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INTRODUCTION AND SUMMARY

In designing guidance or detection systems, an important aid

towards optimal or quasi-optimal design is a knowledge of the proper-

ties of the background in which the system must work. The present

paper is concerned with the effect of background gradients on infrai ed

systems that use a rotating reticle in the focal plane of a scanning sys-

temn as an aid in discriminating against. background signals in favor of

desired or target signals.

The background radiation is regarded here as a two-dimensional

random function of space or angular variables. (The idea of treating

the background in this manner is not original with the writer but has

appeared in the works of R. C. Jones and perhaps others. The writer

knows of much important work by Dr. Jones in this field.)

The scanning and rotating action may be said to convert the

background or input random process or "noise" into a new noiee pro-

coes at the output side of the reticle. If this output noise can be de-A scribed in terms of an output correlation function or power spectrum,

it becomes possible, in a limited sense, to calculate the effect of pro-

cessing by photoconductive cells, amplifiers and the like. Thus, the

system analysis stage of design may be facilitated and possibly a little

progress made toward more sophisticated solutions of the design syn-

thesis problem.

In this paper, expressions are derived for the output autocorre-

latio* quantity Y(t) y(t + T where y(t) and y(t + T) are the reticle out-

pltts at time t and t + -r re pectively, and< >refers to an ensemble

aver&ge. If the background random function may be regarded as a

"a aM stationary random function, this autocorrelation function may be con-

-z wverted by Fourier transformation to an output power spectrum.

*• The analysis, which is thought to contain some new results, has

t-. advantage of considerable generality and, at the same time, has

u.dficient flexibility to allow computation in simpler cases The work

A- ves also to clarify the roles of the pertinent variables in the over-all

.- 9ems. If fullest generality is maintained, the expressions obtained



can be converted into numbers only with the aid of very extensive corn-

patational aid. In certain cases, however, the expressions may be

reduced to relatively illuminating forms, and the computation required

may be reduced to a moderate amount.

The form of some of thT results obtained serves to point up the

type of background measurements that would be necessary for more

accurate estimates of the outputs. The autocorrelation function of the

background enters, in a fundamental way, into the expressions; it mray

therefore be advisable to design the measurement program to meabure

directly this correlation function. For some background "bucking" or

"*tsuppression" schemes, success in cancelling out background depends

ultimately upon the existence of relations or, somewhat less generally,

of cross-correlations between the random processes in the various

"colors. " This would suggest the investigation of a program of measur-

ing these cro.si-correlaticns.

A separate study (Appendix B) is made of the problem of studying

background by a technique of circular scanning; that is, scanning the

background with a small field of view that nmoves repeatedly around a

circle, and relating the Fourier coefficients of the resulting periodic

function to the power spectral or correlation properties of the back-

ground. An analysis is made of the processes required to effect this

conversion of the measuremenit data. The limitations of this procedure

are such as to emphasize the desirabiiity of having direct measurements

of the correlation function.
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S BASIC FORMULATION

Consider an optical system with a rotating reticle of radius a, in

the focal plane, scanning at time t a portion of the background in a cer-

tain region of the spectrum e.g., the neighborhood of 2 microns. Use a

set of polar coordinates (r,9) (Figure 1) to describe position on the reticle.

Since that portion of the background in the instantaneous field of view is

imaged in the reticle plane, we may also consider r, 0 to be the angular

polar coordinates of a point in the background. Let the transmission

function of the reticle be R(r, 0), and the radiance function of the back-

ground to be B(r, e). Then the expression

y(t) J drf d@ r B(r, 0) R(r, 6) , (1)

may be regarded as proportional to the output of the reticle at time t.i

The factors of proportionality omitted involve the size of the collecting

system and the transmission factor of the optical system. Henceforth

we shall refer to y(t) simply as the "output."

Let the scanning system move with velocity v in the direction of

the reierence angle 0 = 0 (Figure 1) so that at time t + r the center of the

7_;• field of view has moved an angular distance v- in the direction of 19 = 0.

