p^ C^- s;nh p + p^ cosh p = 0 

The determinant of these coefficients must vanish, to get nontrivial 

solutions. Now p, the critical speed, will be obtained for a range of values 

of Mj, ix¿, and£ . 

(-cos p£ 4- pj p sin p£ ) C1 (cosh p£ + P sinh P £ ) 

4- cos p£ cj1 - sin p£ Cf - cosh p£ - sinh p£C^ - 0 

(-cos p£ + P sm p£ ) 4- (cosh p£ + fij P sinh p £ ) ^ ¿q' 

+ cos p£ Cf * sin P^ - cosh p£ Cf - sinh Cg = 0 

(sin p £ 4- ^^¿P3 cos P¿ ) 4- (-sin h p£ + ji^p3 cosh p£) 

4- 2ulF2 p3 cos p£ 4 p3 cosh p£ - sm p£ cj1 

- cos p^ 4 sinh p^ cosh p^ ~ 0 

^^^¿P cos p£ Cj + p3 cosh p£ 4(sin p£ 4 n1p2 p3 cos p 

Cg 4 (-sinh p£+P1P2 P' cosh P £ , - sin p£ - cos p^ 

4 sinh P £ 4 cosh P £ Cg = 0 

sin p£ Cj- 4 sinh p£ - sin p£ cj1 - cos p£ cf - sinh p£ 

- cosh p £ C J = 0 
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R 
3 

sin p£ + sinh " sin ^5^ " cos - sinh p^ 

- cosh p £ = 0 

cos p £ ci + cosh p£ ci ■ cos p£ cf + 91" p£ cf - cosh p£c 

- sinh p £ C4 = 0 

cos p£ + cosh p^“ - cos p£ + sin p£ - cosh p£ 

- sinh p £ C* = 0 

R R R R (sin p) Cj + cos p + sinh p + cosh p = 0 

R. R. d 
-sm p Cj - cos p + sinh p + cosh p = 0 

R R R R 
sin p + cos p + sinh p + cosh p Cg = 0 

-sin p - cos p + sinh p + cosh p = 0 

The preceding set of homogeneous equations (3.20) is reduced to the 

following form. 

(-cos p £ + hi p sin p ¿,c> + (cosh p£ + Pj 1 sinh p £ ) C^- 

+ (cos p £ + sin p£ tan p) cj* -f (-cosh p£ + sinh p^ tan h p) C^= 0 

I +^2 P3 cos p£ ) c[- + (-sinh 
p£ +^2p3 co8h p£ ) Ci 

(sin p 

+ ^plp2 P cos p £ + ^1P2 p3 C08tl + ("8in + C08 p^ tan p) 

+ (sinh p^ - cosh p^ tanh p) = 0 

(-cos p £ + pj p sin p£ ) (cosh p£ *»• Pj p sinh p^ ) 

+ (cosp^4 sin p^ tan p) 4- (-cosh p^ -f sinh p£ tanh p) ^ 0 
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P3 co» p£ + p3 cosh p£ 4 (sin p£ + p3 cos p£ ) 

+ (-sinh p£ + PjP^ P3 cosh p £ + (-sin p£ + cos p£ tan p) 

Cf + (sinh p£- cosh p£ tanh p) = 0 

sin p£ cj- + sinh p^ + (-sin p£ + cos p^ tan p) cj* 

+ (-sinh p^ + cosh p^ tanh p) = 0 

cos p£ cj- -f cosh p^ + (-cos p£ - sin p£ tan p) 

+ (-cosh P^ + *inh p^ tanh p) = 0 

sin p^ + sinh p^ C^1 + (-sin >£ + cos p^ tan p) c] 

+ (-sinh P £ + cosh p£ tanh p) ci^ = 0 

cos p^ + cosh pf + (-cos p^ - sin p^ tan p) c] 

+ (-cosh p£ + sinh p^ tanh p) = 0 

.R 
'5 

.R 
'5 

= -tan p Cf 

C? = -tanh p C 
4 

R 
3 

r*R » u /-. R Cg = -tanh p C7 
(3. 21) 

C, = -tan p C, 

The critical speeds of the system can now be found by finding the values of p 

which make the determinant of equations (3.21) equal zero. Equations (3.21) 

contain several dimensionless variables which must be specified in order 

to obtain values of p. These dimensionless variables specify the location 

of the disk on the shaft, £ , the ratio of the mass of the disk to the mass of 

the shaft, pj, and the ratio of the radius of the disk to the length of the 

shaft, 
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where 

-Fl 
M 

»*1 ’ 

/*2' 

O 
pTTT 

- - critical speed 

- - mass effect 

(3.22) 

TT - - disk effect 

disk location 

The mass effect can be broken down into more fundamental dimen¬ 

sionless variables if more detailed specification of the system is desired. 

where 

Then 

M = f> It R* h 

h = thickness of the disk. 

Hi * 
fp* Rp h 

7s l 

where 

h s 4 ttI 

D 
= ratio of density of disk 

to density of shaft 

(3.23) 

TT" = disk effect 
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r - ratio of radius of shaft to shaft length 

h 
E = ratio of disk thickness to length of shaft 

In the following work, the following assumptions are made: 

^ . 1 
TT ‘ IT 

h 1 
X = 71 

The disk effect jj-- is varied at specific locations of the disk 

in the calculation of the critical speeds p. 

Thus for the following cases, the mass effect is a function of the 

disk effect. 

= 22. 22 (3.¿4) 

Therefore, this is really a special case and the other parameters could be 

varied to get a more complete set of curves for the different physical 

variations of the basic system of the disk on the shaft. Caution must be 

observed in using h because the following assumption was made in the 
h 2 

derivation (-=—) «1. 
RD 
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The frequency equation will now be obtained for tome special cases. 

If ( » 0, the disk is placid at the shaft support. This means that there 

will be no mass effect but only the effects of the gyroscopic forces and 

rotatory inertia. The following set of homogeneous equations is obtained 

from equations (3.21).. 

-cf-+ cj1 + cf - - 0 

CyOf" + O Cj + 2G cj" + 20 + Un p - Cj Unh p » 0 

-c£+c^+cf0 

20 cj- + 20 Cj + 0 + 0 + tan p - Cy Unh p = 0 

r :r 
\L • (3.25) 

Cj tan p + Cj tanh p = 0 

tan p + tanh p = 0 

where 

G = p^p 
3 
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The frequency equation for the disk mounted at the edge of the shaft 

is obtained from equations (3.25) by making the determinant of the coefficients 

zero. 

12 
= 0 (3.26) 

cot « coth p + 
P 

cot = coth p - 
P 

T 

2 

3PlP2P' 

(a) 

(b) 

(3.27) 

Equation (3.27 a) is the governing frequency equation for critical 

speeds of forward whirl and equation (3.27 b) is the frequency equation 

for backward whirl. The variation of critical speeds with disk size is 

shown as figure 7 on page 6Ç. A plot of equations (3.27 a) and (b) 

is given on page 53 for specific values of and p2 and is valid for 

p > ». 

Equation (3.21) are specialized for £ = i and tte following set 

of homogeneous simultaneous equations is obtained. 

ji. p sin p/2 C. + (2 cosh p/2 + u.p sinh p/2) - 2 -°8^ - 
1 * 3 cosh p 3 

(2 sin p/2 + pj^P cos p/2) + cosh p/2 cí- . 

+ 2^lP2p3 COS p/2 C5 + ^iHpP^osh p/2 + ¿Ün p/¿ CR=0 
^ 1 i cos p 1 

(3.28) 
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Figure 4 SOLUTION OF FREQUENCY EQUATIONS (3.27) 
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PjP fin p/2 + (2 co»h p/2 + pjP sinh p/2) - 2 = 0 • 

2ÿi^2p^cos + P/2C^+(2sin p/2+/i1p2P^ c°3 P'^^ ^ 

+ P1P2P3 co«h p/2 + 2 Cf = 0 

i-. ~L .-,1. /-. i-L . «in p/2 . sinh p/2 R _ A •in p/2 Cj + sinh p/2 Cj Cj + ■■ C3 = 0 

CO. p/2 cf + co.h p/2 cj* - Ifî^i cf -|2î^i = 0 

P/2 C5L + .inh p/2 + = 0 

co. p/2 c£ + co.h p/2 - §£¡-|p2- cf - §£;{; Cf = 0 

(3.28) 

The symmetry of the system can be expressed as follows 

Xf(x) = +xf (I-x) 

xf <x)= +xf (1-x) 

(3.29) 

where 

+ odd modes 

- even modes 

using equations (3.13) and allowing 

previously noted. 

cV* ^ ~L 4 " C6 = C8 = 0 a8 
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The following reUtionahipe are obtained between the constant«. 

Cf « + coa p cj^ * + coah p C 

» + coa p cj- cl^ ■ + coah p cíj' 

Inserting these relationships into the equations (3.28), the following new 

set of equations is obtained. 

L¿t 

C « pjP 
I 

H • p^P3 

(-cos p/2+G sin p/2+cos p/ZJC^+icosh p/2+Cy sinh p/2fcosh p/2)C^ * 0 

(sin p/2+H cos p/2+sin p/2) (-sinh p/2 +Hcoshp/2+sinh p/2)C^ 

+ 2 H cos p/2 C^1 + 2 H cosh p/2 a 0 
(3.29) 

(-cosp/2+G sin p/2Tcos p/2)0^+(cosh p/2+C^sinh p/2+cosh p/2)C^=0 

2H cos p/2C^+2Hcoshp/2 0^ + (sinp/2+Hcos p/2+ sin p/2) 

+(-sinh p/2 + h cosh p/2 + sinh p/2) C!^ * 0 

(sin p/2 + sin p/2) cj- +(«inh p/2 + sinh p/2) C^1 = 0 
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(cos p/2 + cos p/2) cj" + (cosh p/2 +_ cosh p/2) = 0 

(sin p/2 + sin p/2) + (sinh p/2 + sinh p/2) = 0 

(cos p/2 + cos p/2) + (cosh p/2 + cosh p/2) = 0 

Then for odd mode shapes 

tan p/2 = tanh p/2 + 
V (3.30) 

for even mode shapes 

-j + coth p/2 = cot p/2 

(3.31) 

--j + coth p/2 = cot p/2 

2»*it,2p 

* i 

Equation (3. 30) shows that the critical speeds of the odd modes depend 

only on the mass effect The critical speeds for the even modes are 

governed by the frequency equations (3.31 a) and (b) which represent 

forward and backward whirl respectively. Figure 5 shows a rough 

plot of the roots for specific values of and p^ and for p/2 > ». 

In figure 5, the intersections of the dashed lines represent the 

roots of the odd modes and the intersections of the solid lines represent 

the roots of the even modes for £ = j and special values of pj and p^* 

This figure shows the order in which the various critical speeds are 
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encountered while increasing the angular velocity of the system. It also 

shows that three critical speeds of different order approach each other as 

the value of p, pj and increase. It can be seen from figure 5 that 

for large p 

F 
^n + 1 = P 

B 
n + 2 

f>j nr 
(3.32) 

where 

n = 5, 9, 13, etc. 

