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FOREWORD

This report presents the results of a portion of the
experimental program for an investigation of hypersonic flow
separation and control characteristics conducted by the
Research Department of Grumman Aircraft Engineering Corporation,
Bethpage, New York. The work was partly sponsored by the Flight
Dynamics Laboratory, Research and Technology Division, Wright-
Patterscn Air Force Base, Ohio, under Contract AF33(616)-8130,
Air Force Task 821902. Mr. Donald E. Hoak was the Air Force

Project Eungineer for the program.




ABSTRACT

This report ovresents hest transfer and pressure distributions
for hypersonic fi-ws ahead of ramps, over expansion ccrmere, and
past fin-plate con~iraticns. Two basic models were used for thesse
experiments: 1) a riabt plat: with & full span ramp (trailing-
edge flap) on one su: face and an expansien corner on the other,
and 2) a flat plate with wedge shaped fins mounted on the upper
surface and an expanziun cw™mer on the lowsr surface, th sharp
leading eodge models were test<i in thse Grumman Hypersoniec Shock
Tunnel at Mach 12 and 15. The plate-flap model was tested at
o = -15° to +30°, with flap deflections from 0° to 45°,
at Reynolds numbers per foct of 0.8 x 105 to l.4 x 10° at
¥ach 19 and of 1.2 x 10° at Mach 13. The fin-plate model was
tested at &« = C only, with 15 degree wedge shaped fins having
two different helghts at a Reyncids number psr foot of 2.4 x
10% at Mach 13 and of 0.8 x 10° at Mach 19.

This technicail documentary report has bsen reviewed and is

approved.
C’,//ﬁ?ﬂﬂ
W. A. SLOAX, Jr.

. Colonel, USAF
' Cnief, Flight Control Division
AF Flight Dynamics Laboratory
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The Grummen Research Department has been investigating
hypersonie flow geparation and the effectiveness of controls
in separated flow zones. The experimental effort involved
testing four basic comfiguratioms in tha Avnold Engineering
Development Center (AEDC) Tunmels A, B, and Hotshet 2, as well
as in the Grumman Hypersonlc Shock Tunnel (GHST). Eleven
distinct models were built ip order to accommodate pressure,
heat transfer, and force measurements as well as to meet the
requirements of the various facilirties. Sketches of the con-
figurations, along with some pertinent remarks for the over-all
program, ave shown in Fig, 1. The four basic configurations
are labeled A, B, C, and D. Configurations A and B were designed
primazrily teo study flow separation, while configurations C and B
weye deajgned primarily vo provide controls information for
typical bhypersvnic flight configurations. Detailed design in-
formaticn and test plaus are gilven in Ref, 1.

This rceport deals with configurations A and B and presents
pressure and heat tramsfer data that were obtained in the
Grumman Hypersondce Shock Tunnel at nominal Mach numbers 12 and
19 during early 1964, The models in this tumnel entry are ome
nalf scale of the ones that were tested at Mach numbere 5 and 8
at AEDC.

The purpose of the tests reported here is twofold: first
to generate experimental information at Mach 13 and 19, and
second to provide possible guidelines for extending the Mach 5
gnd 8 data to higher Mach numbers. Results for the over-all
program will be presented in a forthcoming final report. Two
runs were made using Krylom white enzmel as a heat sensitive
paint and the vesults are discussed briefly, Schlieren photo-
graphy was employed and scme typical photographs are presented,

Manuscript released by the author August 1964 for publication as
an FDL Techanical Documentary Report.




Dimensions, pressure tap, and thermocouple locaticns as
well as coordinate axes definitions for model A are given in
Fig. 2. Instrumentation coordinates are given in Table I,
Model A has a six~-inch square planform and a nominalily sharp
leading edge {(35° included angle). The upper surface was de-
signed for the study of the flow ahead of ramps and the lower
surface for the study of the flow over 40° expansion corners.
The trailing edge flap is of 25 per cent chord and is shown in
Fig. 2 for the three flap settings studied in this tummnel entry.

Model B is pictured in Fig. 3; dimensions, instrumentaticn
locations, and coordinate axes definitions are given in Fig. 4.
Instrumentation coordinates are given in Table II, The body of
model B has a six-inch square planform with a trapezoidal
profile and is one and one haif inches deep, The lower face of
the body intersects the upper surface forming an angle of 30°
at the leading edge. The leading edge of the model and the 30°
expansion corner on the lower surface are machined sharp. A
small, sharp leading edge fin is mounted symmetrically about
the centerline on the flat nlate upper surface of the model.

The wedge shaped fin has a semi-vertex angle of 15°, An uzttach-
able fin porticn provides an extra £in configuration of 2-inch height.