Let the coordinate system translate with this scanning motion and denote

.. .the coordinate system for the translated reticle by (r',@'). The output at

time t + ris

y(t + r) drJ dG' r' B r', Q') Rlr',' - ) , (2)
""f -f

Fo1r this to be strictly true B(r, 8) should not be the true radiance

Sftwztian. but the radiance function as modified by the aberration of the
Sy.tem. The analysis applies, strictly speaking, to this modified defi-

... im of B(r, B). If the aberration is small the two quantities are almost
The same.

a-ot.aer modification is necessary if the image of the field of view does
#W9 coincide with the reticle circle, or if there is another significant

qbv-mJosion function of (r, 6) in addition to that supplied by the reticle.
such a case, the work through Equation (4) would be unchanged ex-

p tht B(r,6) would be multiplied by an "aperture function" say A(r, 0).

t 3
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('" since the reticle, which is rotating with angular velocity w, has rotated
through the angle w, while translating through the distance vy.

Let us ftrrr the product

y(t)Y(t + T'# = a drJ dr' de I d9rr'Rlr,0)Rlre'- TlBlr.e) lr',6,1
-o O -J 0 J0 (3)

Now the ensemble average of y(t) yt + -r), that is the value of
y(t) y(t + T) averaged over various samples of the background, is

a '- a Z-Tr -r(t)y(t + ) r dr' d@ de' rr' R(r.,9) R(?, 0' - w,) B(r,0)B(r',0
<K < 0(4)

where the bracketsK mean ensemble average. The quantity <y(t)y(t + T)
is the autocorrelation function of the reticle output y(t). If the background
random function B(r, ) may be regarded as a "stationary" randoin function
that is, roughly speaking, if its average properties do not vary with? (r, 0)

over a region interest, then we can define a useful "power spectral
d-=siWt or "power spectrum" which is the Fourier transform of

OW" 1t)Y(t + t)>, The effect of subsequent processing upon the reticle output
may then be easily computed in a limited statistical sense.

The central goal of our analysis is then to evaluate Ky(t)y(t + T)>

from Equation (4). The background quantity that we need to compute this

is r )BW ') which is the correlation function of the background.![:2 Now, in particular cases, even if Blr, 0) may be regarded as a stationary
"J :. . mction, it may happen that <Blr, 0) Blr, 0')> must be regarded as a

_tctiont of the vector distance between the points (r, 0) and (r', W'). If this

''rot a more detailed mathematical description of a stationary random* me the realer is referred to the extensive mathematical literature

, ith * subject of random functions.
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is true then the evaluation of Equation (4) will probably be extremely

difficult (but still possible with the aid of the high-speed digital com-

puters). This case will ..ot be considered further here,

ADDITIONAL ASSUMPTIONS

In order to make the general result of Equation (4) more amen-

able to further analysis, we shall make some simplifying assumptions.

An assumption that appears to be useful, is that the autocorrelation func-

tion <B(r,0)B(r'. O')>is a functiony.(d) only of the scalar distance d

between (r, 0) and (r', @'); in this case we speak of the background random

function as being isotropic. With the aid of Figure I it is seen that the

distance d is given by

d (rcos0 + v r- r cos 0)2+ (r 'sinI' - rsin8)2

,z 2 2
= r + r - ZrrIcos(O' - 9) + Zvr(r'cos 0' - rcos0) + (vr) . 15)

With this assumption, Equation (4) takes the form

•<(t)y(t + T)>r Jf 0)0f-2- ! Z dr dr'dQ d1'rr'Rfr, 0)R(r', 9' - WT) *1d) .(4a)

Another simplifying, but useful, assumption is that R(r. 0) is a

function only of 0. There are cases when reasonably simple results can

be obtained for more general functions R(r, 9), but our illustrative ex-

arnples will be limited to the simpler case. Another special assumption

of useful scope is that the scanning speed v is small compared with the

speed of most points of the rotating reticle, so that the error introduced
3

in setting v = 0 in Equation (5) is not serious. The important simplifi-

cation resulting from letting v = 0 is that d becomes a function of 0' - 0.