F 
P = n th mode forward whirl n 

B 
, , * n + 2 th mode backward whirl n T £ 

1. Solution of General Frequency Equation 

The determinant of equations (3.21) on page 4 8 was evaluated for 

values of p2 varying between Q01 and 0.2 and values of p varying between 

0 and 16. 0. This task was done with the aid of the IBM 7090 computer and 

was programmed in Fortran language. The flow diagram and nomenclature 

of the computer program are given in f i g u r e 6 on page 59. 

The actual program is given on page (■ . Since the output 

from the computer program for the numerous values of p computed is 

voluminous, only a sample of it will be included in this report (pages 61 

through 64). The remainder of the output is given in tabular form on 

pages 65 through 67 and in graphical form on pages 69, 71 and 72. 
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Table 2 Data Obtained From the Frequency Equation (3.21) for ¢=0 

F=.01 F=. 02 F=. 03 F=. 04 F«. 05 F». 07 F*. 1 F=. 13 F=. 16 F*. 19 

3.04 2.76 2.46 2.20 2.00 1.72 1.44 1.28 1.14 1. 06 

3.18 3.28 3.42 3.56 3.66 3.78 3.86 3.88 3.90 3.90 

5.44 4.52 4.20 4.08 4.02 3.98 3.96 3.94 3.94 3.94 

6.52 6.82 6.94 7.00 7.02 7.04 7.06 7.06 7.06 7.07 

7.56 7.18 7.12 7.10 7.08 7.08 7.08 7.08 7.08 7.07 

9.90 10.12 10.16 10.18 10.20 10.20 10.20 10.20 10.20 10.20 

10.36 10.24 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 

10.18 13.30 13.34 13.34 13.34 13.34 13.34 13.35 13.35 13.35 

13.42 13.36 13.36 13.36 13.36 13.36 13.36 13.35 13.35 13.35 
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Table 3 Data Obtained From the Frequency Equation (3.21)for £ = . 25 

F=. 01 F=. 02 F=. 03 F*. 04 F*. 05 F*. 07 F*. 1 F=. 13 F=. 16 F=. 19 

2.94 2.74 2.54 2.36 2.20 1.96 X.70 1.50 1.38 1.26 

3.00 2.90 2.80 2.76 2.72 2.66 2.58 2.52 2.44 2.38 

5.79 5.24 4.52 4.08 3.78 3.42 3.08 2.88 2.72 2.62 

5.79 5.58 5.48 5.42 5.38 5.34 5.32 5.30 5.31 5.28 

7.34 5.86 5.60 5.52 5.48 5.40 5.36 5.32 5.31 5.30 

9.40 9.50 9.52 9.51 9.50 9.49 9.48 9.46 9.46 9.45 

9.98 9.70 9.60 9.56 9.54 9.52 9.48 9.48 9.46 9.45 

13.48 13.64 13.68 13.68 13.68 13.67 13.65 13.64 13.63 13.63 

13.90 13.78 13.72 13.70 13.69 13.67 13.65 13.64 13.63 13.63 

15.96 15.92 15.90 15.84 15.80 15.78 15.77 15.77 

15.96 15.92 15.86 15.82 15.80 15.77 15.77 
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Table 4 Data Obtained From the Frequency Equation (3-¿l)for . 5 

F=. 01 F*. 02 F«. 03 F«. 04 F». 05 F».07 F«. 1 F«. 13 F». 16 F«. 19 

2.87 2.68 2.54 2.43 2.34 2.21 2.06 1.80 1.62 1.5 

2.87 2.68 2.54 2.43 2.34 2.21 2.06 1.94 1.85 1.79 

5.54 4.40 3.68 3.22 2.90 2.46 2.06 1.64 1.85 1.79 

6.56 7.12 7.48 7.62 7.70 7.78 7.82 7.84 7.84 7.84 

8.79 8.16 8.00 7.94 7.90 7.88 7.86 7.86 7.86 7.86 

8.79 8.52 8.37 8.27 8.21 8.13 8.05 8.01 7.99 7.97 

9.04 8.52 8.37 8.27 8.21 8.13 8.05 8.01 7.99 7.97 

13.62 13.98 14.06 14.10 14.12 14.12 14.13 14.13 

14.36 14.20 14.16 14.16 14.14 14.14 14.13 14.13 

14.86 14.6 14.47 14.41 14.36 14.31 14.25 14.23 14.21 14.20 

14.86 14.6 14.47 14.41 14.36 14.31 14.25 14.23 14.21 14.20 
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Discussion oí Results 

The critical speeds of a system consisting of a continuous shaft 

carrying a single disk, mounted on fixed short bearings are shown in 

graphical form on pages <' ?, 71, and 72 for a range of values of the disk 

size. Each of three graphs shows the critical speeds for a disk mounted 
« 

at a specific location on the shaft. 

The values of the critical speeds for zero radius and mass disks 

on a plain shaft are shown as n*e This result was obtained because the 

gyroscopic effects dominate except at very small disk sizes. Therefore 

theb?» results are in slight error for very small disk sizes. 

In calculating the critical speeds, the "disk effect" (y^) was varied 

from 0 to . 20 and usually the first four ordered modes were considered. 

In general it can be said that the so called "mass effect" (ratio of 

mass of the disk to mass of the shaft) lowers the critical speeds of the 

system as the mass of the disk is increased. The gyroscopic effects on 

the system tend to effectively stiffen or soften the spring of the system 

and thus depending upon the speed of the shaft rotation the gyroscopic 1 

effects will either increase or decrease the critical speeds of the system. 

This results in a backward and a forward whirl at the same order mode 

when gyroscopic effects are in effect. 

Figure 7 represents the critical speeds of a system with the 

disk located at the bearing which means that there will be no "mass effect" , 

on the critical speeds but only gyroscopic and rotatory inertia effects. 

This case then has two critical speeds (one of backward whirl and one of 

forward whirl) at each order mode shape and as the "disk effect" and 
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critical speed are increased, P n + j approaches and both approach 

a value of where n = 5, 9, 13 etc. This result is shown graphically on 

page 69 and was obtained mathematically from equations (3.27) cn page 52. 

Figure 8 shows the variation of critical speeds with "disk effect" 

for a system with the disk mounted at the quarter point along the shaft. 

Note that the critical speeds of the first and second order modes are in 

general decreased by the "mass effect" as well as showing two criticais 

for each order mode which incicates that gyroscopic effects are also in 

action here. The third order critical speeds show less "mas:) effect" and 

fourth order critical speeds show virtually none because of the proximity 

of the disk to a modal point. However, the gyroscopic effect is strong in 

these cases. 

Figure 9 shows the variation of critical speeds with "disk effect" 

for a system with the disk mounted in the center of the shaft. Two types 

of critical speeds are obtained here. Only one critical speed is obtained for 

the odd order modes while two critical speeds are obtained for the even 

order modes. This occurs because of the symmetry of the system. The 

critical speeds obtained from the odd order modes are in general decreased 

as a result of increasing the size of the disk. This result was shown in 

analytical form as equation (3. 30) which only depends on pj the "mass 
t- 

effect". The critical speeds lor .he even mode shapes show no "mass effect' 

but have gyroscopic effects as shown by figure 9 and equations (3. 31). 

Finally, as p, pj, and p^ are increased, both figure 9 and equations (3. 30) 

and (3. 31) show that . 

F _ F _ B nr 
pn = Pn + 1 = Pn + 2 T~ where n = 9l 1} etc' 
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Figure 8 THE VARIATION OF CRITICAL SPEEDS OF A DISK 
MOUNTED ON A CONTINUOUS SHAFT DUE TO GYRO¬ 
SCOPIC AND ROTATORY INERTIA EFFECTS 
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Figure 9 THE VARIATION OF CRITICAL SPEEDS OF A DISK MOUNTED 
ON A CONTINUOUS SHAFT DUE TO GYROSCOPIC AND ROTA¬ 
TORY INERTIA EFFECTS 
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IV. EXPERIMENTATION ¡CONCLUSIONS 

The test fixture, figure 10, which was developed for this continuing 

series has undergone continuous modification directed toward elimination 

of spurious responses, reduction in experimental error, and incorporation 

of new features which permit the investigation of additional phenomena. 

Operation at high speeds has also shown the necessity of incorporating 

additional features which permit safe operation at such speeds. 

The text fixtures can be considered as consisting of four major 

subelements or subassemblies: *' 

1. The supporting structure, figure 10 

2. The drive system, figure 16 

3. The rotor and end bearing fixtures, 

figures 20, 23, 25, 26 

4. The response indicators and instrumentation, 

figure 11. 

The supporting structure which was developed under Contract No. 

NObs—86805 was modified only with regard to operational safety. This 

base structure consists of a welded box beam 11-1/2 inches wide by 

19-/12 inches deep, with four stiffening baffles, all constructed of 3/4 inch 

mild steel plate. This rugged beam is supported on 8 inch steel pipe 

pedestals which raise the rotor support assemblies to a convenient height. 

Two very stiff A-frames are bolted to the beam for mounting the end-bearing 

assemblies. These end frames were modified to accommodate new end 

bearing fixtures, as described later. 

Large shaft excursions in critical speed ranges have previously 

caused the shaft to disengage itself from the bearings. This endangers 
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operational personnel and da nages expensive teat equipment. The steel 

protective cage which was previously used as a safety device was undesirable 

since it makes operation inconvenient and while protecting the experimentalists, 

does little to protect the test equipment. A simple, versatile device was 

developed to avoid these difficulties. Drawings of this device are printed 

in Appendix C and it can be seen in figures 10 and 15; it consists of a stiff 

frame which is supported on a rail mounted to the base; thus, the frame can 

easily be positioned along the length of the shaft. The frame carries three 

rollers, adjustable laterally (horizontally and vertically). In operation, 

these rollers are spaced around the rest position of the shaft with a clearance 

which ranges from zero to 1/2 inch, depending on the experiment to be 

performed. Should the shaft attempt to attain larger displacements, the 

rollers restrain it. The fixture can be used to safely accelerate the rotating 

system through a critical speed since the roller can be engaged while the 

system is in operation. The fixture has been found to operate quite 

satisfactorily. 

The drive section is mounted on a stiff, cross-braced system which 

is separate from the main rotor base. Isolation between the drive and 

the rotor is increased by means of isolation pads and flexible connections 

between the drive and the rotor. The drive system, figure 16, consists of 

a heavy D. C. motor which is coupled to a flywheel whose polar moment 

of inertia is 59. 64 in-lb-sec2. The polar moment of inertia of the basic 

3/4 inch shaft is only 0.0011 in-lb-sec*', while the hub and disk used in some 

of the experiments have a polar moment of inertia of 1. 20 in. -lb-sec2, thus 

the flywheel tends to insure that shaft vibration has little effect on its 

rotational speed. The basic goals in the drive system design were those of 
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high attainable speed, stable motor speed, and "stiffness" of the drive 

system, to insure that load variations have little effect on rotational speed. 

