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INTRODUCTION AND SUMMARY

In designing guidance or detection systems, an important aid
towards optimal or quasi-optimal design is a knowledge of the proper-
ties of thhe background in which the system must work. The present
paper is concerned with the effect of background gradients on infrared
systems that use a rotating reticle in the focal planc of a scanning sys-
tem as an aid in discriminating against background signals in favor of

""" desired or target signals.

The background radiation is regarded here as a two-dimensional
random function of space or angular variables. (The idea of treating
the background in this manner is not original with the writer but has
appeared in the works of R. C. Jones and perhaps others. The writer
knows of much important work by Dr. Jones in this field.)

The scanning and rotating action may be said to convert the
background or input random process or ''noise’ into a new noise pro-
- @ cess at the output side of the reticle. If this output noise can be de-

scribed in terms of an output correlation function or power spectrum,

it becomes possible, in a limited sense, to calculate the effect of pro-
cessirg by photoconductive cells, amplifiers and the like. Thus, the
L system analysis stage of design may be facilitated and possibly a little
o progress made toward more sophisticated solutions of the design syn-
thesis problem.

In this paper, expressions are derived for the output autocorre-
lation quantity y(t) y(t +T:> where y(t) and y{t + t) are the reticle out-
puts at time t and t + 7 redpectively, and < >refers to an ensemble

average. If the background random function may be regarded as a
stationary random function, this autocorrelation function may be con-
- wverted by Fourier transformation to an output power spectrum.

The analysis, which is thought to contain some new results, has
the advantage of considerable generality and, at the same time, has
. sufficient flexibility to allow computation in simpler cases. The work
aerves also to clarify the roles of the pertinent variables in the over-all
problem. If fullest generality is maintained, the expressions obtained




can be converted into numbers only with the aid of very extensive com-
putational aid. In certain cases, however, the expressions may be
reduced to relatively illuminating forms, and the computation required
may be reduced to a moderate amount.

The form of some of the results obtained serves to point up the
type of background measurements that would be necessary for more
accurate estimates of the outputs. The autocorrelation function of the
background enters, in a fundamental way, into the expressions; it may
therefore be advisable to design the measurement program to measure
directly this correlation function. For some back;grmmd "bucking' or
""suppression’ schemes, success in cancelling out background depends
ultimately upon the existence of relations or, somewhat less generally,
of cross-correlations between the random processes in the various
"eolors.' This would suggest the investigation of a program of measur-
ing these cross-correlations,

A separate study (Appendix B) is made of the problem of studying
background by a technique of circular scanning; that is, scanning the
background with a small field of view that nioves repeatedly around a
circle, and relating the Fourier coefficients of the resulting periodic
function to the power spectral or correlation properties of the back-
ground., An analysis is made of the processes required to effect this
conversion of the measurement data. The limitations of this procedure
are such as to emphasize the desirabiiity of having direct measurements

of the correlation function.
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( BASIC FORMULATION

Consgider an optical system with a rotating reticle of radius a, in
the focal plane, scanning at time t a portion of the background in a cer-
tain region of the spectrum e.g., the neighborhood of 2 microns, Use a
set of polar coordinates (r,8) {(Figure 1) to describe position on the reticle,
Since that portion of the background in the instantaneous field of view is
imaged in the reticle plane, we may also consider r, 8 to be the angular

—— polar coordinates of a point in the background. Let the transmission

function of the reticle be R(r,8), and the radiance function of the back-

ground to be B(r,8). Then the expression

a 2w
y{t) :f drf dé r B{r, 9) R{(r,6) , (1)
0 0

may be regarded as proportional to the output of the reticle at time t, !

The factors of proportionality omitted involve the size of the collecting

system and the transmission factor of the optical system. Henceforth
we shall refer to y(t) simply as the ""output."

Let the scanning system move with velocity v in the direction of
the reierence angle 8 = 0 (Figure 1) so that at time t + r the center of the
field of view has moved an angular distance vr in the direction of 8 = 0.
Let the coordinate system translate with this scanning motion and denote
the coordinate system for the translated reticle by {r',8'). The output at
time t 4+ v is

a 2n
y(t + 7) =f dr'f de' r' B(r',8') R(r',0' - w1}, (2}
0 0

l‘or this to be strictly true B(r,8) should not be the true radiance
rhction. but the radiance function as modified by the aberration of the
. The analyais applies, strictly speaking, to this modified defi-
mition of B(r,0). If the aberration is small the two quantities are almost
“#he same.