3Incidentally, for the case in which the field of view is rectangular and
the reticle motion consists of parallel bars sweeping across the field of
view, the assumption v = 0 is not necessary; i. e., results similar to
those of the subsequent example may be obtained even if v / 0.

5



(7 A CASE OF INTEREST

With these assumptions and the notatiot Q(Tr) -((t) y(t + T>

£quation (4) becomes

CHT) jad j dr ad6f dO' rr R(0) R(O - wr)tV(d) (6)

where

dheed=r2 [ r'z- Zrr' cos(9' - Q,] 1/2 (7)

The expression (6) has some interesting properties. First, let

us rewrite it as

=f2) d~f cio dQ' G(O' - e) R(r) R(0' - wr) (8)
0

where a rf a

G(0' d )} d dr' rr' + r - err' cos(9' - (9)

It will be convenient to write u for 9' - 9, giving

r(u) f drf dr' r + r2 - Zrr' cos Q i/a (9a)
.G 0 0d0 L

An important result relative to Equation (8) may now be stated:

C(r) may be written as

Odu) f Gu + wr)Pu , (10)

where

,P(u) = dO R(9) R(9 + u) . (11)
'"

.fi.



The method by which this result was obtained is given in detail in Appen-

dix A. The "intuitive"t significance of Equation (10) and (11) is as follows:

The form of Equation (11) indicates that P(u) is a type of correlation

function to be called hereafter the "reticle correhition function." Q(T) is

the correlation function of the ovtput as previoul(iy discussed. Equation

(10) expresses 0(T) as a convolution of G(u) and P(u). We may therefore

regard G(ul as another correlation function. It is the correlation function

of the background as "seen" by the rotating reticle; it may be called the
"noise correlation function. ",4

Since Q(-r) is an autocorrelation function, its Fourier transform

is a "power spectrum. " Taking the transform of Equation (10) we have an

example of the well-known result that the Fourier transform of a corre-

lation integral is the product of the Fourier transform of the convolved

members.

Of course, since P(u) and G(u) are both periodic in u, Q(T) is

also periodic with the time period 2w/ia. Thus the power spectrum is a

line spectrum at frequencies which are multiples of w/2r.

The Fourier transform of Equation (10) is found without difficulty

to be

W 0 (f)= M Wo, (f/ta) W (f/l) Wt* (f/W) (12)

where

WG(z) J G(u)e" 2-izu du , (13)

-0,W z 0Rlule -ZWizu du , (14)

4 1i v had not been set equal to zero, the noise correlation function would
not exist in this form, namely as a function of ui H 6' - 0. For the rectang-
ular geometry noted in footnote 3, the noise correlation function exists as
a function of x' x + VT where x' and x are coordinates which are rectang
%. anlogues of 0' and e, and yV has the sarne meaning as above.
Relations similar to Equation (10) and (It) also hold for this rectangular
case.

7



and

W 0 (f) = Q(T) e Zrifdt (15)

The symbol * denotes the complex conjugate.

Since G(u) is an even function oi u, W G(z) WG(z), and we may

as well write

W (f) W W(f/tW4 I WR(f/W)t (16)

Since G(u), R(u), and Q(T) are periodic functions, the definitions

of Equations (13), (14), and (15) need to be properly interpreted. Using

a delta function notation, it is easy to show that

OD
WG(Z) Z , 6(z-n/21r) UG(Z) (13a)

n= -00

S where ,.. 1. 11 - 2 trizu

UGlZ) = l/Zir G(u)e du 1 13b)

Go
WR(Z) = N 61z - n/Zwr) UR(z) (14a)

n= -cO

where

UR(Z) l/zIrrT R(u)e- -izu du (14b)

aid
00

Wof) =6(fnww)U (f) (15a)
• 

n= - co

where
• " 

. Z • • - 2 1 ri f T

{ UQMf) =W/ Q( r)e T d'r (15b)

.I s



Thus WQ(f) is a delta function or line spectrum. It is non-zero

only for integral multiples of w/l2n. The "line" character of the spectrum

is due to the approximation v=0. If v is slightly differert from zero,

the lines are changed to narrow bands.