These goals were approached through several avenues. A constant voltage 

transformer feeds a semiconductor D. C. power supply through two variable 

transformers, connected to give vernier voltage adjustment. Thus, line 

fluctuations have little effect on D. C. output voltage and the relatively low 

output impedance of the D. C. supply yields a "stiff" input to the motor. The 

motor, itself, was increased in capacity to the present one horsepower 

6000 RPM unit which drives the flywheel through a compliant timing belt 

drive with a two-to-one speed step-up. Both the power capacity of the 

motor and the compliance of the drive tend to filter out speed fluctuations. 

Since the bearings are not fixed, it was necessary to have a flexible 

connection between the flywheel and the rotor proper. This connection is 

composed of two hooke joints, figure 17, connected back-to-back to yield 

a constant-speed configuration. 

The 50 inch long rotor, figure 20, was carefully turned to a nominal 

3/4 inch diameter (measured as 0. 749 inches). A disk, figure 24, of 14 inch 

diameter and thickness of 0.433 inches was attached to the rotor for some 

of the experimental work. The attachment is executed by means of a 

collet-type hub, which permits placement of the disk at any point along the 

length of the rotor. The shaft ends are carried in bearing blocks, figure 23, 

each of which may carry a single ball bearing assembly, or two such assem¬ 

blies. The single assembly reproduces "pinned ends," while the double 

assembly restrains the end rotation. 

The bearing blocks are carried in the "A" frames by means of tension 

springs, figure 25. Several sets of these springs are available with differing 
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moduli. Spring hangers, figure 26, with varying hole spacing can be 

attached to the bearing blocks, thus the ratio of lateral elastic restraint 

to angular elastic restraint can be adjusted. 

Bearing response was sensed by C. R. L. accelerometers on the 

bearing blocks and measured with a Ballantine Model 300 vacuum tube 

voltmeter and a calibrated Tektronix Model 535 Oscilloscope. A tachometer 

was used for rough speed measurement. The speed was measured and 

checked by means of the calibrated sweep of an oscilloscope, together with 

a Tektronix type 183B rotational analyzer. A Hewlett-Packard electronic 

counter was also used. Additional output measurements were afforded 

by an IRD type 600 response indicator and a General Motors Portable 

Pulse Synchronized Unbalance Indicator (PSUI). A Krohn-Hite variable 

bandpass filter was used to eliminate spurious signals. 

The experimental work was performed as a check on the validity of 

the analyses which were reported in previous chapters. Significant effort 

was also devoted to an attempt to observe the theoretically predicted gravity 

critical speeds in circular shafts. This last attempt proved to be fruitless, 

although additional data which confirmed the analyses of Contract NObs—78753 

and of Contract NObs-86805 was obtained. 

The curves included in Appendix E of the final report for Contract 

NObs—86805 were used to calculate the natural frequencies of the pinned- 

pinned rotor, without the disk, mounted as shjwn in figure 10. The preceding 

analysis included the effect of the bearing mass and support stiffness on the 

natural frequencies of the system. These analytical results from Contract 

NObs—86805 are compared to the experimental and analytical results obtained 

during the program in Table 5. 
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The physical characteristics of the experimental fixture are: 

Diameter of Rotor: 0. 75 inches 

Length of Rotor: 50. 1875 inches 

Weight of support bearing: 2. 25 lb 

Stiffness of support springs: 

k = 3. 168 X 106 lb/in. 

("Rigid supports"), 100 Ib/in., 150 Ib/in. 

Diameter of Disk: 14.0 inches 

Weight of Disk: 18.44 1b 

Thickness of Disk: 0.433 inches 

Material of Disk and Rotor: steel 

Figure 29 shows the amplitude of displacement (mils) of the bearing 

support plotted against speed of rotation of the plain rotor. The IRD Vibra¬ 

tion analyzer was used in conjunction with the rotational analyzer to obtain 

this record. A sample of the data is given in figure 28 which indicates 

0. 05 mils displacement at 1400 RPM. The apparent straight line is a series 

of angular reference marks and a complete revolution is indicated by the 

small marks at the top of the photograph. This record gives the speed of 

rotation of the shaft as well as an indication of the history of the whirl of 

the shaft during each revolution. 

Figures 30, 31, and 32 show displacement amplitude-speed curves for 

the rotor with a disk mounted at various locations. This data was obtained 

by using the method previously described. 

Tables 5 and 6 show comparison of experimental and analytical 

results for the plain rotor and various disk-shaft combinations respectively. 
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Fig. 11 INSTRUMENTATION
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Fig. 14 DISK ATTACHED TO ROTOR WITHOUT 
SAFETY DEVICE

Fig. 15 DISK ATTACHED TO ROTOR WITH SAFETY 
DEVICE IN "LOCKED IN" POSITION
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Fig. 16 THE DRIVE SYSTEM
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Fig. 17 FLEXIBLE CONNECTION AND FLYWHEEL



Fig. 18 HOOKE JOINT
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Fig. 19 SHAFT SEGMENT
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Fig. 20 ROTOR

r

Fig. 2 1 HOOKE JOINT MOUNTED ON ROTOR
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Fig. 22 BEARING BLOCK

Fig. 2 3 BEARING BLOCK
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Fig. 24 DISK

Fig. 25 TENSION SPRING AND MOUNTING 
FIXTURES
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Fig. 26 SPRING HANGER

Fig. 27 ROTAN PICK UP COUPUNG DEVICE
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Table 5 

CRITICAL SPEEDS FOR THE PLAIN ROTOR 

Critical NObs—86805 NObs-88607 
Speed_Analytical_Analytical 

1 1335 RPM 1399 Fj 
1400 F 

2 4885 RPM 5593 B 
5600 F 

7 ' -- 
Maximum Speed Attained - 4600 RPM 

NOb#—88607 
Experimental 

1450 F 

* 

Table 6 

CRITICAL SPEEDS OF THE ROTOR-DISK SYSTEM 

Diak 
Location 

Critical 
Speed Analytical 

0. 1 

0. 1 

0. 1 

0. 1 

0. 1 

0. 1 

0.25 

0.25 

0.25 

0.25 

0. 25 

0. 25 

0. 5 

0. 5 

0. 5 

0. 5 

0. 5 

0. 5 

1-B 

1- F 

2- B 

2- F 

3- B 

3-F 

IB 

IF 

2B 

2F 

3B 

3F 

IF 

2B 

2F 
• a* 

3F 

859 
1195 

3110 

3464 

5779 
8773 

640 

675 

2650 

3721 

4389 
12,493 

524 

2203 

7692 

9110 

Maximum Speed Attained 3800 RPM 

Experimental 

860 

1190 

3100 

3450 
* 

* 

675 

2650 

3720 
a 

a 

524 
2200 

a 

a 
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The results of the experimental program are summarized and com¬ 

pared with analytical results of this contract and Contract No. NObs-86805 

in Tables 5 and 6. Specific displacement amplitude-speed curves for the 

plain rotor and the disk-rotor system are included as figures 29 through 

32, respectively. 

In general, the results of the analytical analyses were verified 

experimentally except at speeds where the drive system could not supply 

the necessary power. The critical speeds of the plain rotor are shown in 

Table 5 as reported by three different methods. The analysis of Contract 

No. NObs-86805 included the effects of bearing mass and support stiffness 

but neither rotatory inertia nor gyroscopic effects. The analysis of the 

rotor in this program assumed rigid supports (k = 3. 168 x 105 Ib/in. ) but 

included gyroscopic and rotatory inertia effects. In general, the results 

of Contract No. NObs-86805 are lower than the results given in this program 

because of the flexible supports and omission of rotatory inertia and gyro¬ 

scopic effects. The analytical results for the first critical speeds (forward 

whirl) are lower than the experimental results because of the omission of 

transverse shear effects. The effect of transverse shear tends to raise the 

first critical speed, forward whirl, as much at 2 to 4 per cent. Therefore, 

good correspondence was obtained between experimental and analytical 

results but only the first critical, forward whirl, could be obtained experi¬ 

mentally as shown in figure 29. While the rotor ran very smooth at speeds 

other than critical speeds, the IRD transducer was mounted on the bearing 

supports and picked up some background noise caused by the ball bearings. 

This accounts for the small displacement of the support at speeds other than 

critical speeds. 
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The experimental results for the various combinations of the disk* 

rotor system agree with the analytical results derived in a previous section 

of this report. The experimental results for the disk located at the one-tenth 

point are shown in Table 6 and figure 30. The first critical speed, backward 

whirl, was nonviolent compared to the first critical speed, forward whirl. 

The experimental results obtained for the disk located at the quarter point 

are given in Table 6 and specifically in figure 31. The first criticais, 

forward and backward whirl, could not be separated and manifest themselves 

as a wide resonance band but the second criticais were observed independently. 

The second critical speed, backward whirl, was difficult to detect while the 

second critical, forward whirl, was violent. The experimental results 

obtained for the disk located at the midpoint of the rotor are given in Table 6 

and more specifically in figure 32. Experimental results obtained in this 

case were in close agreement with the previously derived analytical results. 

Gravity critical speeds were obtained at 260 RPM when the disk was 

located at the midpoint and 325 RPM when the disk was located at the quarter 

point. These experimental results agreed with the analytical results of 

Contract No. NObs—86805 which predicted gravity critical speeds for a round 

shaft at one-half the natural frequencies of the system. 

The experimental fixture was well balanced and ran relatively smooth 

at speeds other than criticais, and in general, the critical speeds were easy 

to detect. It was difficult to obtam data close to some of the more violent 

critical speeds. 

The drive system provides a source of constant speed, however, the 

power output was found to be insufficient to attain the maximum rotational 

speeds. Rotational speeds up to 3800 RPM were obtained with the disk on 

the rotor and 4600 RPM without the disk on the rotor. 
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APPENDIX A 

EXTENDED EQUATIONS OF MOTION 

Equations of motion for rotating shafts have been derived many 

times. Some of the more general derivations have appeared in earlier 

IITRI reports to BuShips , while others are available in the open literature. 

Of necessity, all of the resultant systems of equations reflect simplifying 

and particularizing assumptions related to a specific investigation; none 

of these systems is sufficiently complete to apply to the investigations of 

the current project. It was, consequently, necessary to derive a new set 

of governing equations. 

The equations derived on the following pages are not intended to 

characterize all of the phenomena of rotor dynamics. For example, no 

attempt has been made to include the effects of applied torque or axial 

thrust. A system of equations which included all possible effects would 

probably be intractable. The equations do include such effects as rotary 

inertia and gyroscopic forces, which strongly affect the motion in many 

cases. The equations of motion are also restricted to cross sections of 

equal inertial moment, to correspond with the scope of the present project. 

See, for example, the Final Reports on Contracts NObs-72244, 
NObs-78753, and NObs-86805. 
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We consider a rotor of circular cross section and arbitrary cross 

sectional variation. The rotor is supported in lubricated, massive bearings 

on flexible damped supports. Material damping in the shaft and external 

damping, such as air damping, are assumed small in comparison with the 

support damping. We introduce, at the centroid of each section, axes 

OXlX2X3 which have fixed space orientation. Axis OX^ coincides with 

the undeflected axis of centroids, which is assumed to coincide with the 

bearing centerline. Plane cross sections of the rotor which are initially 

perpendicular to the centroidal axis (OX^) are assumed to remain plane 

and perpendicular to the deflected centerline. Introduce axes O'Y Y Y 
12 3 

whose orientation is fixed in the shaft. Thus, O'YjY^ initially coincides 

with OXjX^Xj and rotates with the shaft. Axis 0'Y3 is tangent to the 

deformed centroidal axis. 