- Amother modification is necessary if the image of the field of view does
't coincide with the reticle circle, or if there is another significant

AR sion function of (r, 8) in addition to that supplied by the reticle.

x such a case, the work through Equation (4) would be unchanged ex-
Sept that B(r, ) would be multiplied by an "aperture function" say A(r, 6).
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(:" since the reticle, which is rotating with angular velocity w, has rotated
through the angle wr while translating through the distance vr.
Let us furm the product
a et ! 2n ~2n t ' L ; J A
yl(t)y(t + ) :f drj dr’ f ae f 8% rrR{x, ®)R(r', 6'- ur)B(r, 0)B(r', 6')
0 0 Z0 Jo (3)

— Now the ensemble average of y{t] vit + 1}, that is the value of

y(t) y{t + 7} averaged over various samples of the background, is

\ a -~ & /"2" 27\'
é(t)}’(t + 'ry=f Ar dr' 48 f do’' rr' R(r,8)R(Y, 8" - u7)<B(r,9) Bi{r', 0
0 .0 -0 40 (4

where the brackets<> mean ensemble average. The quantity <y(t)y(t + 'r>
is the autocorrelation function of the reticle output y(t). If the background
random function B{r, 8) rnay be regarded as a '"stationary" randoin function
that is, roughly speaking, if its average properties do not vary with® {r,8)

Oover a region interest, then we can define a useful ''‘power spectral

density’ or "power spectrum’ which is the Fourier transform of

('i(t)y(t + f)> . The effect of subsequent processing upon the reticle output
may then be easily computed in a limited statistical sense,
The central goal of our analysis is then to evaluate <y(t)y(t + 1-)>

from Equation (4). The background quantity that we need to compute this
i <B(r. d) B(r',O')> which is the correlation function of the background.

Now, in particular cases, even if B(r, 0) may be regarded as a stationary

function, it may happen that <B(r. 0) B(.r', 6')> must be regarded as a

function of the vector distance between the points {r,8) and (r',8'). If this

!;or 2 more detailed mathematical description of a stationary random
'goccu the reader is referred to the extensive mathematical literature
| the subject of random functions.




is true then the evaluation of Equation (4) will probably be extremely
difficult (but still possible with the aid of the high-speed digital com-

puters). This case will .ot be considered further here,

ADDITIONAL ASSUMPTIONS

In order to make the general result of Equation {4} more amen-
able to further analysis, we shall make some simplifying assumptions.
An assumption that appears to be useful, is that the autocorrelation func-
tion <B(r.8) B(r'.ﬁ')>is a functiony«(d) only of the scalar distance d
between (r, ) and (r',9'); in this case we speak of the background random
function as being isotropic. With the aid of Figure 1 it is seen that the
distance d is given by

dl

[}

{r'cos® + vt - r cO8 8)2 4+ {r'sinB' - rsins)?‘

1-"2 + rZ - 2rricos(@' - 0) + 2vr(r'cos8' - rcos8) + (V*:-)2 . 15)

With this assumption, Equation (4) takes the form

a afrZw Far4
(thy(t + T) =f [ ; drdy'dedo'rr' R(r,8) R{r',8' - wt) ¥id) . (4a)
Q > o/0/0 “0 14

Another simplifying, but useful, assumption is that R(r,9) is a
function only of 8§, There are cases when reasonably simple results can
be obtained for more general functiong R(r,©), but our illustrative ex-
amples will be limited to the simpler case. Another special assumption
of useful scope is that the scanning speed v is small compared with the
speed of most points of the rotating reticle, so that the error introduced
in setting v = 0 in Equation (5) is not serious. 3 The important simplifi-

cation resulting from letting v = 0 is that d becomes a function of 6' -~ 6.

Tlncidentally, for the case in which the field of view is rectangular and
the reticle motion consists of parallel bars sweeping across the field of
view, the assumption v = 0 is not necessary; i.e., results similar to
those of the subsequent example may be obtained even if v # 0,



A CASE OF INTEREST

With these assumptions and the notation Q(r) EQ{_t) yit + TD :
Equation (4) becomes

a a ron an
Qi) =f drf dr'j def d8' rr’ R{9} R{8 - wr) ){fid} ,
0 0 ¢ 0
where
d = [r?' + r‘z - 2rr' cos{@' - 9)] 1/2 .