Equation (16) or the equivalent equation (10) exhibits the power

spectrum of the output as a product of a "reticle spectrum" and a "noise

spectrum" where the noise spectrum is the Fourier transform of G(u).

We see then that once G(u) or its transform is computed, the output spec-

trum may be found either in terms of the convolution integral (10) or the

spectral product (16). The "reticle spectrum" WR(z) or the "reticle

correlation function" P(u), is easy to obtain in terms of the reticle geo-

metry, and the definitions of Equations (13) to (15b). Thus, once G(u)

is found, the output for various reticle functions is simple to compute.

The problem of obtaining G(u), or its transform WG(z) by measurements

or calculations, is therefore, of key importance. This problem we now

examine.

DETERMINATION OF NOISE CORRELATION
FUNCTION OR POWER SPECTRUM

From Equation (16) one sees that by measurements of WQ(f), the

power transform of Q(T), and measurements or calculations of WR(z), one

can be division obtain WG(z), the trarsformn of G(u). This, in principle

is a valid method of obtaining WG(z), and indeed may turn out to be the

most practical method. The reticle function R(9) may be chosen for con-

venicnce, Reticle functions will generally be such that WR(z) is zero for

certain values of z, so several reticle functions may have to be used to

get enough information. One may also consider using a "delta function"

reticle (single narrow transmitting slit) to pass "all" values of z. The

results obtained for WG(z) will be valid only for the particular value of a

used in the measurements, as reference to Equation (9a) shows. Thus

one w3uld hav- to repeat the process for each value of a considered.

Another, somewhat more fundamental approach is possible which

we now wish to study.

9



C? Let us consider the noise correlation function G(u), as defined in

£quation (9a),

GU a adr dr rrI' i [r r' 2 rr' cos u]V (9a)

From the form of this integral we see that G(u) is determined by

tevalues of Y'(d) for the range of d between 0 and 2a. (If v is not

"roQ reference to Equation (4a) or Figure I shows that values of skfor

611_'ý'a somewhat larger upper value of d are needed for the computation of

0(-r). This suggests that direct measujrements 1,i(d) for such ranges

(rather than measurements such as have been made up to the present, of

the power spectrum) might be undertaken. For the purpose of obtaining,

through expressions such as have been derived, insight into the okc'tput-

noiase of the reticle, the correlation functo- steqatt otdrcl

needed. In principle one can Fourier -transform spectral measurements

MWt correlation information, but in practice large errors may be intro-

duced in attempting to transform the necessary incomplete measurements.

To proceed further on the theoretical side, we may try to find

ptausibte forms for 9dwhich may be in agreement with the measure-

inAwnts so far, arnd see how these influence G(u) and its transform. As

asontioned above, the limited amount of available experimental material

Sbearing on this question has been expressed in terms not of ',but of its

Fouiertransform. Thus our comparisons at present between theoreti-

_40 eapressions and experiment can be made most conveniently in terms

vihe power spectra. The two-dimensional power spectrum W B Jk, ky
the two-dimensional correlation function 4 B(x, y) are Fourier tas

-eof each other. That is. ras

sobk. I yo'(x, y) e xp !-Ziri(k x t k y) dx dy ,(17)

' 

xo

=~ r r W(k. k )exp Zrri(k x + k v)2dk dk . (18-1
fOIf O X y X Y Y. x y

'to



The writings and mneasurements of R. C. Jones and others, including

measurements of sky background at The Ramo-Wooldridge Corporation,

suggest the form

I z -i Z
W (kxk) k MF 2k +k' (19)

B t YJ

where M is a constant, at least for fi.irly high wave numbers (number of

waves per radian). More exactly, the measurements so far are not incon-

sistent with this forn-. However, this form is not acceptable for low wave

numbers, because the integral

Sdkx dky (20)

that is, the integral of the spectrum over all wave numbers, diverges.