The coordinates of the elastic axis of the shaft at section E are, 

in coordinates OX^X^X^, respectively The coordinates of 

the elastic axis of the shaft at section £ are, in coordinates OY Y Y 
12 3 

respectively Vj, V^Vj. The elastic axis is assumed inextensible, thus 

U3 = V3. 

The coordinates of the line of mass centers of the shaft in the 

0XjX2X3 axis system are U^, U2C, V. Figures A-1 and A-2 illustrate 

some of these concepts. 

The assumption that plane sections remain plane implies neglect 

of the effect of transverse shear on the rotor deflections. It has been 
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Figure A-1 FIXED AND ROTATING COORDINATE SYSTEM 
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demonstrated that this effect is small for high aspect ratio. The section 

at a generic point x can be taken from its initial position to its final 

position through the following unique sequence of transformations shown 

in Figure A-3. ** 

1. A positive (clockwise rotation f/, about the axis OXj, 

this carries OX1 to OXj and OX2 to OX' 

2. A positive rotation 0 about the axis OX2; this 

carried OX3 to OY3 and OX'j to OX" . 

3. A positive rotation about OYjî this carries OX" to 

OYj and OX'2 to OY2> This is the required final position. 

The relationship between the axes (direction cosines is shown in the scheme 

of Table A- 1. 

Yj - sinOcos cob0cosOcob4>- sin^sin^ sin^cosOcos^i cosjísin^ 

Y2 sin0sin4i -cosJícosOsin^-sinoco s^ - 8in^cos0sin^+cosjícos^ 

Table A-l Direction cosines of coordinate axes 

Sutherland, J. G. and L. E. Goodman: "Vibrations of Prismatic Bars 
Including Rotatory Inertia and Shear Corrections", Department of Civil 
Engineering, University of Illinois, Urbana, Illinois, April 15, 1951. 

These "Eulerian angles" are discussed in all intermediate and advanced 
texts on rigid body mechanics. The notation here is that of E. T. Whittaker, 
"A Treatise on the Analytical Dynamics of Particles and Rigid Bodies", 
Dover Publications, New York. 
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Fig. A-3 Eulerian Angles Characterizing 
Shaft Rotations 
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Rotational velocities in the two axis systems can also be recorded. 

“X3 = Tt~ + c°8 8 4f ' 

«Xi = C08)isin#4f -in « If > 

“X2= «i" (» .i" 0 + 

(1) 

% 

CO »o iJ+ -Li 
8 t 8 t 

8 0 8 0 
sin 4« -g-p - sin 0 cos 4>-7rp 

8 0 8 0 cos 4» —— + sin 0 sin 

\ 

/ 

<2) 

A third set of axes, of interest because of their simplifying effect 

on the equations, is OX’^X'^. The rotational velocity of OY1Y2Y3 

has the following form when resolved in this system. 

“x- 

"Y. 

= -sin 0 

8 0 
TT 

4f 

c°8 0 + -|f J 
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The curvature in the plane perpendicular to OX"j is 

k. = -sin 0 
1 a s (4) 

The curvature in the plane perpendicular to OX'^ is 

The position of the shaft centerline in fixed space is given by 

Uj(s,t), l^s.t), U^(s,t), where, by Table A-1 

aUj 
— = sin 0 cos $ 

sin 0 sin 0 

= cos 0 

(6) 

The geometric specifications are completed by prescribing the 

rotor configuration. The rotor has length L and is supported in bearings 

at s = 0 and s = L. The cross section and material may vary along the 

length but the shaft is homogeneous in any cross section. The mass per 

unit volume is p(s) and the cross sectional area is A(s). The diametral 

moment of inertia of the cross sectional area about axes perpendicular 

to Yj is I(s). The corresponding flexural rigidity is E(s) I(s) = S(s), 

where E(s) is the (variable) Young's modulus. 
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We can obtain the conservative equations of motion from energy 

considerations and append dissipative terms later. The kinetic energy of 

the system is given by equation (7) 

T = 

2 -i 
d U, 8 U. 

TT -) + (- 

8 U. 

8 t 
-)+(. 

8 t 
ds 

+ 7 U Pi 2 + 2 + ? 2 t i + L u>Y ds 

+ 2 m,L2 f Apds 
di, 2 di2 ^ 

•-ar-» + ^r-» 

(7) 

+ -j m2L2 

where I = 
AR 

L. 

/ A pds 
(dT?t ) 

Here we have introduced the bearing blocks, which have mass mj J* Apds 

^ 0 
at s = 0 and m^ J Apds at s = L. The bearings are separated from 

o 
the shaft by an oil film, thus the motion of a block may differ from that of a 

"coincident point" of the rotor. The position of m^ in the Xj and X2 

directions is given by L£ j and while Li) j and L#j2 have similar 

roles for m2. Figure A-4 illustrates the bearing configuration. Introduce 

the following definition and conclusion: 

= 0+4, 

“Y. 
8 T 

TT + (cos 0 
(8) 
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Figure A-4 Schematic of End Support System 
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Equations(8) are exact, but we can interpret T as the angle of 

rotation about Y3 for small displacements. We also note that (3) and (6) 

imply 

+ = + ,in2°^ 

2 2 2 2 9 u a 2u. 
+ (TîFrl + 'tîst1 (’) 

a2u, 3U2 9 2u2 8Ul ^ , 

TOT Ts ’ TsFT Ts = • Tt" 8in ? 

8 2U 
= ( 

1, 
8 Sd t 

The function. and U.,' are the po.ition of the center of 

gravity in the cross section. Since r is (approximately) the angle 

the section rotates about Ywe define the position of the c. g. in the 

section to be La^s), s) and observe that 

Q 
Uj = Uj + (aj cos t- a2 sin r) L 

c 
U2 = + ^al 8'n T + a2 co8 ^ ^ ( 
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Hence, 

aülC 
51- 

au 
TT” 

i ar r 
" " TT [a aj sin r + cos r| L •] 

8ü2C .8ü2 . a 
•gr- + Fij cos T - »2 sin 

! -(11) 

The kinetic energy thus has the form, 

T = 
a u. 2 a u. 2 2 ip a ui 9 U2 a r 

7 / + •n-' + Vt* ( 
2z».2 a, + »2*1 L 

8 U3 3 t 
+ »Tt2» + 2|f 

a U2 
ai(co8 T TT 

a u 
8inTTT-) 

au2 au 1 
a2 ^sin T TT“ + cos T ~ST~ * 

+ L 
2 r‘ 

2 4t1 + + (TIST> + ‘tot1 

2 a2u. 2 a2u, 2 a2u 21 

■f m^L d^l d*2 
(’ar* + + m2L 

*?2 

(12) 

T 2 2 L r 
2(cos 0*1) |f ff + (cos-I)2 (|f 

where Lr is the radius of the shaft. 
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The potential energy, U can alto be written directly. 

where Q it a conttant to be defined with dimentiont of frequency 

K = Equivalent non-dimeneional lubricant tpring conttant 

Kjj = Non-dimentional tupport tpring conttant in Uj direction at s = 0 

K12 = Non-dimeneional tupport tpring conttant in direction at s = 0 

K21 = Non-dimeneional tupport tpring conttant in Uj direction at s = L 

K22 = Non-dimeneional tupport tpring conttant in U2 direction at s = L 

g = Gravitational acceleration. 

Figure A-4 it a bearing tchematic. 
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r 
r 
r 
r 

i 

By (4), (5), and.(6) 

k 
2 

1 + 2 A sin 0 
2 

8 2U 
+ ir 

8 • 

8 2U 

U4) 

Hamilton's principle states that the action is stationary. Thus, we have 

r 
i 
r 

6 (T-U) dt = 0 ( 16) 

Observe that, to this point, only one possible approximation has 

been made; that of (10) which positions the mass center line. Otherwise 

the energies derived are applicable for large deformations of a torsionally 

stiff circular shaft. At this point, we observe that, since the deformations 

of physical shafts are small, U3 is independent of time to a high order and, 

indeed, approximately, U3 = s. Thus, we apply the constraints 

= 0 
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It is convenient to introduce nondimensional parameters wherever 

possible. We thus define 

s = Lx 

Uj (s) * Luj (x) <18) 

U2 (s) = Lu2 (x) 

The parameter r is a variable. We fix it through the (previously 

implied) demand that it be independent of s (or x) and that its rate be 

constant. Thus 

T = nt (19) 

and t becomes the second independent variable. We also note that, if 

the angle 0 is small, (8) and (9) permit <*>» to be written in terms 
1 3 

of t and Uj,U2. The final observation that Uj and U2 are small 

leads to (A-20). 

4 
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2(T-U) 
rrrr L n f } r 8ui ^ au2 2 ? 

A,> 1 ,TT) + + <»i + »; 

+ 2 
3 u2 9 u. 

al ^C°8 T TT ’ ,in T Tr * " a2 ^9in T 
u2 8ul] 
— + COi T 

s 
L4 Apnz 

r 9 2u 
Í- 

1 92u 
-Z-) + <- 
d xc a x" j 

2, 
* 2 u. 

+ Ki2*2 + K217?l + K22^2 ^ (20) 

. kJ[Ui(o,t)-^ + + [u2(i. r)-n^- 

2 fa 2u, 2 3 2u 2 32 
r 1/ Ul4 , u2 d U1 9U? » 9 u. 

+(:n3-7>+2 + 2d--TS- -2 Tx3T W-t 

+ m, 
di, 2 ^22^ 

‘rf* +h¿> J + m. 

‘ j ^ J. 
,d1 i *) 2 

<-3^» 1 dx 

We now examine variations with respect to uj * u2* £ j ■ ^'^n’ Anâ V 2' 

The variation with respect to yields 

32u 

a t 
+ a. cos t - a2 sin r - 

1 a 2 3 u. 
-?—7”  7 pA L n ax ax 

-hr< r Ap 

a 3 
-au 

a xa t 

r\ ** 
1 9 u2 
~“7” + 2y'xa T 

(a) 

= 0 
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on X = O Uj is prescribed or 

on X 

on X 

on X 

1 a 
2 

a u 

mlV “ 
1 (S-2-) - 

a X 

r2m 2 
o a a u, 

T^T + 2u2 

+ K ¡ Uj = 0 

(b) 

a u, 
= 0 —- is prescribed or 

d X 

9Zu 
1 = 0 

a X 

= l Uj is prescribed or 

(c) 

(21) 

1 

ML^n2 a x 

32u 
(S 

3 X 
r> - 

r ml 32 
4 rTxT 

au 
i 

TV + 2 u2 

(d) 

* K[ur,>i] =° 

au, 
= 1 ■ is prescribed or 

a 

a 
= 0 (e) 
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where: 

mi = -^r- x= 1 

mo = * =0 

1 

and M = / pAdx 

o 

The variation with respect to u? yields 

82u. 

a T 
+ aj sin t + cos r - —& i a 2 a u ? 