The expression {€) has some interesting properties. First, let

us rewrite it as
2 e
i r) =f dé‘[ de' G{8' - 8} R{6) R{6' ~ wy) ,
1] 0

where a a -
' - N 2 2 , \ 1 1/2
G(8' - 8) = dr dr' rr -f» r'“+ r” - 2rr' cos{6' - 8)’ .
0 0 J

it will be convenient to write u for 8' - 8, giving

a a
G{u) :f drf dr' rr'u,[r'z' + rz - 2rr' cos u} 1/2 .
0 0 FL J

An important result relative to Equation {8) may now be stated:
Q(r) may be written as

2w
Q) =f du G{u + wr) Py},
0

where

2w
P{u) =f dé R(6) R(® + u) ,
0

{7)

(8)

{9}

{3a)

(10)

(11)




The method by which this result was obtained is given in detail in Appen-

dix A. The "intuitive' significance of Equation (10) and (11) is as follows:
The form of Equation {11} indicates that P(u) is a type of correlation
function to be called hereafter the "reticle correfsztion function.” Qir) is
the correlation function of the ovtput as previcusly discussed. Equation
{10) expresses Q(7} as a convolution of G{u) and P{u}. We may therefore
regard Gi{u} as another correlation function, It is the correlation function
of the background as "seen’ by the rotating reticle; it may be called the
‘noise correlation function. nd

Since Q(r} is an autocorrelation function, its Fourier transform
is a "power spectrum.' Taking the transform of Equation {(10) we have an
example of the well-known result that the Fourier transform of a2 corre-
lation integral is the product of the Fourier transform of the convolved
members.

Of course, since P(u) and G{u) are both periodic in u, Q{¥) is
also periodic with the time period 2n/w. Thus the power spectrum is a
line spectrum at frequencies which are multiples of w/2w.

The Fourier transform of Equation {10) is found without difficulty

to be
S * .
wah) -:wG (/w) W (f/w) Wo (f/w) ; (12)
where © ‘
WG(z) z f G(\.\)e-zmz"l du , (13)
-
@ 2wi
Welz) = f R(u)e “™*% qu , (14)
-

ZIi v had not been set equal to zero, the noise correlation function would
not exist in this form, namely as a function of 1 = 8' - 0. For the rectang-
ular geometry noted in footnote 3, the noise correlation function exists as
a function of x' 'x + vt where x' and x are coordinates which are rectang -
ular analogues of 8' and @, and vt has the same meaning as above.
Relations similar to Equation (10) and (11) also hold for this rectangular
case,



and

wf) = ' Q(rye 2T ap (15)
- @

The symbol * denotes the complex conjugate.
Since Gl{u) is an even {function of u, W;.'{z} = WG(z), and we may

as well write

1

Wolf) = I Weit/e) iWR(f/u)}Z . (16)

Since G{u), R(u}), and Q{~v) are periodic functions, the definitions
of Equations (13), (14), and (15) need to be properly interpreted. Using

a delta function notation, it is easy to show that

[e0)
Wiiz) = 5 '8(z-n/f2w) uglz) . (13a)
nz - oo
E where
. .
uglz) = 1/2nj: Glu)e™ 2™2% g | (13b)
s o]
Welz) = n;m &(z - n/Zw)UR(z} , (14a)
where
" .
Uglz) = 1/znfz R(u)e 2™%% gy | (14b)
0
XN
W () = > bt - nm/Zﬂ)UQ(f) , (15a)
n=-a
2r/w .
Untf) = “/Z"J’ Qrye 2MHT 4o (15b)
0




Thus WQ(f) is a delta function or line spectrum. It is non-zero
only for integral multiples of w/2n. The 'line" character of the spectrum
is due to the approximation v=0. If v is slightly different from zero,
the lines are changed to narrow bands.

