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FOREWORD

This report presents the results of a portion of the

experimental program for an investigation of hypersonic flow

separation and control characteristics conducted by the

RLsearch Department of Grunmman Aircraft Engineering Corporation,

Bethpage, New York. The work was partly sponsored by the Flight

Dynamics Laboratory, Research and Technology Division, Wright-

Patterson Air Force Base, Ohio, under Contract AF33(616)-8130,

Air Force Task 821902. Mr. Donald E. Hoak was the Air Force

Project Engineer for the program.



ABSTRACT

This report oresents heat transfer and pressure distributions
for hypersonic f'w-.,n-3 ahead of ramps, over expansion ccrners, and
past fin-plate co,'-inations. TNo basic models were used for these
experiments: l) a flat- plate- with a full span remp (trailing-
edge flap) on one su, face and an expanslon corner on the other,
and 2) a f.at plate vith wedge shaped fins mounted on the upper
surface and an expanciýn ac. .on the lower surface. Both sharp
leading edge models were test-- in the Grummei Hypersollic Shock
Tunnnel at vach 13 and 19. The plate-flap model was tested at
S= -150 to -30*, with flap deflections from 00 to 450,
at Reynolds numbers per foot of 0.8 x 105 to 1.4 x 105 at
Mach 19 and of 1.2 x 105 at Mach 13. The fin-plate model was
tested at e( = 0 only, with 15 degree wedge shaped fLns having
two different heights at a Reynolds number per foot of 2.. x
105 at Mach 13 and of 0.8 x i05 at Mach 19.

This technic-1 documentary report has been reviewed and is
approved.

S..W. A. Jr.
Colonel, USAF
Chief, Flight Control Didsion
AF Flight Dynamics Laboratory
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The G-rimn~n Research Department has been investigating
hypersoniic flow separation and the. effectiveness of controls
in separated flow zontes, Vie ef~perimental. effort involved
testing four basic configurations in the Arnold Enginee.ring
Develop'wett Center (AEDC) Tunnels A, B, and Hotshot 2, as well
as in. the Grummmn Hypersarnic Shock Tun~nel (CaST). Eleven
distinct mnodels were built in order to accommodate pressure,
heat transfer, and force measurements as well as to meet the
requirements ofs. the various facilities. Sketches of the con-
figurations, along with some pertinent remarks for the over-all
program, are shown in F~ig. 1. The four basic configurations
are labeled A, B, C, and D. Configurations A and B were designed
prinlari-Uily to study flow separation, while configurations C and D

'.1 e-'Igned priLmarily to provide controls information for
typical Ibyt-e.-stnL; flig-'a configurations. Detailed design in-
formation and test plains are given in Ref. 1.

This report deals with configurations A and B and presents
pressure arid be-at transfer data that were obtained in the
Gruinsian. Hypersonic Shock Tunnel at nominal Mach numbers 13. and
19 during early 1964. The models in this tunnel entry are one
hallf scale of the ones that were tested at Mach numbers 5 and 8
at AEDC.

The purpose of "the tests reported here is twofold: first
to generate erxperimental information at Mach 13 and 19, and
second to provide possible guidelines for extending the Mach 5
and 8 data to higher Mach numbers. Results for the over-all
prograrn will be presented in a forthcoming final report. Two
rans were made using Kryion white enamel as a heat sensitive
paint and the results are discussed briefly. Schlieren photo-
g-raphy wa:s employed and some typical photographs are presented.

Manusc ript releasecI by the author Au.=~u 1964~ for publication as
an FDL Teellnnial Docuinentary Report.
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Dimensions, pressure tap, and thermocouple locations as
well as coordinate axes definitions for model A are given in
Fig. 2. Instrumentation coordinates are given in Table I.
Model A has a six-inch square planform and a nominally sharp
leading edge (350 included angle). The upper surface was de-
signed for the study of the flow ahead of ramps and the lower
surface for the study of the flow over 400 expansion corners.
The trailing edge flap is of 25 per cent chord and is shown in
Fig. 2 for the three flap settings studied in this tunnel entry.