(s—£.) To7 * AT 4)2 —7 W-—2- 
Lfi pAL »2 dx Bx 

+ TKp 
a 

a X 
2 / 8 3u2 3 2ul ^ 

pAr Í77T? -2 ^ 

(a) 

r 0 

on X = 0 u2 '8 prescribed or 

i a d u 0 m r 
1 o / ç s , o 

Ml’Ô7 a x 3 xz 

32u 1 33u. 
a x a t ” " 7 

a xa t + K[Ja' «¿I“0 

a u. 
(b) 

on x = 0 g x~ is prescribed or 

a 

a 
= o (c) 
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on X = 1 is prescribed or 

(¿¿) 

a 2 2 3 2 
_i_ 3 ,ca “Z, mlr ,a u2 ,8 U1 

^ 1 71 ' '-- •2 3 X7' '^r~ '7^7 ■-K ,u2 •"z’= 0 

(d) 
a u. 

on X = 1 g- x~ is prescribed or 

82U. 

a X T = 0 (e) 

¥ 
The variation with respect to £. yields 

a2? 1 
m! yr * * (Uj(o. t ) - ^) + = 0 (23) 

The variation with respect to £. yields 

d^2 
m! ——2" + K U2 * u2 (o' T + K12^2 = 0 (24) 

The variation with respect to 77 j yields 

m 
2 7~r 

d t 
- K (Ujll, T ) - Tjj) +K21T71=0 (25) 
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The variation with respect to tj2 yields 

k<u2<1, t) -,2) + K22^2=0 (26) 

Equations (21) and (22) are coupled through gyroscopic terms. 

The mechanism through which these terms arise makes it clear that they 

are a result of the influence of the shaft deformation on the local axis of 

rotation. 

The end conditions and differential equations for £,, , r; , and 
1 2 1 

TJ2 are easily altered to reflect lubrication and support damping. The 

latter equations follow: 

02i 
m + <K ♦ Ku) + ( u 11* "3T 

m. d2«l 
177T + <K+K12>«2+<u^12)^ 

K u2 (o, t ) +u y-- u2 (o, T ) 

(27) 
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dni 
m2_T + (K + K21) rj, + (4 + u 

= KUj (l.T) +u Uj <1,T ) 

m 
d2i)2 

2~r 
d T 

*i2 
+ (K + K22) 7) 2 + ( U + U 22) -g— 

d u 
= Ku2(1,t)+4 2 (1. t) 

(27) 

Similarly, the only end conditions affected by the damping (( 21 b, d), 

( 22 b, d)) have the following form: 

on X = 0 ui prescribed or 

ML n 
1 a 
TJ TT (s 

*2 2 3 
8 U1 , mor , 8 U1 . , “ “2 

Z-~>-Z— (— i + 2. 
82u. 

ax axaT rT ‘STF 

<a) (28) 

aii. d4. 
+ K (Uj - ^) + jx (-^J.. -^i.) = o 
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I 

! 
r 
i 
i 
i 

on X « ! u2 ia prescribed or 

1 

ml4o 8 X 9r 
7 

8 u. 
K <u2 - * 2* * * ( o r 

drj 
•) 
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APPENDIX B 

A CRITICAL SURVEY OF THE JASPER APPROACH 

o 
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This appendix is an extract of three reports by N. H. Jasper-^ 2, 3/ 

on a procedure for determining the natural whirling frequencies of shaft-disk 

systems. The analysis presented here takes into account the considerations 

of rotary inertia, gyroscopic precession of the disk, and flexibility of shaft 

supports, as well as lumped and distributed masses. 

The basis of this analysis is the assumption that vibrations exist in 

two orthogonal directions normal to the longitudinal shaft axis and that these 

vibrational modes are decoupled. In Section 5, it is shown that the assump- 

tion of decoupled vibratory modes is a direct result of ignoring, as second 

order effects, the gyroscopic terms associated with the shaft. With neglect 

of the gyroscopic moment of the shaft, the governing differential equations 

become decoupled linear differential equations with constant coefficients. 

Following these assumptions, the principle of superposition is employed, 

-/ Jasper, N. H "A Theoretical Approach to the Problem of Critical Whirl¬ 
ing Speeds of Shaft-Disk Systems", David Taylor Model Basin Report 827 
December 1954. * 
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i.e., the deflection« c&uaed by individual load« may be added to obtain the 

total «haft deflection when the load« are applied jointly. These individual 

deflections are evaluated at their load source and the resulting displacements, 

both transverse and rotational, are denoted as influence coefficients. For 

example, a concentrated transverse force on a shaft will result in a unique 

deflection and slope at the point of the applied force. Accordingly, the 

influence coefficient Ô is defined as the static deflection due to a concen- 
p 

trated force, and the influence coefficient 0 is defined as the static slope 

of the shaft due to a concentrated force. Similarly, 0M and 0M are 

defined, at the point of the applied load, as the static displacement and 

slope due to a concentrated moment. 

The inertial and gyroscopic loads resulting from a routing disk 

can now be defined and represented as concentrated forces and moments, 

and then by employing the method of influence coefficients, their affect 

upon the system can be determined directly. For example, if the magni¬ 

tude of the loads are multiplied by their respective influence coefficients, 

the sum of these products will then yield: 

(a) The deflection equation when the 6 coefficients are used. 

(b) The slope equation when the 0 coefficients are used. 

2. DETERMINATION OF INERTIAL AND GYROSCOPIC LOADS 

To determine the shaft loads resulting from a rotating disk, consider 

the case of a shaft specimen with a uniform angular velocity <*> about its 

longitudinal axis and carrying a rigid disk at some point along its span. The 

procedure will be to consider the case in which the time variations of the 
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existing moments, which are physically necessary to maintain whirling 

motion, are known multiples of the shaft speed, and to assume the shaft 

is massless and that gravity effects may be neglected. 

The nomenclature and directions used in this development are given 

in Fig. B-l. In this notation; the triad X, Y, X is a set of sxes fixed in space 

and X, y, s is a set of axes parallel to X, Y, Z and moving with the center of 

mass of an element of the shaft. The moving coordinate system is also ised 

as coordinates of the center of gravity of the shaft element on the disk unoer 

consideration. The shaft disk system is illustrated in Fig.B^2. The bearing 

restraints and location of the disk on the shaft are arbitrary. It is assumed 

that the disk has symmetry about the y, and s axes. The disk has mass 

mo, a diametral mass moment of inertia, Tj, and a polar moment of 

inertia r. The y and z axes are assumed to be oriented to coincide with 

the directions of maximum and minimum rigidity of the shaft supports, 

these directions are assumed the same for all supports. 

To obtain the moment resulting from the rotating disk, it is 

assumed that the disk possesses an angular velocity component in three 

orthogonal directions not necessarily colinear with the (x, y, z) axes. From 

Fig. 1, it is seen the angular velocity vector is 

^ = (Wj . , p' ) 

where, 

“ = an*uUr v«locity component along the polar inertial axi. of the 

disk 

. i 
a , ß = angular velocity component along the diaratral inertial axis 

of the disk, respectively. 
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•' Aifl« b«twNR (kt lint OP Md tt* xy-pjM«. 

ß' Aifl* bctwMR tkt lidt OP Md tte xx-pliM. 

Positivt Hw* iS a positiv* fwci Ktift| m IN itafl to tN riRM of • mUm. 
TN dkMtiMi of moi oi, 9, Md 02 an find ia ipacs; tN ori|ia, Pëat I, 
il Mviai witk tN CMtsr of fravity of tko ikaft ofo*o«t 

Figure B-l Spinning and Whirling Shaft Element 
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Th« li|i tf IN iNflaMC« CMffiCiMtS Mit N cNim hl KCMtfMCI 
«Ith IN lh«V« ll|« CMVMtiM. 

TN 4itk Mi than MPPMU N Ik«M aiy«Nf« «ItN IN iNfL 
TN ilth ii MMMi I« N thhi at Its nN «f HtachMtt to IN shaft 

Figure B-2 Schematic Diagram of Single Shaft*Diak System 
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«2 

ln vector i otation, the angular momentum 

Projecting the componente of the L vector along the ox, oy, and os axis 

(see Fig.B-1 ) results in 

TW COS O' cosß - Tjß' (cos P ) (ein o') + á» (coso )(sinß') ■ 

-tu) (cos a') sinß + t^o' (cosp') + rdP'(sin a' ) (sin ß ) 

tu) (sina') + Tdí' (cos o') + rd a* (sin ß') (sin a ) » Lx 

where, 

Lx = angular momentum per unit length about axis ox 

Ly = angular momentum per unit length about axis oy 

L = angular momentum per unit length about axis oz 

In obtaining these expressions for the components of angular momentum, a 

salient point to observe is the sign convention as illustrated in Figure B-l. 

The angular momentum components directed in the positive direction of the 

ox and oz axis are taken as positive, whereas angular momentum com¬ 

ponents directed along the positive oy axis are taken as negative. This 

sign convention is used to maintain conformity with the sign convention used 

for a bending movement as illustrated in Figure B-l. 

For small angles, cos = 1, sin £ s Z, a' a a and 

ß' s ß. Therefore 

L = Tw-rßa + r.aß 
X d d 

L *-tu) ß+T. a+ T. ßaß 
y d d 

L = ru) a + t ß + T.aßa 
z da 
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r 
r 

r. 
r 
r 

terms, the components of angular momentum are 

L 8 TV) 
X . 

L = “TWp + T, à 
y à (3) 

TWO + t. P 
a 

Notice that the time rate of change of angular momentum about an axis fixed 

in the center of gravity is equal to the moment about that axis. Therefore, 

the gyroscopic moments are 

r 
M m= -4- L = 0 

X dt X 

M 
m 

Tf Ly 
- Tup + T .a 

d (4) 

r 
r 

M 
m 

3T Lt 
Twd -f T P 

d 

where, 

M m, M m, and M m are the moments about the x, y, and z axis, X y z 

respectively. The result, = 0, agrees with the assumption that the 

shaft is spinning with a uniform angular velocity. 

In the xy plane, the forces and moments acting on the disk are F 

m and M respectively, i.e., 

F = M y 
y o' 

M m = TWO + T P 
z d 

(5) 
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Force on shaft ■ -My 

Moment on shaft « - (ru> Q + ß ) 

Consider the shaft is spinning in the positive direction (from y 

toward s) and whirling about the x-axis in an elliptical path. Then at the 

location of the disk 

o a o «in Qt o 

y = y© cost? t 

P « §o cos O t 

where 

I* * y . and aÄ are constants o o o o 

8 = angular whirling velocity of the normal to the shaft section 
about the stationary position of the longitudinal axis of the 
shaft. 