Equation (16) or the equivalent equation (10} exhibits the power
spectrum of the output as a product of a ''reticle spectrum' and a "noise
spectrum' where the noise spectrum is the Fourier transform of G(u).
We see then that once G(u) or its transform is computed, the cutput spec-
trum may be found either in terms of the convolution integral {10) or the
spectral product (16). The "'reticle spectrum"” WR(z) or the "reticle
correlation functior"” P(u), is easy to obtain in terms of the reticle geo-
metry, and the definitions of Equations {13) to {15b). Thus, once G{u)
is found, the output for various reticle functions is simple to compute.
The problem of obtaining G(u), or its transform WG(z) by measurements
or calculations, is therefore, of key importance. This problem we now

examine.

DETERMINATION OF NOISE CORRELATION
FUNCTION OR POWER SPECTRUM

From Equation (16) one sees that by measurements of WQ(f), the
power transform of Q(T}, and measurements or calculations of WR(z), one
can be division obtain WG(z), the transform of G{u}. This, in principle
is a valid method of obtaining WG(z), and indeed may turn out to be the
most practical method. The reticle function R{(@) may be chosen for con-
venicnce. Reticle functions will generaliy be such that WR(z) is zero for
certain values of z, s0 several reticle functions may have to be used to
get enough information. One may also consider using a ''delta function"
reticle (single narrow transmitting slit) to pass "all' values of 2. The
results obtained for WG(z) wiil be valid only for the particular valuc of a
used in the measurements, as reference to Equation (9a) shows. Thus
one would have to repeat the process for each value of a considered.

Another, somewhat more fundamental approach 18 possible which

we now wish to study.




)3
(:5( : Let us consider the noise correlation function G{u), as defined in
T Eguation (9a),

Glu) = f f dr dr’ ry'f [’rz + 2% L 211 cos u] (9a)
: _ 0 0

From the form of this integral we see that G{u} is determined by
the values of y(d} for the range of d between 0 and 2a. {If v is not

sero, reference to Equation (4a) or Figure t shows that values of yfor

a somewhat larger upper value of d are needed for the computation of
Q(r). This suggests that direct measurements {/{d)} for such ranges
{rather than measurements such as have been made up to the present, of
~ the power spectrum) might be undertaken. For the purpose of obtaining,
. through expressions such as have been derived, insight into the ovtput
noise of the reticle, the correlation function is the guantity most directly
needed. In principle one can Fourier-transform spectral measurements
. into correlation information, but in practice large errors may be intro-
duced in attempting to transform the necessary incomplete measurements.
To proceed further on the theoretical side, we may try to find
plausible forms for y(d), which may be in agreement with the measure-
hents so far, and see how these influence G{u) and its transform. As
wmentioned above, the limited amount of available experimental material
tmaring on this question has been expressed in terms not of ¥, but of its
imricr transform. Thus our comparisons at present between theoreti-
I:ﬂ expressions and experiment can be made most conveniently in terms
aﬂfﬁ;‘_&‘ power spectra. The two-dimensional power spectrum Wik , k )
two-dimensional correlation function ¥ (x y) are Founer trans—
Ml of each other. That is,

a© ao - -
(k,,ky) = Im Im WB(x,y) exp !.-Zwi(kxx + kyy)J dx dy , {(17)
4 ® )
1atx ) = f f Wtk k) exp ' 2mifk x + kyy)j di dic . (18}
. - Q0 -

10
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The writings and measurements of R. C. Jones and others, including
measurements of sky background at The Ramo-Wooldridge Corporation,

suggest the form

) AREL ,
Walk k) = M|k +k . (19}
x' Ty Lx y
where M is a constant, at least for fuirly high wave numbers (number of
waves per radian). More exactly, the measurements so far are not incon-

sistent with this form. However, this form is not acceptable for low wave

numbers, because the integral

f f {:k + k _J-% dk dky . (20)

that is, the integral of the spectrum over all wave numbers, diverges.
The infinite value is due to the pole at kx =k =0,

A way to adjust Equation (19) sc as to eliminate this trouble and
still not be inconsistent with the experimental data, has already been

suggested in the writings of R. C. Jones. This is to use the form

Walk, . k) (21)

i
2
g
[ o]
-
+
=

If aZ is not too large, this preserves agreement with the experi-
mental results as out subsequent discussion will show.
First, let us obtain the correlation function associated with Equa-

tion (21), we must evaluate the Fourier integral,

0 o F, o o, ¥R .
Y(x.y) :Im Im Mg—a + kx + ky] exp [__Zm(kxx+kyy7_] dkx dky

(22)

11
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This turns out to be

Vixy) = DM orirad (23)
where
d = (x4 y?)