Model B is pictured in Fig. 3; dimensions, instrumentation
locations, and coordinate axes definitions are given in Fig. 4.
Instrumentation coordinates are given in Table II. The body of
model B has a six-inch square planform with a trapezoidal
profile and is one and one half inches deep. The lower face of
the body intersects the upper surface forming an angle of 30'
at the leading edge. The leadinr edge of the model and the 30°
expansion corner on the lower surface are machined sharp. A
small, sharp leading edge fin is mounted symmetrically about
the centerline on the flat plate upper surface of the model.
The wedge shaped fin has a semi-vertex angle of 150. An attach-
able fin portion provides an extra fin configuration of 2-inch height.

TEST CONDITIONS

Model A was tested at angles of attack of -15* to +30c,
referenced to the upper flat plate surface. The convention used
here is that compression of the upper surface indicates positive
angles of attack. Model B was tested only at zero angle of
attack, also referenced to the upper flat plate surface. The
flap deflections for model A were 0, 15', 300, and 450; model B
was tested with two wedge fins separately.

Both models were run at nominal Mach numbers of 13 and 19.
The range of free stream Reynolds number per foot was from 0.8 x
105 to 2.4 x 105, A detailed presentation of the test program
and corresponding test conditions are shown in Table III. A
number of runs were repeated and are so indicated in the table.

The free stream conditions shown in Table III are those
obtained at the leading edge of the model. These conditions are
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not duplicated exactly from run to run and are thus indicated in
the table. Useful test flow durationts of approximately 3 milli-
seconds were obtained for these conditions. Furtber, because
the GHST has a conical nozzle, the free .tream conditions vary
in the test section along the tunnel centerline. Distributions
of the free stream static pressure, temperature, and Mazh number
along the tunnel centerline are plotted versus axial distance
downstream of the nozzle exit in Figs. 5 and 6. A more detailed
description of the facility is given in Ref. 3.

DATA REDUCTION AND ACCURACY

Pressure and heat transfer data were reduced to the standard
coefficient forms presented herein by using reference "free stream'
conditions. These were taken as those at the leading edge of the
models.

Measured pressures p were reduced to pressure coefficients,

p - p
C - C

p %

using the reference free stream values of the static and dynamic
pressures, pO and q .

Aerodynamic heating rates 4 were presented directly by
the heat transfer gauge instruments (from measurements of the
transient wall temperatures T w). The heating rates were non-
dimensionalized in the form

Nu 4W 1~co 1 0

where Nu is the Nusselt number, x is the streamwise distance
from the leading edge to the heat transfer gauge* (see Figs. 2
and 4), and Rex is the Reynolds number based on distance x.

For model A, x is the running length at all flap settings while
for model B, x is a projected length.

3



For each test run, the values of k , pL, U"', and . (the

thermal conductivity, density, velocity and viscosity of the
free stream flow respectively), were calculated at the model's
leading edge station. Values of k and Re 0/ft are given
in Table III for each test run. For the low temperature encoun-
tered in these tests, the conductivity k was calculated by
assuming a Prandtl number equal to 0.73, a specific heat at
constant pressure cp = 0.24 BTU/Ilbm OR, and a viscosity depend-

_2.21 T3 /2 -
ence 2.21 T + 2 1 x 10-8 slugs/ft sec.en ` - T + 178.6

Pressures were estimated to be accurate to within 10 per
cent of their measured values. In addition to these estimates,
the data on the lower surface of both models provide a certain
degree of repeatability, since the flow there should not be
influenced by geometrical changes on the upper surface. The
accuracy for the heating rates is not as good as for the pressures.
This is to be expected for a facility of small duration testing
time. The repeatability in most cases is good and within a 10
per cent range. In some instances, and particularly in the
interaction zone of model B, repeatability of less than 10 per
cent was not always obtained. This might very well be due to
the sensitivity of the corner flow and not necessarily to
instrumentation defects. Occasionally the oscilloscope trace of
a point was very "noisy" and difficult to read. Such points
have been omitted in the presentation of the data. Lastly, we
mention that artificial errors may be introduced in the process
of nondimensionalizing the data, since the free stream conditions
can very well vary.

PRESENTATION OF RESULTS

The presentation of the data differs distinctly for the two
models. For model A the pressure and heat transfer rates are
plotted versus a nondimensionalized streamwise distance S. For
the upper surface, the parameter Su is defined as the ratio of
the chordwise surface distance of a point from the leading edge
of the model to the surface length of the model. For the lower
surface, the parameter S is defined as the ratio of the chord-
wise surface distance of a point from the expansion corner to the
true length of the model aft of the expansion corner. With this
artifice we have presented the data for both the upper and lower
surfaces on the same graph page.
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For model B we have presented the data at two chordwise
stations versus the semispan Y and wedge height Z. The
Nusselt number for this model is based on the x projection of
a point. There is a degree of arbitrariness in using the pro-
jection, especially for the wedge, and we do not attribute any
physical significance to this presentation.