Let 

T/Td . k 

u> 

5 
a 

8 « 
o 

under the conditions assumed here, h is known. A positive h represents 

a whirl in the positive direction, assuming u> always is positive. 
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Then 

-F = M n2y 
Y o 7 

(8) 

-M m = - (kh.-i) r .n2p 
Z 0 

3. DETERMINATION OF FREQUENCY EQUATIONS 

The linear and angular deflections of the disk in the xy plane are 

determined by multiplying the above loads by their respective influence 

coefficients, i.e., 

y = M yfl2 öp - (khs-1) r.n2 p Ô M 
o a 

P = m yn2op - (khs-i) Tjn2 p oM 
o a 

(9) 

By collecting coefficients of y and ?, two homogeneous equations result, 

i.e., 

<moyn2«P-l)y-j(kh»-l)Tdn2 «M ] B = 0 (10) 

moti¿QPy -j^khs-l) TdO20M+ B = 0 (11) 

y and p can have values other than zero, only if the determinant of their 

coefficients is equal to zero. The result of this determinant vanishing is 

a frequency equation with O replaced by 
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Q4N moTd<W>»-»><«M0P- #PQM) -02N[m0 8P.8MTd(kh.-n]+ 1 = 

or 

2 ( Õ P + 0M 
O4- - o 

N 

G) 0P + 

2m G ( ÔP0M- ÔM0P) 

0MG)2 - 4m G(ôP0M. ÖM0P) o ' 

(13) 

where 

G = ( 1 - khs) T 

The frequencies 0N are always real. This statement is verified by noting 

that 

0M = op 
(14) 

which is a direct result of Maxwell's theorem. 

Another necessary condition required for real nN i* 

ôpqm . 0M0P ^ 0 
(15) 

This inequality is obtained as follows: 

Construct a vector with one component as y and the other as ß, 

e-g » I =(p)* Then from equation 9, it is seen that 

1 = *1 (16) 

4/ 
- Any elasticity book. 
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where 

r 
A = 

m n2 0P 
o 

0 2 AP 
m »* 0 o 

(khs-i) T _,n2ôM 
d 

2 M 
(khs-1) T M 0M 

d 

It is immediately seen that the scalar product 

(17) 

<y , Ay> = I) y (I 

and the scalar product 

<Áy, y> = I j y I j 

where ||y|| = modulus of the vector ^ 

Therefore, 

<y • ay^> = v'-y . y^> 

Or in other words, the matrix A is a self adjoint matrix. The eigenvalues 

of a self adjoint matrix are real Therefore, 

mn2õP-X - (khs-1) r.n 20 M 
° d 

moß20P - (khs-1) Tdn 20M -X 

= 0 (19) 

where X are the eigenvalues. 

ann^on^inc5 * ^ Techniques of APPlied Mathematics. J. Wiley 
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Solving this determinental equation results in 

X2.x[n2,mo8P+G0M)] + mo04G [#P0M-8M9P] *0 

o 
1,2 = 7 (m ôP+C0M) + 1(m #P-G0M)2 + 4m G8M#P (20) 

Now consider the following cases: 

For O real, a real X demands that the quantity 

(m 0P-G0M)2 + 4m GÔMQP ^ 0 o » o 

For imaginary 0 , a real * requires the bracketed quality of 

equation (20) to be the complex conjugate of This is impossible 

because of equation (13). Therefore O is not imaginary and from 

equation (13) the relationship which ensures that 0 is real for both 

positive and negative G is 

PqM . M P ^ „ 
-6 0 — 0 

It is significant to note that for negative G there will be only one 

physically real natural whirling frequency, whereas for positive G there 

2 
will always be two positive values of 0 corresponding to two natural 

whirling frequencies. This is evident when the equation for G is 

considered, e.g., 

G = ( 1 - khs) T , 
a 

For G> 0 , h can either be positive or negative. For G < 0 , h can 

only be negative. 
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A »imilar procedure is employed in the X-Z plane to obtain 

(m n -_2_ 
N 

♦P-C»°M)i V(m0 ,P*G.0.M)2-4m^Gt( t0.M. .M8.p' 

2moG,( i/«,“- &,M0,P) 

(21) 

kh 
where G* * (1 - _ ) Td and the star subscript is used to designate 

the constats applicable to the x-s plane from those in the x-y plane. 

4. CALCULATION OF ßN 

Equations (13) and (21) both express «N in terms of h, which is 

assumed known, and s, which in general is unknown. A value of s may 

be determined by trial such that equations (13) and (21) give the same value 

of nN; this value is then one of the natural frequencies of whirl and the 

corresponding critical value of w i8 w = hO 
N’ 

The procedure for calcuUting «N cover, both the .ymmetrical case 

(. * 1) and the un.ymmetrical case (./ 1). In the .ymmetrical ca.e, the 

amplitude, of motion mu.t be the same in both the xy and xz plane. 

Therefore .= 1 and «P = #/ , 8M = gP = and gM = 
Thus equation. (13) and (21) are identical and the value, for 8,. are the 

natural whirling frequence, for a given h. For each value of h, equation 

(13) will give either one or two natural frequencie. of whirling vibration. 

A forward whirl i. denoted by a po.itive h. and a counter-whirl i. denoted 

by a negative h. 

For the un.ymmetrical ca.e (. / 1), the center of the .haft move, in 

an elliptical path and both equation. (13) and (21) are necessary to solve for 

8N. It is possible to obtain the solution by a trial and error approximation. 
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Equation ( 13) ,nd (21) mu.t give the ..me value o£ 0N for a cho.en h, if 

the proper value of . i. ueed. Therefore, a val», of . may be ...»med 

and aubetituted into equation. (13) and (21). The valuee for nN2 ,re then 

obtained. By plotting the difference between the calculated frequenciee 

vereue the aeeumed e, the reeulting curve will indicate the direction of the 

a.eumption. on a. The correct value, of . and 0N ,,. obtained when 

the difference is zero. 

For the uneymmetrical ca.e, a direct mathematical approach i. to 

aubetitute the quantitie. U and U, into equation. ( 13) and (21). 

mo#'.OmTd(khe-l) + 1 « o 0N4moTd<kh,-,,ü-0N2[' 

"nX VT * »ü,-02N Lfl/- o,“Td ( Ji_ 
(22) 

•f 1 * 0 

where 

u = öMop.apoM 

Ue* «.“o/ - 8eP8,M 

Rearranging terms 

aN4moTdU+nN2#MTdj "*• *nN4raoTdU+BN2(mo ♦* 

nN'moTdü*+0N2í*MT kh 
°N4moTdU*+0N2<moa eP+ #.M t,)+ 1 
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Multiplying, v'ancelling s, and collecting terms gives a fourth-degree 

, . . r, 2 
frequency equation in *2^ which is independent of s and in which the 

coefficients of are constants for any given spin to whirl ratio h. 

£2 8 
N 

2 2tttt ,, 2. 2 ., 
mo Td UU*(k h 

M,,. nM 2, 2, 2 + £26 V+0 U^) h - 

(U* ímoôP+°Mrd) + U (moô*P+oMTd)}moT< +£2 
N moVU+U* 

M.P M Pv,,2.2 t 20M. M nM. M2 Ä P.P 
0 -0 0A ) + k h -rd 0 0* -0 Td -moô^ Õ 

+ £2 
N 

.PiftM ^ . P A M 
mo0 +0 Td+mc6Ä t 0^, rd + 1=0 (23) 

This equation may be solved for £2N for any given h by a number 

of numerical methods. 

If the substitution h = — is made in equation (23), it becomes an 
N 

equation for the determination of the natural whirling frequencies in terms 

of the spin velocity and the constants of the system, e.g., 

EK£2 
n8^[ 

EH+FK-Acj£2N6 + FH-K-E - BC+ AD 

BD -f-h] V + 1=0 

(24) 

where 

A 

C 

F 

H 

= m T k w U 
o d B = t kwO 

d 
M 

= -m r kwU D = - r k w 0 
o d tí 

= 0 T+ m 0 
d o 

= r +m Ô ^ 
* d o * 

M 

E = m t IJ 
o d 

K = rn t U 
o d * 
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2 
This equation is a fourth degree equation in and may be solved by 

numerical methods. It applies to shafts with symmetrical as well as 

unsymmetrical bearing supports. With o, and ß, taken as positive, 

the sign of is determined by the differential equations of motion so that 

there are, in general, just four natural frequencies for each value of <*>. 

In order to solve equations (13), (21), or (24), it is necessary to 

obtain the translational and rotary displacements due to a concentrated 

force and a concentrated moment. In other words, obtain the force and 

moment influence coefficients. This can be done by employing beam theory 

to evaluate these displacements. The conjungate beam method —^ or the 

7 / method of singularity functions— are but a few of the techniques that may 

be used. Reliance upon the above references or deflection equations given 

in handbooks will yield the desired results. To evaluate these influence 

coefficients, one bas*c point remains: after using the equations of beam 

theory, the equations will still be indeterminate since rotary and trans¬ 

lational freedom of the bearing mountings are to be considered here. It is 

finally necessary to apply the equations of equilibrium to each flexible support, 

i. e., the displacement at the support due to external loads is equal to the 

reaction at the support divided by the appropriate spring constant. 

5. ENGINEERING APPROXIMATIONS 

The two values of which are obtained from equations (13), (21), 

or (24), give the two lowest modes of vibration corresponding to a given h. 

Obviously, the lowest frequency is obtained when the negative sign is used 

in front of the radical in equations (13) and (21). Similarly, the highest 

of the two frequencies is obtained when the plus sign is used. When using 

—^ loc. cit., p. 

7 / — Scopelite, Thomas M., "The Singularity Functions of Uniform Beams", 
M.S, Thesis, Illinois Institute of Technology, 1964. 
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the negative in front of the radical, the difference of the first few significant 

figures might be negligible. Therefore, when the minus sign is used, 

multiply both the numerator and the denominator by the conjugate of the 

numerator. The equation for the lowest mode frequency of vibration takes 

the form 

if G is taken as zero, then 

(26) 

Letting G = 0 is equivalent to the assumption that the disk acts as if it 

were a point mass system, i.e., Tj = 0. This assumption gives an 

underestimate of the first order forward whirl. For the most import.nt 

case of the first order forward whirl ( h = 1), G will become zero if 

k=l. Since for any real disk, k is larger than 1; therefore G will 

actually be negative for this first order whirl resulting in a higher computed 

natural frequency (Eq. 25) than would be obtained from equations (26) wher 

G = 0. Thus, if G is set equal to zero, an underestimate is obtained, 

which is on the side of safety. 

IIT RESEARCH INSTITUTE 

B- 17 



The critical frequency is influenced by the mass of the shaft. This 

influence can be estimated by adding to the disk an effective mass, m 
es 

This effective mass is defined by the following 

1 

(m + m )0 
o es 

JL (27) 
static 

where ö'gtat-c the static deflection at the center of the disk due to the 

weight g( m + m ) applied at the center of the propeller. Therefore, 
C 8 

the first natural frequency becomes 

n 
N. 

1 

(m + m )0 
o es' 

Ä. 
static 

(28) 

when G * 0. 