The infinite value is due to the pole at k = k 0. Ox y

A way to adjust Equation (19) so as to eliminate this trouble and

still not be inconsistent with the experimental data, has already been

suggested in the writings of R. C. Jones. This is to use the form

WBfkX, ky) = M I2.. k x + k 1(21)

2.

If a is not too large, this preserves agreement with the experi-

mental results as out subsequent discussion will show.

First, let us obtain the correlation function associated with Equa-

tion (21); we must evaluate the Fourier integral,

(,(xY) M ýCMF + kZ + k exp-_ZTri(kx+kyy)' -O dk dkIC' fM" L x Y J y x y

(2Z)

11



This turns out to be

*(x, ) = M e- 2ad (3

where !
d = (xz + y2 )

This result shows that x, y) is a function only of d= (x 2 + y 2 ) V2

"and thus indicates that the choice of the form (21) is consistant with our

previous assumption of isotropic background. This property of the cot-

relation function [dependence upon (x 2 + y2)1/2] can be proven to hold for

power spectra of the form

W(kx, y) = function of (k + k (24)y ) (

The measurements of W(kx, k ) that are known to the writer really

measure the one-dimensional power spectrum - more precisely, the one-

dimensional Fourier transform of the correlation function. For the form

(23). this one-dimensional transform is

WB~~I') f~jL Zi4ald eZwi dd•~~ ~~~~ ,:!!.:.• W(k) = frM e-2•' e-id dd

(25)
M I

41r - +•?

The function k , a normalized form of Equation (25), is

plotted in Figure Z, versus k for various values of a. It is seen that

asymptotically for high wave numbers, this spectrum follows a I-2 law.

The value of a used determines how the curve deviates from the (-2)

law. The several sets of measurements results that have been seen by

the writer (schematically indica,.:ed by dashed line in Figure 2), are not

inconsistent with this type of funcion, but it is difficult to make a

12



7 a•,o

4

2

|o'l

2-

10

2-

4-\

IOI
2 - a2 + k2

1 10 100 1000
k (WAVES PER RADIAN)

FIG. 2 THEORETICAL ONE-DIMENSIONAL POWER SPECTRUM.
DASHED CURVE INDICATES APPROXIMATE SHAPE OF
MEASURED POWER SPECTRA (LEVEL ARBITRARY).



judgtement as to what the best value of a would be. Perhaps various

background conditions (which give widely differing absolute levels of

background) all give the same asymptotic ( 2) law, but vary in their

S...effective values of a. If all that is known about the measured spectrum

is, for example, that it follows a fairly accurate (-Z) law in the range

say above 10 waves per radian, then it is seen that any vaelue of a up to

•-•= -- - about 5 is consistent with such measurements. This suggests that since

the high k part of the spectrum has a form independent of a, some of

the results of the subsequent analysis of output noise may also be inde-

pendent of a. As measurements become more complete, it may be pos-

sible to choose more accurately between values of a or perhaps, to pick

a more accurate form for the autocorrelation function. It is not unlikely

that as measurements of background become more accurate, the (-Z) law

and the form e may have to be modified. Measurements aimed

at directly measuring the background correlation function could perhaps

settle this point more quickly than the spectral measurements. For ex-

f" ! ploratory purposes, however, it seems to be of some value to study

(Gu) and its Fourier transform for a range of values of a. At the time of

writing, the function G(u) and its transform are being numerically studied

For the time being, the Gaussian form exp(-pd ) for the correla-

tion function, which is often a likely candidate in similar problems has

been eliminated from consideration because the range of the effective (-2)

law, which seems to be an octave or more in the known measurements,

cannot be fitted -tery well to the transform of exp(-pd which is of the
2

form exp(-qk ); p and q are constants in the above; d and k have signi-

ficance similar to that in Equations (22) and (25).

STUDY OF A PARTICULAR BACKGROUND CORRELATION FUNCTION

Studies and computations are under way of the properties of G(u)

md its transform WG(z). At the time of writing these studies are in-

e-mplete, but a few preliminary remarks may be made.