The data for model A are presented in Figs. 7 through 22;
those for model B in Figs. 23 through 30. The symbols are
defined in the figures. Whenever a run was repeated the symbols
are flagged, and filled symbols are used whenever the Reynolds
number per foot was higher than 105. Schijeren photographs
were obtained throughout the program; some are presented in Figs.
31, 32, and 33.

In Ref. 2 we reported on the use of Krylon white enamel as
a heat sensitive paint and recomended its use for preliminary,
qualitative investigations of complicated configurations, which
have many areas of interaction. A winged re-entry configuration
was tested in the AEDC Hotshot 2 tunnel and clearly defined
regions o• 'reased aerodynamic heating were observed. Two
runs wert in the present test ser 4 es using the Krylon white
enamel paii.. Photographs of model A before and after the run
and model B after the run are presented in Figs. 34, 35, and 36.
Although hot areas can be seen in these pictures, there exists
a lack of detail, which can be attributed in part to the con-
siderably shorter duration of the GHST test runs. The use of
Krylon is best employed for preliminary analyses of compclicated
configuratictis in test facilities having longer test durations.
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TABLE I

INSTRUMENTATION COORDINATES FOR MODEL A

Pressure Orifices Heat Transfer Gaugees

Tap x y Gauge x y

1 2.43 -. 250 1 2.43 .500

2 2.93 -. 500 2 2.93 .250

3 3.42 -. 250 3 3.42 .500

4 2.688 .250 4 2.688 -. 500

5 3.188 .500 5 3.188 -. 250

6 3.688 .250 6 3.688 -. 500

7 4.188 .500 7 4.188 -. 250

8 4.750 .250 8 4.750 -. 500

9 5.25 .500 9 5.25 -. 250

i0 5.75 .250 10 5.75 -. 500

9



TABLE II

INSTRUMENTATION COORDINATES FOR MODEL B

Pressure Orifices

Tap xin Yin zin

1 .875 0 0
2 1.375 0
3 1.875 0
4 3.000 .462
5 3.000 .900
6 3.000 1.650
7 4.500 .862
8 4.500 1.300 0
9 3.000 - .400 -1.500

10 3.250 .400 -1.500
11 3.000 .26 .312
12 4.500 .67 .312
13 3.000 .26 337
14 4.500 .67 .937
15 4V500 .67 1.437

Heat Transfer Gauges

Gauge xin Yin Zin

1 1.875 .900 0
2 1.875 - .900
3 3.000 - .462
4 3.000 - .900
5 3.000 -1.650
6 4.500 - .867
7,1 -1.300 0
8 .67 .312
9 1 - .67 .937

10 4.500 -67 1.437
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TABLE III