TEST CORNDITIONS

Model A was tested at angles of attack of -15° to +30°,
referenced to the upper flat plate surface. The convention used
here is that compression of the upper surface indicates positive
angles of attack, Model B was tested only at zero angle of
attack, also referenced to the upper flat plate surface. The
flap deflections for wodel A were 0, 15°, 30°, and 45°; model B
was tested with two wedge fins separately,

Both models were run at nominal Mach numbers of 13 and 19.
The range of free stream Reynolds number per foot was from 0.8 x
109 to 2.4 x 100, A detailed presentation of the test program
and corresponding test conditions are shown in Table III. A
number of runs were repeated and are so indicated in the table.

The free stream conditions shown in Table III are those
cbtained at the leading edge of the model. These conditions are

3]




not duplicated exactly from run to run and are thus indicated in
the table. Useful test flow duratious of approximately 3 milli-
seconds were obtained for these conditions. Further, because
the GHST has a conical nozzle, the free ctream conditions vary
in the test section along the tunnel centexrline, Distributions
of the free stream static pressure, femperature, and Mach number
along the tunnel centerline are plotied versus axial distance
downstream of the nozzle exit in Figs. 5 and 6. A more detailed
description of the facility is given in Ref. 3,

DATA REDUCTION AND ACCURACY

Pressure and heat transfer data were reduced to the standard
coefficient forms presented herein by using reference "free stream'
conditions. These were taken as those at the leading edge of the
models,

Measured pressures p were reduced to pressure coefficients,

using the reference free stream values of the static and dynamic
pressures, p_ and q_-

Aerodynamic heating rates éw were presented directly by

the heat transfer gauge instruments (from measurements of the
transient wall temperatures Tw). The heating rates were non-

dimensionalized in the form

Nu = qW X // pooUoox
T ~-T k i
\Y © / 0

T—‘ﬁex £

where Nu is the Nusselt number, x 1is the streamwise distance
from the leading edge to the heat transfer gauge* (see Figs. 2
and 4), and Re is the Reynolds number based on distance x.

*
For model A, x 1is the running length at all flap settings while
for model B, x 1is a projected length.
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For each test run, the values of kK, pg U, and {the
thermal conductivity, density, velocity and viscosity of the

free stream flow respectively), were calculated at the model's
leading edge station. Values of k  and Rem/ft are given

in Table III for each test run. For the low temperature encoun-
tered in these tests, the conductivity k was calculated by
assuming a Prandtl number equal to 0.73, “a specific heat at
constant pressure cp = 0.24 BTU/1bm °R, and a viscosity depend-

2.21 T3/2

-8
ence | = T+ 178.6 x 10 slugs/ft sec,

Pressures were estimated to be accurate to witnin 10 per
cent of their measured values. 1In addition to these estimates,
the data on the lower surface of both mcdels provide a certain
degree of repeatability, since the flow there should not be
influenced by geometrical changes on the upper surface. The
accuracy for the heating rates is not as good as for the pressures.
This is to be expected for a facility of smali duration testing
time. The repeatability in most cases is good and within a 10
per cent range. In some instances, and particularly in the
interaction zone of model B, repeatability of less than 10 per
cent was not always obtained. This might very well be due to
the sensitivity of the corner flow and not necessarily to
instrumentation defects. Occasionally the oscilloscope trace of
a point was very "noisy" and difficult to read. Such points
have been omitted in the presentation of the data. Lastly, we
mention that artificial errors may be introduced in the process
of nondimensionalizing the data, since the free stream conditions
can very well vary.

PRESENTATION OF RESULTS

The presentation of the data differs distinctly for the two
models, For model A the pressure and heat transfer rates are
plotted versus a nondimensionalized streamwise distance S. For
the upper surface, the parameter Su is defined as the ratio of
the chordwise surface distance of a point from the leading edge
of the model to the surface length of the model. For the lower
surface, the parameter Sz is defined as the ratio of the chord-

wise surface distance of a point from the expansion corner to the
true length of the model aft of the expansion cormer. With this
artifice we have presented the data for both the upper and lower
surfaces on the same graph page.
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For model B we have presented the data at two chowdwise
stations versus the semispan Y and wedge height Z. The
Nusselt number for this model is based on the x projection of
a point. There is a degree of arbitrariness in using the pro-
jection, especially for the wedge, and we do not attribute any
physical significance to this presentation.

The data for model A are presented in Figs. 7 through 22;
those for model B in Figs. 23 through 30. The symbols are
defined in the figures. Whenever a run was repeated the symbols
are flagged, and filled symbols are used whenever the Reynolds
number per foot was higher than 103, Schiieren photographs
were obtained throughout the program; some are presented in Figs.
31, 32, and 33.