Substituting the form (23) into the expression for G(u), we have

irM .. a 2ad

G(u) J-J rr' e dr dr' (26)

1 3



Introducing the dimensionless parameters

r r

S= X --a x 2naa = h , (27)

we obtain

Fh(u) = U) -a dxl f dx x xZ exp h(x+x2 - ZXXcos) (28)

where

Fh(u) is the significant function to be studied. The parameter h may

be written as

h a

Now i•-wct may be interpreted as a "correlation length, " that is, 1/2wa is

the value of distance d for which the (normalized) correlation function
- Zirad th

e falls to one e of its peak value (which occurs for d= 0). The

greater I/Zwa, the greater is the relative correlation of two points sep-

arated by a distance d. That is, the normalized correlation function falls

more slowly from its peak value for high values of the correlation length

1/Z2ra. The parameter h is thus the ratiD of the radius of the field of

view and the correlation length of the background. The significant quan-

tity affecting the properties of Fh(u) is seen from Equation (28) to be

this dimensionless parameter h. In addition, there is a scale factor of
4

a , which simply means that all other things being equal, the output noise

has a power level which is proportional ti the square of the area of the

field of view.

The dependence of Fh(a) upon h and u is sketched in a purely

qualitative way in Figure 3. The range 0(u<2v is shown; Fh(u) is

periodic in u (a result of the assumption v= 0). The behavior of the

14
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transform of Fh(u) will be very roughly as follows: The higher values of

h will yield a slower high frequency fall-off (more relative high frequency

content); but the range and extent of these variations can only be obtained

from the complete study.

To obtain a rough idea of vhat values of h may be of interest, let us

imagine that the condition referred to above holds, namely that the rneas-

ured spectrum follows roughly a (-2) power law in the range above 10

waves per radian; in the absence of further experimental details, any value

of a up to about a = 5, may provide a satisfactory fit. Let us take the

radius a to be 2 degrees. Then hax = 2amax = Zyr5(2v/180)z 1.1

The numerical work will cover values of h from 0 to 5.

Once Fh(u) is computed for a sufficient range of h, it will serve the

purpose of a "universal curve" applicable to any value of a and any reticle

function R(O). Its transform will likewise represent the power spectrum

of the noise as seen by any reticle function. By multiplying this transform

by the square of the transform of the reticle function, Equation (16), we

may obtain the spectrum of the noise output of the reticle. This may then

easily be combined with transforms of following stages.

This numerical work is only valid for the background correlation

function e . The method of attack, however, is still valid for any

improved background functions that may later be obtained.

Is



"APPENDIX A

TRANSFORMATION OF A
CERTAIN INTEGRAL EXPRESSION

- -• FThis appendix concerns itself with the transformation of
:W 'i;

I dO dO' G(8' - 9) R(9) R(O' - •')

whee Gx) = G(x + 2w)

; eM Rix) = R(x + 2w)
Introduce the change of variables

(7'.7:; " •U + V

5...... 2 - or 2v u

V = 0'- +i ,e: O 8=~ * ÷•-v = - 19

The Jacobian of this transformation is

L/7. 1/2

1 /2. 1/2

We th.u have (see Figure A-I for geometrical interpretation)

21=1 T j 4w d+ u
21 .. duG(u + WT) dv v- u) v + u

2 w-r 4W &-T tU
+ duG(u + W)) dvR R(v-Y

.," rohucing the change of variable v a we have
2

f6
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fd R "-Mi -vfds R(s) R(s + u)

so that

If -w-V du G(u + w-r r 2w do it(s) R"'s + u)

.4rw~1 -/WT-U

+fwT du G~u + WTfOa-W do R(s) R(s u

Noaw

J d. R(s) R(s + u) do R(s) R(s + u + Zr

J-ru-2 do R(a) R(s i u + 21w)