3)1/2

and thus indicates that the choice of the form (21) is consistant with out

This result shows that ﬁx, y) is a function only of d= (xz+ y

previous assumption of isotropic background. This property of the cor-
relation function {dependence upon (x2+ vz)l/2 can be proven to hold for

power specira of the form

N . 2 2
W(kx. ky) = function of (kx + ky) . (24)

The measurements of W(kx. ky) that are known to the writer really
measure the one-dimensional power spectrumm — more precisely, the one-
dimensional Fourier transform of the correlation function. For the form

{23), this one-dimensional transform is

@ .
W_(k} = ™ _-2nald o 2midk
B - |
(25)
M i

The function (a2+ kz)- 1, a normalized form of Equation (25), is
plotied in Figure 2, versus k for various values of . It is seen that
ssymptotically for high wave numbers, this spectrum follows a k-Z law.
The value of @ used determines how the curve deviates from the (-2)
Iaw. The several sets of measurements results that have been seen by
the writer {(schematically indica:ed by dashed line in Figure 2), are not
inconsistent with this type of funciion, but it is difficult to make a

12
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FIG. 2 THEORETICAL ONE-DIMENSIONAL POWER SPECTRUM.
DASHED CURVE INDICATES APPROXIMATE SHAPE OF
MEASURED POWER SPECTRA (LEVEL ARB'TRARY).




judgement as to what the best value of ¢ would be. Perhaps various
background conditions (which give widely differing absolute levels of
background) all give the same asymptotic { 2} law, but vary in their
effective values of g¢. If all that is known about the measured spectrum
is, for example, that it follows a fairly accurate {-2) law in the range

say above 10 waves per radian, then it is seen that any vzlue of o up to

-about 5 ig conszistent with such measurements. This suggests that since

the high k part of the spectrum has a form independent of o, some of
the results of the subsequent analysis of output noise may also be inde-
pendent of 9. As measurements become more complete, it may be pos-
sibie to choose more accurately between values of g or perhaps, to pick
a more accurate form for the autocorrelation function. It is not unlikely
that as measurements of background become more accurate, the (-2} law

Zrad may have to be modified. Measurements aimed

and the form e
at directly measuring the background correlation function could perhaps
settle this point more quickly than the spectral measurements. For ex-
ploratory purposes, however, it seems to be of some value to study
G{u) and its Fourier transform for a range of values of a@. At the time of
writing. the function G{u) and its transform are being numerically studied
For the time being, the Gaussian form exp(-p dz) for the correla-
tion function, which is often a likely candidate in similar problems has
been eliminated from consideration because the range of the effective (-2)
law, which seems to be an octave or more in the known measurements,
cannot be fitted very well to the transform of exp(-p dz) which is of the
form exp(-qkz); p and g are constants in the above; d and k have signi-
ficance similar to that in Equations (22) and (25).

'STUDY OF A PARTICULAR BACKGROUND CORRELATION FUNCTION

Studies and computations are under way of the properties of G(u)

 and its transform WG(z). At the time of writing these studies are in-

-complate, but a few preliminary remarks may be made.

Substituting the form (23) into the expression for G(u), we have

a
Glu) = ™ rr' e-erqd dr dr' . (26)
> Jo Jo

13




Introducing the dimensionless parameters

T rt N
s = X < =X, 2nga = b , (27)

we obtain

{ 1 12
2
F (u) = G(‘;“’ = at fg dx, )g dx,x, %, exp [—h(xf-&-xz - 2%, x, cos u) ](zs)

where

Fh(u) is the significant function to be studied. The parameter h may

be written as

a

h = I;ZTIQ

Now 1/2na may be interpreted as a ""correlation length, " that is, 1/2ua is
the value of distance d for which the (normalized) correlation function
e-Znad falls to one P of its peak value (which occurs for d=0). The
greater 1/2ma, the greater is the relative correlation of two points sep-
arated by a distance d. That is, the normalized correlation function falls
more slowly from its peak value for high values of the correlation length
1/2n¢. The parameter h is thus the ratio of the radius of the field of
view and the correlation length of the background. The significant quan-
tity affecting the properties of Fh(u) is seen from Equation (28) to be
this dimensionless parameter h. In addition, there is a scale factor of
a.4, which simply means that all other things being equal, the output noise
has a power level which is proportional to the square of the area of the
field of view.