The effective mass of the shaft can also be considered to be equivalent 

to a mass located at the center of the disk, which will have a maximum 

kinetic energy equal to the maximum kinetic energy of the shaft when it is 

vibrating in the particular mode under consideration. Jasper has determined 

that estimates of m , determined by the use of the lowest mode shapes 

found for several propeller-shaft systems, have fallen within the 

0. 10 m «Cm ^0.40 m s es ^ s (29) 

for the lowest mode of vibration and where m » mass of the shaft. 
8 
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In order to make the frequency equations (13), (21), and (24) more 

manageable, further simplifying assumptions as to the nature of the para> 

meter G can be made. These assumptions will make available to the 

designer a method for making rough estimates of the critical whirling speeds 

while at the same time illustrating the manner in which the various physical 
% 

parameters of the system affect the critical speeds. If it is assumed the 
a 

radial stiffnesses are identical at all bearing supports, i.e., s = - 0 = 

T P 0 • 
and if the disk is thin, i.e., k = —— = 2, then one may think of G as an 

d 
effective inertia with 

G = ( 1 - 2h ) 
a 

wüere h is the ratio of shaft ^peed to whirling speed. Accordingly, 

for the important first order forward whirl (h = 1) 

for the first order counter whirl (h = -1) 

(30) 

for the nth order counter whirl (h = - —) 
n 

for the nth order forward whirl (h = —). 
n 

For the first two of the above equations (30) can be used in equation (25) to 

estimate first order whirl speeds, whereas the last two equations of (30) 

must be used in equations ( 13) and (21) or (24) to obtain the critical whirling 

speeds of order n. 

G*-rd 

G = 3rd 

c=(l + |)rd 
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6. DIFFERENTIAL EQUATIONS FOR A WHIRLING SHAFT 

Differential Equation« of Motion (a) 

To obtain the differential equation« of motion of a whirling shaft, 

apply the principles of mechanics to an element of the shaft vibrating in 

transverse plane (see Fig3*l). From FigJMa positive bending movement 

and a positive shear force are defined as a positive moment and force 

acting on the portion of the beam to the right of the section. Then by 

summing forces and moments in the x s plane 

8 Q 

8 M 

where 
0 

9 

T w p ♦ a (see equation 4) 

and also 

where 

* x£ * th® component of slope of the neutral axis due to shear. 

From beam theory and the sign convection adopted here 

M s 
y 

d a 
’ ET 8 x 
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where 

EI = bending stiffness of the shaft 

K s shear coefficient 

A = shaft cross-sectional area 

G a modulous of elasticity in shear 

Substituting these equations into the equilibrium relationships results 

d a 
■3T + P 

z m z = 0 

+ N + EI -1¾. + ruß 
y 

(31) 

By applying a similar procedure to an element in the xy plane and using 

the relationships 

M 
z T to a + 

• • 

V 

Q„ = - KAG * 
Y xy 

the following equations are obtained: 

KAG -I4.- 
d X 

aß 
3 X + Py - my = 0 

d 2ß 
El —5- + KAG 

d X If -e 
(32) 

+ N - TtOQ - T 0 
2 dp = 0 

NT RESEARCH INSTITUTE 
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ci? Solution to th* Differential Equations of a Whirling 
Shaft-Disk System with Gyroscopic Effects of the Shaft Neglected 

Equations (31) and (32) represent the equations of motion in the 

variables x, y, z, o, ß, their derivatives, and time. These equations are 

not readily solvable for the general case. However, by ignoring the gyro- 

•copic effects of the shaft, a highly reasonable description of the problem 

results. This modified model includes the mass of the shaft, mass of the 

disk, gyroscopic effects of the disk, and the effect of shear deformation. 

By excluding the gyroscopic moment of the shaft, the field equations in the 

x-z plane are 

d M 
inr* = -Q + N ox z y 

9 z 
FT = a - fQ 

z 

- EI M 
y 

where Í = KAG and it is assumed that 

z = z(x) sin O t 

a = a(x) gin ft t 

HT RESEARCH INSTITUTE 
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By successive differentiation and substitution of the above field equations, a 

fourth order differential equation results: 

a 2p , a N 

f7T--TT inr2- (34) 

Similarly, for the x-y plane 

80 ? 
= py - m n y 

8 M 
ITT1 = ■ Q + N ox y 2 

= B - fQ 
y 

8ß 
tit • - EI M 

2 

y = y (x) cos n t 

ß = ß (x) cos il t 

HT RESEARCH INSTITUTE 
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The problem as stated by equations (31) and (36) has now been reduced 

to two decoupled fourth order linear differential equations with constant 

coefficients. Therefore, under the assumptions considered here, the 

principle of superposition is valid, since any linear combination of funda¬ 

mental solutions to a linear differential equation is still a solution of the 

governing equation. The characteristic polynomial to equations (34) and (35) is 

(36) 

where 

4r 

4r2(u2-l) * in«2 

and its four roots are 

These roots are distinct as long as t2 / 2; this will be assumed to be the 

case. A set of fundamental solutions to (34) and (35) is 

III IISIARCN INSTITUTI 
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Therefore the solutions to the homogeneous equations of (34) and (35) are 

y M 

r -r X r X -r X 

A.e 1 + A2* + V + A4e 2 cos Q t 
r 

(37) 

r.x -r.x r.x -r,x 
t = + B^e + B^e á + B^e ¿ sin Q t 

where A. and B. are constants to be evaluated from the boundary condi¬ 

tions or some other prescribed condition within the span of the structure 

(i = i, 2, 3, 4). 

All that remains analytically is to satisfy the discontinuity conditions 

that arise from a jump in the respective derivatives of y and z due to 

discontinuous applied and reactive loads such as P^, PN^, N^, the forces 

and moments resulting from the rotating disk, and the reactive forces and 
, 8/ 

moments due to the supports. It has been shown,—' that for linear systems, 

a function can be associated with each type of loading condition. This 

function represents a particular solution to (34) or (35) resulting from a 

discontinuity condition imposed on the deflection or its derivatives. For 
2 

1 < t <2, the following four particular solutions are of significant 

importance: 

Ce Sc 
ug 

particular solution for a unit jump in 

deflection = <s>’* (38) 

[uC.+gSc]- particular solution for a unit jump in the section 

slope - Q or P = <s>”^ 

g/ - 
— loc. cit., p. 
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particular solution for a concentrated unit 
2 

moment = <s> 

KUg L 
u(3-2u ) Cs+ g( 1-2u2)ScJ. ^particular solution for a unit concen¬ 

trated force = <s>"1 

where: 

S = sinh r u (x-a) 

s » sin r g (x*a) 

C = cosh r u(x-a) 

c = cos r g (x-a) 

ig = \t2-2 , g>0 

i = /TP 

a = point of application of the applied r reactive load. 

By substituting any of the equations of (38)into (34) or (35), it can 

be verified that equations (38) are in fact particular solutions. Employing 

the notation 

<f(x-a)> = 
X <a 

f(x-a) X > a 

and (39) 

ro 
<f (x-a)> = 

dxn ,n 

X <a 

f (x-a) x> a 
dx 

III RESEARCH INSTITUT! 
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the complete deflection equation for both vibrational modes can be written 

down immediately. For example, consider the following shaft-disk system: 

z 

In the xy plane, disk No. 1 supplies to the shaft, at the point x = 0, the 

moment 

• • • 

T.W ^ + T, U> /3 i d, - 

where 

a = d 
IT a (o) sin A t = a (o) O cos O t = -ß |°| ß 

ß ß(o) cos Q t = -fl2 ß 

HT RESEARCH INSTITUTE 
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and the force 

-mß ^y(o) 

Disk No. 2 supplies to the shaft the moment 

Two + u> ß 
2 = d2 « 

where 

i = -P(a2)n2 cos Ot = -pn2 

a(a ) 

Î ■ FTI^- £, 

and the force, 

-mß2y(a2) 

Letting 

k^. = y direction linear spring constant at x = a. 

k . = z direction linear spring constant at x = a. zi i 

Ry. = y direction rotary spring constant at x s a^ 

R . = z direction rotary spring constant at x » a. zi i 

and using the particular solutions of (38) and the notation of (39), the 

IIT RESEARCH INSTITUTE 
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xy plane deflection can be written immediately as 

y = y<0) < 8 > *+P(o) <8>"3 . (t U) a . T w ß)<8>‘2 
1 “ dl “ 

mO y(o)< s > 1 

a = o 
+ kv y (a )<8>' 

yl 1 
a = a, 

+ R ß (a )< s > 
yl 1 

-2 

a = a 

-(T2““-Td “ P)<»>'2-mn2y(a,)<,>-1 
2 ¿ 

a = a. 

A .imilar equation can be written for the displacement in the x z plane. 

The above equation, when solved to satisfy the boundary conditions, will 

result in a transcendental equation involving i^2. The solution to this 

transcendental equation must then be identical to the result obtained for 

the x zplane. 
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APPENDIX C 

DRAWINGS OF TEST FIXTURE 
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APPENDIX D 

DESCRIPTION OF COMPUTER PROGRAM FOR ANALYSIS 

OF COMPLEX SHAFTING SYSTEMS 



APPENDIX D 

DESCRIPTION OF COMPUTER PROGRAM FOR ANALYSIS 

OF COMPLEX SHAFTING SYSTEMS 

GENERAL DESCRIPTION 

This program computes natural frequencies, normal mode shapes 

and forced vibration data for lateral vibration of a hollow stepped shaft 

supported on bearings having both torsional and linear stiffness. The 

shaft may carry lumped masses and/or lumped inertias. Atypical 

shaft is shown in figure D-l. 

FF Sin (j t 

Figure D-l TYPICAL SHAFT 
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The shaft is broken into sections by placing a cut at each change in cross 

section, each linear or torsional spring, each lumped mass or lumped 

inertia and each force or moment input. The sections are then numbered 

consecutively from 1 to NS. The following input-output options are 
available. 

(1) 

(2) 

(3) 

(4) 

(5) 

Input Output 

Description of shaft 

Description of shaft 

Description of shaft 
Description of forcing function 

Description of shaft 
Description of forcing function 

Description shaft 
Description of forcing function 
Natural frequencies 
Normal mode shapes 

Natural frequencies 

Natural frequencies 
Normal mode shapes 

Natural frequencies 
Forced vibration data 

Natural frequencies 
Normal mode shapes 
Forced vibration data 

Forced \ibration 

The equations necessary for the computational scheme to be used 

were developed in the Supplement to Report #1 for IITRI Research Project 

K6056. They are reproduced here with some changes in nomenclature. 

p4,i) ' a2nA,i) [e (i) I (i) g] 

Cj (i) = jso (i) / P (i) + VO (i) / (t) I (i) P3 (i)]j /2 

C2(i). |YO <i) + TO (i) / [e (i) I(i) P2 (i)]j /2 

C3W- ^SO (i) / P (i) - VO (1) / ^E (i) I (i) P3 (i)J 1 /2 

C4 UM I YO (i) - TO (i) / [eUMUI P2 <i)]J /2 

YL(i) . Cj (i) »in [P(i) L (i) J +C2(i) co. [ P Ul L U)1 
+ C3 (i) »inh ^ P (i) L (i) 1 +c4 (i) co.h I" P (i) L (1)1 
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SL (i) = 

TL (i) 

VL (i) 

P(i) (i) cos [P(i) L(i)J - C2(i) «inJ P(i) L (i) I 

♦ C3 (i) co«h[p(i) L (i)J + C4 (i) «inh ^P (i) L (i)jj 

^ E(i) I (i) P2(i)J Icjd) sin [p(i) L (i)] ♦ C2(i) cos P (i) L (i)j 

- C3 (i) s inh ^P (i) L (i) J -C4(i) cosh £p (i) L (i)J ' 

i. 