In Ref. 2 we reported on the use of Krylon white enamel as
a heat sensitive paint and recommended its use for preliminary,
qualitative investigations of complicated configurations, which
have many areas of interaction. A winged re-entry configuration
was tested in the AEDC Hotshot 2 tunnel and clearly defined

regions of ‘reased aerodynamic heating were observed. Two
runs wery in the present test serfee using the Krylon white
enamel paii. . Phutographs of model A oefore and after the run

and model B after the run are presented in Figs, 34, 35, and 36,
Although hot areas can be seen in these pictures, there exists
a lack of detail, which can be attributed in part to the con-
siderably shorter duration of the GHST test runs. The use of
Kryion is best employed for preliminary analyses of complicated
configuraticns in test facilities having longer test durations.
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TABLE T

INSTRUMENTATION COORDINATES FOR MODEL A

3
S AN E SN
o

OO~

V-

Pressure Oriiices Heat Transfer Gauges

S y Gauge X y
2.43 -.250 1 2.43 . 500
2.93 -.500 2 2,93 .250
3.42 -.250 3 3.42 .500
2.688 .250 4 2,688 -, 500
3.188 .500 5 3.188 = 4250
3.688 .250 6 3.688 ~.500
4,188 .500 7 4,188 -.250
4.750 .250 8 4,750 -.500
5.25 .500 9 5.25 -.250
5.75 .250 10 5.75 -.500




-3
o)
o

Gauge

foed

(Velle LN I« W IF SR WA R o

WOV LN

TABLE II

INSTRUMENTATL{ON COORDINATES FOx MODFL B

Pressure Orxifices

in Yin
.875 0
1.375 0
1.875 0
3.000 462
3.000 .900
3.000 1.650
4,500 .862
4,500 1.300
3,000 - .400
3.250 .400
3.000 .26
4,500 .67
3.000 .26
4.300 .67
4. 560 .57

Heat Transfer Gauges

in yin
1.875 .900
1.875 - 900
3.060C - 462
3.000 - .900
32.060 -1,650
4,500 -« ,8867
% -3..300
i ~ 07
Y - .67
4,500 - .67

in

-1.500
-1.500
.312

~ 1
c312

<937
.937
1.437

o)
o

o

.312
.937
1.437




Run No.

1256
1255
1256
1409
1413
1334
1395
1397
1400
1265
1266
1267
1263
1264
1281
1282
1257
1269
1270
1271
1272
1275
1276
1380
1382
1384
1385
1339
1260
1277
1406
1408
1417
1418

Run No.

1451
1450
1447
1448
1446
1449

a
deg

0
0
0
-15
I
-15
-15
~-10
-10
-1C
-5

—owm

10

i0
3¢
30

91
deg

Y

Q

TABLE III

PROGRAM SUMMARY AD TEST CONDITIONS FOR MODEL A

& M Re/ft x 10"S T°R T g P x 104
deg
30 13.73 1.19 3650 105.43 18.15%
! 13,73 1.18 3495 100.25 16.72
% 13.73 1.18 3479 99.72 16.62
30 13.83 1,19 3170 88.42 13.94
0 13.83 1.21 3022 83.81 15.03
0 20.50 1.45 3697 48,69 4,68
15 % 1.19 4660 64 .84 5.60
30 1.39 3957 52.79 5.07
45 20.50 1.32 4232 57.32 5.44
30 19,24 0.88 3517 52.08 3.33
30 0.86 3657 54,50 3.50
45 0.84 3791 56.84 3,66
30 0.87 35607 33,67 3.44
30 0.88 3529 52.27 3.35
0 0.84 3339 57.7¢ 2,71
0 0.8% 3792 56.86 3.66
30 0.87 3592 53.36 3.42
45 0.84 3842 57.76 3.72
45 0.85 3763 96.36 3.63
15 0.84 3849 £7.88 3.73
15 | Cc.84 3806 57.11 }.68
v} & 0.85 3762 56.34 3.63
0.86 3676 54,33 3.53
1 13.24 1,64 3721 49,06 4,72
0 20.5C 1.22 3918 52.16 4,37
15 1.17 4047 54,25 4.44%
20 1.17 4109 55.27 4,58
45 20.50 1.43 3785 50.G6 4,82
30 19.24 0.86 3846 56,31 3,49
0 19.24 0.85 3772 56.51 3.64
45 20.50 0.80 3582 50.41 2,83
15 20.50 0.81 34753 48.63 2,72
0 19.77 0.79 3723 52.74 2,97
15 19,77 0.82 3357 456.78 2,60
PROGRAM SUMMARY AND TEST CONDITIONS FOR MODEL B
Wedge M Re/ft x 10-5 T°R T, R P x 104
Small 13.83 2.33 3334 93.64 29,97
Small 19,77 0,82 33732 47.05 2,61
large 13.88 2.33 3412 96.15 30.91
13,88 2.22 378G  108.30 35.22
‘ 19.7 9,83 3321 46,22 2.56
Large 19.77 0.81 3463 48.4% 2.71
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13.06
8.07
7.64
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Scparated Flowe shead of a Ramn