The dependence of Fh(u) upen h and u is sketched in a purely
qualitative way in Figure 3. The range 0<u<2r is shown; Filu) is

periodic in u (a result of the assumption v=0). The behavior of the

14
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transform of Fh(u) will be very roughly as follows: The higher values of

h will yield a slower high frequency fall-off (more relative high frequency
content); but the range and extent of theae variations can only be obtained

from the complete study.

To obtain a rough idea of what values of h may be of interest, let us
imagine that the condition referred tc above holds, namely that the meas-
ured spectrurn follows roughly a (-2) power law in the range above 10
waves per radian; in the absence of further experimental details, any value
of o« up to about a=5, may provide a satisfactory fit. Let us take the
radius a to be 2 degrees. Then h__ = Zn‘aamax= 2w5{2n/180)= 1.1
The numerical work will cover values of h from 0 to 5.

Once Fh(u} is computed for a sufficient range of h, it will serve the
purpose of a "universal curve' applicable to any value of a and any reticle
function R(8). Its transform will likewise represent the power spectrum
of the noise as seen by any reticle function. By multiplying this transform
by the square of the transform of the reticle function, Equation {16), we
may obtain the spectrum of the noise output of the reticle. This may then
easily be combined with transforms of following stages.

This numerical work is only valid for the background correlation

-2npd

function e The method of attack, however, is still valid for any

improved background functions that may later be obtained.

15
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APPENDIX A

TRANSFORMATION OF A
CERTAIN INTEGRAL EXPRESSION

SN This appendix concerns itself with the transformation of

2 an
1 =f dﬁf de' G{e' - 8) R(9) R{6’ - wr} .
0 0

where Gi(x) = Gi{x + 2n)

and Rix} = R{x + 2%}
Introduce the change of variables s
u=8‘-u~r-—3: G=u+v+er
P or ¢ :
v=0'-u1+9; G=v-u+w'rf
? 2 -

The Jacobian of this transformation is

1/2-1/2
=1/2
1/2 1/2

| We then have (see Figure A-1 for geometrical interpretation)
EYRY 4n + u v +
21 = [ duG(u + ur)f dv R("‘ “)R( “)
2% -wr v =2wr=-u 2 2

27 - wy 4w - 20T - u v - + )
+f du G(u + m)f dv R( “)R(" =
- u 2 v 2

wT

Imtroducing the change of variable 2= - g we have
‘ 2



0 n 2n
g —»
FIG. A-1

GEOMETRICAL INTERPRETATION OF CHANGE
OF VARIABLE IN TEXT




¢ fdv riv- “)R(" + u) Zj:ls R(s) R(s + u) .
\ 2 2/

$6 that

- 2w
i= f du Glu + wt) ( ds R{s) Ris + u)

LW LT “wT-u
ZW-wr 2u~wr-u
*f du Giu + u'r)j ds R{s) R(s + u) .
~&T 0
Now
ri 2w
f ds R{s) R(s + u) = ds R(s) R{(s + u + 2n)
~WT=U ~wr-u-2w

“Wr-u
-f ds R(s) R(s + u + 2w) .
~wr-u-2w

Calling

2w
f ds R{(s) R(sa + u) ds = P(u) = P{u + 2w},
0

we have
-l 2w 1
f da G{u + wT) f ds R{(s) R(s + u + 2n)-P{u + Zv)J
-IW-WT -wr-u-2w )

-Wr 2w 1{
= f du G{u + 27 + w7) f ds R(s)R(s + u + 2m-P(u + 2m)i
Iy -2u-wT -wr-u-2w J

“2W-wT 2w ]
=f dv G(v + w7T) f ds R(s)R(s + v)-P(v)!
- T =-WT-V -
-wTt 27 !’ 2w 1
=f du G(u + wr) { R(s)R(s + u) ds - P(u)‘ .
“Wr -wT i
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so that

~wrd 2w FA
1 =f du G{u + w7 f R{s)R{(s + u) ds

WY wT-u

2T-wT-u 1
+f R{(s)R{s + u)ds - P(u)J
1]