Calling

o do R(s) R(s + u) d = P(u) =P(u + 2fr)

we have

du G(u + w-rj do R(s) R(s + u + Ziw)-P(u + 2w)~

-dui G(u + 21f + WTi) do R(s)R(s + u + Zw'-P(u + Zw)i

f22:IT L2wr w

dv~v w-r) do R(s)R(s +v)-P(v) 1

2wdu G(u + wyr) r R(s)R(s +u) do -P(u)1

P WI
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so that

I = -T+2TduG(u + w-) , R(s)R(s + u) do

+f1 R(s)R(s + u)dls - P~ulj

dU G( + WT) il: R(#)R(a u)ds -~

-WTr+ Zir

jf dui G(u = w-r) P(u)

where Z
P(u) fZo R(s) R(Ep + u) da
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APPENDIX 
B

ANALYSIS OF BACKGROUND MEASUREMENTS
WITH CIRCULAR SCAN

In connection with the study of the effect of rotating reticle systems

upon background, there is at present an interest in a program of back-

gromud "gradient" measurements in which the background is scanned with

a small field of view moving re!petitively around a circle of radius a. The

Fousior coefficients of the periodic output are taken with the object of

relating these Fourier roefficients to the properties of the background.

Opeorating under the assumption that the background is a stationary ran-

dam function, we gire an indication of The klnd of re+;c-ions needed to

convert such data into a background power spectrum or correlation fLnc-

tion.

EXPIL"SMONS FOR GENERAL PATHS

Before specializing to the case of the circular path we present

some expresaions which are valid for general paths.

lLet us assume that our instrument measures the radiance B(s) (1)

:" a function of the running angular coordinate s along the path, and

*hat this ,ype of *can is repeated over many similar segments of the

.ii.d and that for each measurement along the path we obtain a set of

touric••" r coefficients.

A typical complex Fourier coefficient is

•'.' :•,:-i : I JO-i2yrln/A)s d 1
C(n)-- B(s) e is

A 10

whre A is the length of the path.

14" o-tote (1) of the main text.



The square of the magnitude of C(n) is

C(n) C*(n) = -L A A e i~v(n/A)(sp) B(s) B(p) do 4i (2)

where n is any integer between -cD and co.

We shall assume that the measurements give us tae C(n) C*(n).

To obtain average data we average over many paths or cases.

We have

S AC A -i2wr(n/A)(s-p) BsBp
Dn-- \(n) C*(n)i JA e <B(s) B(p2) do dp

0(3)

where< >denotes the average over many cases (stochastic or ensem-

ble average).

RESTRICTION TO ISOTROPIC BACKGROUND AND
CIRCULAR OR STRAIGHT-LINE PATHS

Further evaluation of Equation (3) depends on the assumptions

that are made on the form of <B(s) B(p)•> Let us assumJe for the

moment that

<B(s) B(p)> = 0(s - p) 0(p - s) (4)

i. e. , that the average value of B(s) B(p) depends only upon the

difference between the running coordinates a and p. It will lie seen

below that this assumption, which enables us to make progress ii the

interpretation of Equation (3), implies certa;.n restrictions on the back-

ground and on the paths.
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Withthis assumptica, Equation (3) becomen

DA A -i~n(n/A)(s.p))~s ds dp, 5

SA 2

If now we change to the variables

8+ (6)

we7.v obtain. noting that the Jacobian of this transformation is 1/2,

7,V D A du r 2A-juv -i2ir(n/A) uOU) (7)
2AZ -A dye*(u

I~ ~~S A i If(nA
-(2A - l e A O(u) du

2AZ -

1-- csON() du (8)
A-:; -A A IA

Thus with the help of the assumption (4) we have reduced (3) from

a double integral to a single integral. The interpretation of this inte-

gra will be discussed below; in particular we shall examine the extent

to which information about th# bakground random fu~nction can be ex-

traded from (8). First however, we should pause to consider under

which conditions <B(8) B(p)> will be of the form O(s -p), so that the

~flom (S) will be valid Let us assume that the two-dimensional noise

2Z. As iooeopic; this means, as is discussed above, that the correlation

bmcxtion, which is with full generality a function of two space variables,



say the orthogonal variables x and y, is in this case a function only of
~z whc i creltod = Lx + y . In other words \B(s)B(p)>, which is a correlation

function, is a function #(d) of the scalar distance between the path

points labelled s and p. However, this is still not sufiicient for the

validity of (4), in which <4B(s)Bp)> is set equal to a function of s -p.