5 [e(í) I (i) P3(i)] (Cjii) cos ^P(i) L(i)J-C2(i) sin ^P(i) L (i)J 

-C3 (i) cosh [P(i) L (i)J -C4 s inh ^P(i) L (i)]| 

YO (i ♦ 1) 

SO (i + 1) 

TO (i ♦ 1) 

VO (i + 1) 

YL (i) 

SL (i) 

TL (i) - I (i) SL (i) + J(i) X 2 SL (i) 
n 

VL <i) + K (i) YL (i) - M(i) X2 YL (1) 
n 

A 

TL (NS) 
a 

VL (NS) 
a 

TL* (NS) 
P- 

VL' (NS) 
-/3 



SO(l) 

z = 
n 

G = 
n 

= YO(l) [TL(NS)0 /TL' (NS) er 1 

NS 

,Di * di > Yn <*> d xi + M(» YLZ(i) + J(i) SL2 

. Ns 

i = i 

YL(i) FF(i) 

j[x “ - FFF2 (i) J S [^2Cn FFF (i)J ¿J 1 u 
-^ SL (i) FT (i) ] 

li [a; - FFT2 <i)1 n [2Cn FFT (i)1 |!] r/ 
yFo (i) 

TFO (i) 

VFO (i) 

YFL(i) 

TFL (i) 

VFL(i) 

YO (i) G 
n 

TO (i) G 
n 

VO (i) G 
n 

YL (i) G 

TL (i) G 
n 

VL (i) G 
n 

D-4 



The nomenclature used here is 

L(i) 

A(i) 

V (») 

E(i) 

Ki) 

8 

D(i) 

d(i) 

natural frequency of shaft 

length of section i 

cross-sectional area of section i 

weight density of section i 

modulus of elasticity for section i 

area moment of inertia about a diameter of section 

acceleration due to gravity 
t y 

outer diameter of section i 

inner diameter of section i 

Cjii), C2(i), C3(i), C4(i) 

YL(i), SL(i), TL(i), VL(i) 

YO(i), SO(i), TO(i), VO(i) 

Y„(i> 

constants in equations for deflection 
of section i 

deflection, slope, moment and shear 
at end of section i toward section i +.1 

deflection, slope, moment and shear at 
beginning of section i 

modal deflection of section i 

</ (i) 

K(i) 

J(i) 

M(i) 

A 

torsional spring constant between 
section i and section i + 1 

linear spring constant between 
section i and section i + 1 

lumped inertia between secticn i 
and section i + 1 

lumped mass between section i 
and section i + 1 

determinant ( A= 0 at all natural 
frequencies) 



TL (NS), VL (NS) 

TL'(NS), 

C n 

Z n 

G n 

FF(i) 

FFF (i) 

FT (i) 

FFT (i) 

Y FO (i) 

TFO (i) 

VFO (i) 

YFL (i) 

TFL (i) 

VFL (i) 

NF 

value* of moment and shear at end of shaft for 
slope, moment, and shear equal to zero and 
deflection equal to a at beginning of shaft. 

VL' (NS) values of moment and shear at end of shaft for 
deflection, moment and shear equal to zero 
and slope equal to ß at beginning of shaft. 

modal damping factor 

normalizing factor 

modal forcing function 

force applied at section i 

frequency of force applied at section i 

moment applied at section i 

frequency of moment applied at section i 

forced displacement at beginning of section i 

forced moment at beginning of section i 

forced shear at beginning of section i 

forced displacement at end of section i 

forced moment at end of section i 

forced shear at end of section i 

number of frequencies 

0-6 



A flow diagram defining a procedure whereby the above equations 
can be used to analyze a complex «haft is given in figure D-2. A FORTRAN 
program for the IBM 7090 Digital Computer which carries out this pro¬ 
cedure follows at the end of this report. The output for a sample problem, 
• ee figure D-3, is also listed. The output of the program is self-explanatory. 
The input has the following format. 

CARD 1 (all run types) 

Column 1 * 
Column 2-6 blank 
Column 7-10 DATA 
Column 11-80 blank 

CARD 2 (all run types) 

Columns 1-4 
Columns 5-6 
Columns 7-80 

shaft identification number — Format (14) 
run type - Format (12) 
blank 

CARD 3 (run types 1,2, 3, and 4) 

Columns 1-3 
Columns 4-6 
Columns 7-16 

Columns 17-26 

Columns 27-36 
Columns 37-80 

number of shaft sections-Format (13) 
number of frequencies desired-Format (13) 
required accuracy of frequencies 
Format (F10.0) 
approximation to first natural frequency 
Format (F 10.0) 
frequency increment-Format (F10.0) 
blank 

CARD 3 (run type 5) 

Columns 1-3 
Columns 4-6 

number of shaft sections-Format (13) 
number of frequencies-Format (13) 

Cards 4, 5,-,(NS 4 3) all have the same format (NS is the total number 

of shaft sections). Each card describes one shaft section. The cards must 

be arranged in the same order as the shaft sections (card 4 describes section 
1, card 5 describes section 2, etc.). 





Figure D-3 SAMPLE SHAFT 
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CARD 4. 5 

41-48 
49-56 
57-64 
65-72 

Column* 1-8 
a . . 

9-16 
17-24 
25-32 
33-40 

fiction length 
section outer diameter 
feection inner diameter 
section weight density 
section modulus of 
elasticity 
section lumped mass 
section lumped inertia 
section linear spring 
section torsional sprinc 
blank * 

Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 

Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 

CARDS 4, 5, etc. (run type 5) 

Columns 1-8 
9-16 
17-24 
25-32 
33-40 

41-48 
49-56 
57-80 

section length 
section outer diameter 
section inner diameter 
section weight density 
section modulus of 
elasticity 
section lumped mass 
section lumped inertia 
blank 

Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 
Format (F 8.0) 

Format (F 8. 0) 
Format (F 8. 0)‘ 

Thi. conclude, the input for run type. 1 and 2. Run type. 3 and 4 
have the following additional data. 

Additional Card. 1.2. . . . NS (Run type. 3 and 4) 

Columns 1-10 
Columns 11-20 

force input at section i Format (F 10.0) 
frequency of force input Format (F 10.0) 
at section i ' * ’ 

Columns 21-30 

Columns 31-40 

Columns 41-80 

moment input at section i Format (F 10. 0) 

frequency of moment Format (F 10. 0) 
input at section i 

blank 
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Additional Cards 1 » 2, • « - (run typa S) 

Columns 1-10 forcé input at saction i 

Columns 21 

Columns 11 -20 frequency of force input 
at section i 

Format (F 10.0)> 

Format (F 10.0) 

moment input at section i 

Columns 31-40 frequency of moment at 
section i 

Format (F 10.0) 

Format (F 10.0) 

Columns 41-80 blank 

Additional Card NS *f 1 (run type 5) 

Columns 1-13 natural frequency Format (E 13.6) 

Columns 14-80 blank 

Additional Card»41 

Columns 1-13 

Columns 14-26 

NS + 2, NS + 4, ---3 NS (run type 5) 

modal deflection at begin- Format (El3. 6) 
ning of section i 

modal slope at beginning Format (El3. 6) 
of section i 

Columns 27-39 modal moment at begin- Format (El3. 6) 
of section i 

Columns 40-52 modal shear at beginning Format (El3. 6) 
of section i 

Columns 53-80 blank 

Note alternate cards 

D-ll 



Additional Cards NS + 3» NS + 5, - - -, 3 NS + 1 (run typ« 5) 

Columns 1-13 

Columns 14-26 

Columns 27-39 

Columns 40-52 

modal dafUction at and of 
saction i 

Format (Z 13.6) 

modal slope at end of section i Format (E 13. 6) 

modal moment at and of 
section i 

modal ehaar at end of 
eection i 

Format (E 13. 6) 

Format (E 13- 6) 

Columna 53-80 blank 

Additional Card 3NS + 6 (run type 5) 

Columns modal damping factor Format (F 10.0) 

Columns blank 

Cards describing additional natural frequencies, mode shapes and 
damping factors follow with the eame format as for the first mode. These 
cards conclude the input for run type 5. 

♦ Note alternate Card« 

0-12 



rnm
m

m
m

gm
m

m
 

The format (14, F 10.0, El3. 6, etc. ) specifies the form in which the 
data must be punched. The specification Iw requires that the data be an 
integer containing at most w digits. The specification Fw. 0 requires that the 
data be punched with a decimal point or with the decimal point assumed to be in 
the column immediately to the right of the space saved for the data. The 
specification E 13. 6 is satisfied if the data is written in the form 

+ 0.123456 E j- 12. The E ♦ 12 specifies the power of 10 by which + 0.123456 
m 

is multiplied. 

The approximation to the first natural frequency for card 3 must be 
below the actual ilret natural frequency. The frequency increment muet be 
leea than the interval between any two natural frequcnciee of the ehaft. How¬ 
ever, aince computing time ie very dependent on the magnitude of theae 
quantities they should be kept as large as possible. 
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Address: Cameron Station 
Alexandria, Virginia 22314 

Subject: "Dynamics of Flexible Rotor$"(U) 
Contract No. NObs-88607 /¾ i*1 ^ ( 
IITRI Project NO. K6056 v ¿¡^ 

Gentlemen: 

Enclosed please find 10 copies of an errata sheet 

for the above mentioned final report. 

Should you have any additional questions regarding 

same, please do not hesitate to call upon us. 

Very truly yours, 

é( if t C\’l ' < . 

R. L. Eshlemán 
Assistant Research 

APPROVED: Engineer 

W. E. Reynolds 
Manager, Machine Design 
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Shear Correction 

Equations 2.25 (a) & 2.25(b) on Page 14 can be corrected 

for shear deformation. The whirl frequencies of a plain rotor 

in pin-ended, ‘o’id supports are: 

r n 7T 

2 2 n ïï 

f —TTT 3rnrr 

where n = 0, 1, 2, . 

The shear correction term (approximately) is 
K G 

Then: 

-.2 2 n Tr 

2 2 2 
r n n 

(1 + 

P = 
2 2 

n n 

'i+(1 + Fg> 

Example: 

For a circular shaft K' " ^ 

or Ä = 2-4 
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Shear Correction 

Equations 2.25 (a) & 2.25(b) on Page 14 can be corrected 

or shear deformation. The whirl frequencies of a plain rotor 

in pin-ended, s?’id supports are: 

P = 
+ 

n ir 

V, - S ~2~2~2 
“ 7T 

P s 
2 2 

nfeTT 

i/t: 
where n = 0, 1, 2, 

The shear correction term (approximately) is ~- 
k 1G 

Then: 

P = 
+ 

«2 2 n 77- 

P - 

à I 2 2 2 Vl - Í-S-Ü- 

2 2 
n rr 

(1 +Fg' 

11 * * 5%' 

Example: 

For a circular shaft k' ~ — 
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