~wrtlnw 2w
=f du G{u + w7) f R(s)R(s + u)ds - P(u)
-wT 2n

-wr+ 2w
=f du G{u = wr) P{u)
-

2w
=f du G{u + wr) P{u)
0

where

2n
P(u) =f R{s) R{(# + u) ds .
0
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APPENDIX B

ANALYSIS OF BACKGROUND MEASUREMENTS
WITH CIRCULAR SCAN

In connection with the study of the effect of rotating reticle systems

S upon background, there is at present an interest in a program of back-

ground “gradient” measurements in which the background is scanned with

Fourier coefficients of the periodic output are taken with the object of
relating these Fourier coefficienis to the properties of the background.
Operating under the assumption that the background is a stationary ran-
dom function, we give an indication of the kind of reductions nceded to
convert such data into a background pewer spectrum or correlation func-
tion.

EAPRESSIONS FOR GENEFERAL PATHS

Before specializing to the case of the circular path we present
‘some expresaions which are valid for general paths.
Let us assume that our instrument measures the radiance B(s) (1)

88 a function of the running angular coordinate s along the path, and

that this type of ocan is repeated over many similar segments of the
~ field, and that for each measurement along the path we obtain a set of
Fourier coefficients.

A typicai complex Fourier coefficient is
A .
Cn) = f B(s) e i2T(/A)s 4
A “0

‘where A is the length of the path.

footnote (1) of the main text.

 a smalil field of view moving repetitively around a circle of radius a. The

(1)
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The aquare of the magnitude of C(n) is

A A
Cn) CHn) = —5 f f e-iznn/ANe-p) g ) By 4 dp
Al Jo Jo

where n is any integer between -a and co.
We shall assume that the measurements give us the C{n} C¥{a}.

To obtain average data we average over many paths or cases.
We have

(2)

s A rA .
Dn = <C(n) C*(n)> = __1_2_ f f e-lZ'n’(n/A,(ﬂ"P, <B(S) B(p)> ds dp
A 0 0 .
(3)

™
wher / >denotes the average over many cases {stochastic or ensem-

ble average).

RESTRICTION TO ISOTROPIC BACKGROUND AND
CIRCULAR OR STRAIGHT- LINE PATHS

Further evaluation of Equation (3) depends on the assumptions
that are made on the form of <B(s) B(p) . Let us assume for the

<B(s) B(p)> = ¢(s - p) = ¢(p - 8)

i.e., that the average value of B(s) B(p) depends only upon the

moment that

difference between the running coordinates s and p. It will he seen
below that this assumption, which enables us to make progress iu the
interpretation of Equation (3), implies certain restrictions on the back-

ground and on the paths.

(4)
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gl

Withthis assumpticia, Equation (3) becomen

A pA
D_= _f_é_ L f; o-iZnn/ANB-R) 40 1 gy g

if now we change to the variables

s-p
s +p,

H

we obtain, noting that the Jacobian of this transformation is 1/2,

A 2A-}u! .
Dn ! f du r dv e—zZn(n/A) u o(u)
2a2 LA Nl

A .
- f (2a - 2}ul) ¢-iZm(n/A) u ¢lu) du

2a2 A
A
= L f (1 - ‘-‘E-t) COS Zmou ¢{u) du
A -A A A

Thus with the help of the assumption {4) we have reduced (3) from
& double integral to a single integral. The interpretation of this inte-
-4gral will be discussed below; in particular we shall examine the extent
to which information about the background random function can be ex-
tracted from (8). First however, we should pause to consider under
which conditions B(s) B(p) will be of the form ¢(s - p), so that the

 ferm (8) will be valid. Let us assume that the two-dimensional noise

48 isotropic; this means, as is discussed abcve, that the correlation
fanction, which is with full generality a function of two space variables,
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Bay 't_he orthogonal variables x and y, is in this case a function only of
d= sz + yzj! U'Z‘ In other words <B(s)B(pi>, which is a correlation
function, is a function ¢(d) of the scalar distance between the path
points labelled s and p. However, this is still not sufiicient for the
validity of {4), in which <B(s)B(p)> i3 set equal to a function of 8 - p.
In order for this to be valid, the distance between the points 8 and p
should depend only upon the quantity 8 - p, and not upon 8; this condi-
tion seems to be satisfied only if the scanning path is a straight line or
a part of a circle. For an ellipse for example, the same path length
difference (s - p) will give different distances between s and p, depend-
ing upon what part of the elliptical path s and p refer to.