Fore and aft flaps, end plates
3 separate models;

1) Fressure and heat :ransfer, AEDC Tunnels
Ab&B.M~56& 8, results in Refs. 5-7.

2) Contrulled wall temperature, pressure,
AEDL Turnel B, M = 8, results {n Refs. 6 and 8.

3) Pressure and heat transfer, Grumman Shock
Turnel, M =~ 13 & 19, results herein.

Wedge - Plate Interaction
Small and large fins with sharp
and blunt leading edges
Z separate modlels:

1)

~

er, AEDC Tunnels
s in Refs. 6,7,9 and 10,

ressure an
& 3,

G

heat tr
& 8, ra

~ o

A

7% Prossure and bear toansfer, Srummean Shoct
fuormel . M 2712 & IV, rasulits nerein,

(lirpew teltz, BRI -t L E,
‘ernter budy, T.E. fiaps, drooped Dose,
cpojie~. tip fins
3 senara*e wmodels:

Pressuve snd heat transfer, AEDC Tunnels
AL B, M~ & 8. results in Refs. 7 and 1l-14,

2\ Pressure, AERC Hotshoo 2,
N7 'S, resmits in Refs. 2 and 15,

S cn~porent ferece, AEDC Tunneis
ALB “m=35 &8, results in Refs. 14 and 16,

. 25 N Delta. dlunt L.E., Dihesra:
1Ty T E. fraps, vanaird, ventrel §i-
R 3 sepavaty mcdels

1} Pregsiure 3nd heat transfer. AFD. Tunnels
Ao 3, M =345, resuilts v kK.t3, 7 and 17-:S,

e

25 Sressuce and wead® traniier, orumucn Shoek
Tunrei M 19, resuiis in kel, 21.

»

3) S5iv componven- foroce, <EDC Tunnels
ad& 2, M=5% 8, resuive ir Qelr. 19 and 20.

-

Fig. 1 General Tutliue i Mogels and Remarks for Over-all Proec-um
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Fig. 31 Schlieren Photograph Showing Model A at Mach 13, a = +10°,
& = 0, and Re/ft = 1.2 x 107

&

Fig. 32 Schlieren Photograph Showing Model A at Mach 19, a = +30°,
& = 15°, and Re/ft = 0.8 x 105
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Schlieren Photograpn Sheowing Mecdel A at Mach 19, o = 0,
& = 45°, and Re/ft = 1.3 x 105
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Fig. 36

Experiment with Krylon White: Modeer, Large, Blunt LE Wedge,
a=0,M =13, and Re/ft = 0.3 x 10°




FDL-TDR=-64~144 September 1964

Due to printing defects, Figs, 31, 32, and 33 were
rendered without the flow detail that was present in the
original schlieren photographs. To make these figures

meaningful, a new printing was made and is submitted herewith.

Air Force Flight Dynamics Laboratory
Research and Technology Division
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio
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Fig. 31 Schlieren Photograph Showing Model A at Mach 13, a = +10°,

& = 0, and Re/ft = 1,2 x 103

Fig. 32 Schlieren Photograph Showing Model A at Mach 19,
& = 15°, and Re/ft = 0.8 x 103
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Fig. 33 Schlieren Photograph Showing Model A at Mach 19, a = 0,
5 = 45°, and Re/ft = 1.3 x 103
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Due to printing defects, Figs. 31, 32, and 33 were
rendered without the flow detail that was present in the
original schlieren pnotographs, To make these figures

meaningful, a new printing was made and is submitted herewith,

Air Force Flight Dynamics Laboratory
Research and Technology Division
Air Force Systems Command
Wright-Patterson Alr Force Base, Ohio




= Fig. 31 Schlieren Phetograph Showing Model A at Mach 13, a = +10°,
6 = C, and Re/ft = 1.2 x 105

o

Fig. 32 Schiieren Photograph Showing Model A at Mach 19, a = +30°,
& = 15°, and Re/ft = 0.8 x 105
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Fig. 33 Schlieren Photograph Showing Model A at Mach 19, a = 0,
5 = 45°, and Re/ft = 1.3 x 107