In order for this to be valid, the distance between the points s and p

should depend only upon the quantity s - p, and not upon a; this condi-

tion seems to be satisfied only if the scanning path is a straight line or

a part of a circle. For an ellipse for example, the same path length

difference (s - p) will give different distances between a and p. depend-

ing upon what part of the elliptical path s and p refer to.

Thus, formula (8) refers to the case of isotropic noise and straight

line or circular scans.

Equation (8) exhibits D as the cosine transform of the quantityn

(I - u/A) O(u). A possible procedure then, is to invert (8) to obtain

(0 - u/A) 9(u), divide by I - u/A to find O(u) and then from O(u) find

t'(d), the correlation function of the background. If the path u has been

a segment of a straight line, then u is the same as d and O(u) = #(d) = Yi* (d).

If the path s is a circular path (or part of a circular path), then the

relation between u and d is that d is the chord connecting the ends of

the circular arc whose length is u. That is, if the radius of the circle

is a, (d/Za) = sin i(u/2a). We have then

*E*(d) = [Za sin (d/Za)] (9)

so that by a straightforward nonlinear scale change we can obtain '* (d)

having once obtained O(u). We may then use )" (d) to obtain G(u) the

noise correlation function by means of Equation (9a) of the main body

of this paper.

The main task then, is the inversion of ,quation (8) to obtain

(I - u/A) O(u). We have noted that the D is expressed as a c-osine trans-

form of (0 - u/A) O(u). More precisely, however, the cosine transform

of (I - Iu /A) O(u) that fully represents the function in the range o to A is
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A l A
Ein L-, O(u) cue du to

A -A \A ZA

taamparin £quon (10) with Equation (8) we see that the D are not

nn

&Hl the E we must interpolate between the values of D ; that is for
xi n

4=0na~le on the curve of D) versus n, E is VIl It
n 3 V2~

Once having obtained a complete set of E , half of which are the

~&W b *te others interpolated values, we may find (I u/A) O(u) by the

'Swimnformula

E
cnos(11)ONu) - co+

A ~ 2 n=l A

The task of interpolation between the D may be rendered some-

ijbiijmore hopeful by the fact that (i - u/A)O(u) should be a correlation

A*"so that none of the E should be negative. Having obtainedn
- /A) #(u) the rest of the procedure outlined above for obtaining Y'(d)

b e followed. If desired one may then obtain the one -dimensional

7W,/wr spectrum of the background by Fourier- transforming Vt'(d).

It in seen from the above discussion that the procedure of obtain-

p(d) from the D0 would be subject to considerable error. This

c-t tl'at -,'f :ur aimn is :im rpute G(u), iii. which (."(d) itself appears,

A th measurements of background be arranged to directly obtain W4(d)
w tha data like the D.

n
Tbtts for ex~ample, one could measure the average value over s

a~) (* + U) where s and s + u are, say, positions in the circular

pt.This average value, itself averaged over a sufficiently

inmber of cases, is then the function O(u) discussed above.

2.3



)/(d) is then easily obtained. Straight line paths could, of course,

also be used, yielding Y/(d) directly.

A further remark needs to be made concerning the D . It can be

shown that the integral

LA - IuI () cos 2irfu du

-A tA

which appears in Equation (8)1 approaches r. 0 (u) cos Z1Tfu du as A

approaches infinity. This last integral, however, is the power spectrum

associated wth the correlation function O(u). As A approaches infinity,

moreover, O(u) approaches •fd). Therefore for large A the D aren

approximately equal to (I/A) WB (n/A), where the one dimensional power

spectrum WB (k) is defined, as in Equation (25) of the main text, as the

Fourier transform of r(d):

•OD - 2Znidk

WB (k) f Yr (d) e dd
-00

- �()P(d) cos 2rdk dd.

For a given value of A, the statement is more nearly true, on the aver-

age, for high n.

2 Titchrmarsh. "Theory of Fourier Integrals. "1 p. 36.
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