Thus, formula (8) refers to the case of isotropic noise and straight
line or circular scans.

Equation {8) exhibits Dn as the cosine transform of the quantity
(1 - u/A) ¢{u). A possible procedure then, is to invert (8) to obtain
{1 - u/A) ¢{u), divide by {1 - u/A to find ¢{(u} and then from ¢(u) find
¥ (d), the correlation function of the background. If the path s has been
a segment of a straight line, then u is the same as d and ¢(u) = ¢p{d) = ¥ (d).
If the path s is a circular path (or part of a circular path), then the
relation between u and d is that d is the chord connecting the ends of
the circular arc whose length is u. That is, if the radius of the circle
is a, (d/2a) = sin-l(u/Za). We have then

¥ (d) = ¢ 2a sin (d/2a)] (9)

so that by a straightforward nonlinear scale change we can obtair ¥ (d)
having or.ce obtained ¢(u). We may then use ¥ (d) to obtain G(u) the
noise correlation function by means of Equation (9a) of the main body
of this paper.

The main task then, is the inversion of Zquation (8) to obtain
(1 - u/A) ¢{u). We have noted that the D“ is expressed a5 a cosine trans-
form of (1 -~ u/A) ¢(u). More precisely, however, the cosine transform

of {1 - u| /A) ¢(u} that fully represents the function in the range o to A is
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E =
)+

A
1 f i - Lul ¢{u) cos fmaw g, {10)
A -A A ZA

er;'ing Equation (10} with Equation (8) we see that the D are not
_ w identical with the E but that E_ = D nf2" Since however the D
Are svailable only for mtegral n, half the E are missing. To obtam

all the En we must interpolate between the vaiues of Dn’ that is for
;mlt on the curve of Dn versus n, ES is ”D3/2”

Once having obtained a complete set of E_, half of which are the
ilﬂ the others interpolated values, we may find (1 - u/A) ¢{u) by the
fnversion formula

E
1-2) gwy= -2 + E_ cos b (11)
A 2 n=1 A

7Thc task of interpolation between the Dn may be rendered some-
mmre hopeful by the fact that (i - u/A)¢(u) should be a correlation
3&“ 80 that none of the E should be negative. Having obtained
- QIM ¢{u) the rest of the procedure outlined above for obtairing y/(d)
'y'h followed. If desired one may then obtain the one-dimensional
r spectrum of the background by Fourier-transforming & (ay.

It is seen from the above discussion that the procedure of obtain-
Y(d) from the Dn would be subject to considerable error. This
e wts that if our aim is 1o zompute G(u), in which {"(d) itself appears,
’ the measurements of background be arranged to directly obtain Y (d)
ey than data like the D .
. Thus for example, one could measure the average value over s
I'3s) B(s + u) where s and 6 + u are, say, positions in the circular
”th This average value, itself averaged over a sufficiently

i-,_ﬂ,'llb.r of cases, is then the function ¢(u) discussed above.
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¥(d) is then easily obtained. Straight line paths could, of course,
also be used, yielding ¥(d) directly.
A further remark needs to he made concerning the Dn' It can be

shown 2 that the integral

IA fi - Iu—--t ) ¢(u) cos 2nfu du
a \ 2

which appears in Equation (8), approaches .!::o ¢(u) cos 2nfu du as A
approaches infinity. This last integral, however, is the power spectrum
associated with the correlation function ¢(u). As A approaches infinity,
moreover, ¢{u) approaches ¥ (d). Therefore for large A the Dn are
approximately equal to (1/A) WB (n/A), where the one dimensional power
spectrum WB (k) is defined, as in Equation (25) of the main text, as the

Fourier transform of ¥(d):

Wo (k)

it

O .
f Vd) e 2R 4y
-0

f° o
| YV (d) cos 2wdk dd .
-

For a given value of A, the statement is more nearly true, on the aver-

age, for high n.

2'li‘it::hmarsh. "Theory of Fourier Integrals.' p. 36.
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