PROGRAM SUMMARY -!D TEST CONDITIONS FOR MODEL A

Run No. a 5 M Re/ft x 10- 5  TOR T R P x 10 4  px 10 7

deg deg

125t 0 30 13.73 1.19 3650 105.43 18.16 14.47
1255 0 ' 13.73 1.18 3495 100.25 16.72 14.01
1256 0 j 13.73 1.18 3479 99.72 16.62 14.00
1409 -15 30 13.83 1.19 3170 88.42 13.94 13.24
1413 0 13.83 1.21 3022 83.81 13.03 13.06
1394 0 20.50 1.45 3697 48.69 4.68 8.07
1395 , 15 1.19 4660 64.84 5.90 7.64
1397 -15 30 1.39 3957 52.79 5.07 8.07
1400 -15 45 20.50 1.32 4232 57.32 5.44 7.98
1265 -10 30 19.24 0.88 3517 52.08 3.33 5.37
1266 -10 30 0.86 3657 54.50 3.50 5.40
1267 -10 45 0M84 3791 56.84 3.66 5.41
1263 - 5 30 0.87 3607 53.6' 3.44 5.39
1264 30 0.88 3529 52.27 3.35 5138
1281 30 0.84 3839 57.70 2.71 5.41
1282 - 5 0 0.84 3792 56.86 3.66 5.41
1257 0 30 0.87 3592 53.36 3.42 5.39
1269 45 0.84 3842 57.76 3.72 5.41
1270 45 0.85 3763 56.36 3.63 1
1271 15 0.84 3849 57.88 3.73
1272 13 0.84 3806 57.11 3.68
1275 0 0.85 3762 56.34 3.63 5.41
1276 0.86 3676 54.83 3.53 5.40
1380 y 19.24 1.44 3721 49.06 4.72 8.08
1382 0 20.50 1.22 3918 52.16 4.37 7.03
1384 15 1.17 4047 54.25 4.44 6.87
1385 1 30 1,17 4109 55.27 4.58 6.97
1339 0 45 20.50 1.43 3785 50.06 4.82 8.08
1260 10 30 19.24 0.86 3646 54.31 3.49 5.40
1277 0 19.24 0.85 3772 56.51 3.64 5•.41
1406 • 45 20.50 0.80 3582 50.41 2.83 4.71
1408 10 15 20.50 0.81 3473 48.65 2.72 4.69
1417 30 0 19.77 0.79 3723 52.74 2.97 4.73
1418 30 15 19.77 0.82 3357 46.78 2,60 4.66

PROGRAM SUMMARY AND TEST CONDITIONS FOR MODEL B

Run No. a Wedge M Re/ft x 10-5 T.R T R P x 10 4 107

degR
1451 0 Small 13.83 2.35 3334 93.64 29.97 26:8S
1450 Small 19.77 0.82 3373 47.05 2.61 4.67
1447 L1rge 13.88 2.33 3412 96.15 30.91 27.01
1148 1 13.88 2.22 3780 108.30 35.22 27,31
1446 19.77 0.83 3321 46.22 2.56 4.65
1449 0 Large 19.77 0.81 3463 48.49 2.71 4.69
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ca....... Fl~t_-s ahead of e R~rp

fore aind aft flaps, end plates
3 separatf models;

"- L Pressure and heat :ransfer, AEDC Tunnels
- -A & 8. M -5 & 8, results in R~efs. 5-7

"2) Controlled wall temperature, pressure,
"AEDC Turnel B, M - 8, results ir. Refs. 6 and 8.

- 3) Pressure and heat transfer, Grumman Shock
runnel, M H 13 & 19, results herein.

Wedge - Plate Interaction
Snall and large fins with sherp
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- , .. 1) Pressure and heat transfer, AEDC Tunnels
... A & B, M - 5 & 8, re-slts in Refý, 6,7,9 and i0.

-" .-"' - /2' Pr.Ptbsnrc an
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Fig. 3 Photograph Showing Model B with the 2 in. Wedge-Fin
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Fig. 31 Schlieren Photograph Showing Model A at Mach 13, a +10',
5 = 0, and Re/ft = 1.2 x 105

Fig. 32 Schlieren Photograph Showing Model A at Mach 19, a = +300,

5 - 15', and Re/ft = 0.8 x 10 5
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Fig. 33 Schlieren Photograph Showing Model A at Mach 192 a 0,

= 450, and Re/ft - 1.3 x 105
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Fig. 34 Experiment with Krylon White: Model A, Fu 45", Before Run
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M 19, and Re /ft 0.8 x 1
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Fig. 36 Experimnent with Krylon White: Model B. Large, Blunit LE Wedge,
a = 01 M ce 13, and Re/ft = 0.3 x10
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Fig. 31. Schlieren Photograph Showing Model A at Mach 13,, a =+100,

6 0, and Re/ft =1.2 x10

Fig. 32 Schlieren Photograph Showing Model A at Mach 19, a =+3002
b 15", and Re/f t =0. 8 x 105



Fig. 33 Schlieren Photograph Showing Model A at Mach 19, a 0,

6 450, and Re/ft = 1.3 x 105
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Fig. 31 Scflieren Photograph Showing, Model A at Mach 13, a =+10',

6 0, and Re/ft =1.2 x 105

Fi~g. 32 Schlijeren Photograph Showing Model A at Mach 19, a +300S
15*, and Re/ft =0.8 x10



Fig. 33 Schlieren Photograph Showing Model A at Macb 19, a = 0,

= 450, and Re/ft = 1.3 x 105
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