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ABSTRACT

In 1962, both the Russians and the Americans conducted
a series of high altitude nuclear explosions which had wide-
spread geophysical effects. A study of these effects is
useful to the geophysicist if it will shed light on the
mechanisms responsible for similar geophysical phenomena
which are noted in association with normally occurring dis-

turbances,

This paper presents a review of the effects of nuclear
testing, with special emphasis on the trapped radiation, the
ionosphere, and magnetic disturbances. An interpretation of

these different phenomena is made.
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Introduction

The detcnation of high altitude nuclear devices has a pro-
found effect upon the earth's atmosphere. Many observatio:ns of
these effects have been made and various interpretations of the
causative mechanisms have been attempted in the past few years,
Because of the similarity of these events to the naturally
occurring geophysical phenomena, considerable interest in the
subject exists at this time, and there is va'ue in the presenta-
tion of a review of some of the published articles that are of

interest to the geophysicist,

It should be borre in mind throughout this review that a

considerable amount of classitied information may still exist,

High Altitude Tests

In recent years, a number of high altitude nuclear tests
have been conducted bty both the Americars ard tle Russians,
The first series, back in l95?, yielded only a limited amount
of information useful tc the geophysical scientist because
mary details of the detonations were rnot made public prior
to the c¢vents., In 1962, however, the American series was
sufficiently well announced ‘o allow many scientists the
opportunity to set up experiments designed to investigate the
detailis of the geophysical phenomena asscciated with these
bursts and publish tleir recuits in the open literature. In-

deed, the rapidity with which much of the classified data were
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made vublic has been quite remarkable and gratifying.

Announcements by both the United States Atomic Erergy
Commission and the Seismological Institute at Uppsalla also
afforded scientist® some information on the Russian detona-
tions very soon after they were held. Although the exact
details of the yield, altitude, and some of the other burst
rarameters aré still not avajlable, sufficient information has
been released to allow many useful studies to be made. Table 1

gives some of the details of the announced high altitude nuclear

tursts,
Table 1
Altitude
Location Time (km) Yield Reference
¥ JoXs Jul 9, 62 ~ 0900UT hundreds Megaton Brown et al.(1963)
J.,I. Oct 20, 62 ~ 0830UT tens low AEC E-382
*®C, A, Oct 22, 62 ~ 0341UT high few lLundred kT AEC E-384
o L3 Oct 26, 62 ~ 1000UT tens submegaton AEC =-3289
G-k Oct 28, 62 ~ OLLIUT high intermediate AEC E-294
Gs Ko Nov 1, 62 ~ 0910UT high intermediate AEC E-LO4
J.I. Nov 1, 62 ~ 1210UT tens submegaton AEC E-400
JoI. Nov 4, 62 ~ 0630UT tens low AEC E-407

* J,I., = Johnston Island

##*C A, = Central Asia

Studies of naturally occurring geophysical phenomena are

usually complicated by lack of knowledge of the cause of the
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disturbance. Although the total amount of energy contained in any
one of these events is small in comparison with a solar-associated
disturbance, the initiating cause is very localized and the timing
is, at least in some cases, so well known that propagation times
of various disturbances can be measured. This is normally not
possible in the case of a solar disturbance. Consequently, exten-
sive interest has been shown in the study of the geophysical per-
turbations associated with nuclear testing. Studies of the large
scale displays resulting from this type of controlled stimulus

may be used to shed light on the details of the mechanisms

responsible for naturally occurring geophysical phLenomena.

High altitude nuclear detonations, in particular, give rise
to aurora, cosmic noise absorption, sporadic E (Gregory, 1962],
shortwave fadeout, magnetic disturbances [Maeda et al. 1964],
micropulsations [Cane~ and Whitman, 1962], spread-F [Heisler and
Wilson, 1962], VLF anomalies [Willard and Kenney, 1963], D-layer
enhancements [Obayashi et al. 1959] and other disturbances close-
ly resemling phenomena which one notes normally in nciure. Many
of these disturbances can be explained in terms of debris motion
and fireball expansion, others can be explained as the effects of
trapped radiation, while the origin of still other disturtances

is obscure.
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Energy Release

Figure 1 is a schematic representation of a nuclear test
published by Alpert [1962]. At the time of the explosion, a
large amount of energy is releacsed in a small volume. X-rays,
y-rays, fission fragments, electrons and neutrons are given
off, and a dense hot plasma is formed in the burst area. Gamma
and x-rays spray out in a 4n geometry, those headed downward
will cause ionization of the uprer atmosphere and ionosphere,
whereas those which head outward are lost. The neutrons spray
out also, travelling in a straight line, undeviated by the
magnetic field, at a velocity whiclh depends on the neutron
kiretic energy. The neutrons heading outward car have some
effect, since they may decay into electrons and protons before
leaving the magnetosphere. The resulting charged particles
will be constrained to spiral along the magnetic field lines,
either entering the upper atmosphere on the first few bounces,
or spending a longer period of time as trapped radiation.
Energetic electrons that leak out of the blast area at the time
of the burst will also spiral along the field lines, contributing

to the aurora and trapped radiation,

The bulk of the plasma forms a high-temperature diamag-
netic cavity, which will slowly expand and exclude the earth's
magnetic field from the immediate vicinity of the explosion.

If there is an appreciable atmosphere, the bubble will be buoy-

ant, and gradually rise to higher alititudes. Charged particles
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leaking out as the bubble rises will be released into the
magnetosphere at progressively larger L values. As the bubble
expands, the internal energy density drops until finally the
magnetic field re-enters the volume. At this time, the
charged particles which have been contained are now free to
leave, and the energy density drops rapidly. Using this sort
of analysis on the July 9, 1962 event, Colgate [1963] arrived
at the figure of two and one half seconds for the value of the

time during which the magnetic {ield was excluded.

In the immediate vicinity of the burst area, there exists
such a plethora of both prompt ard deleyed radiation, that it
is difficult to sort out the effects that each particular con-
stituent would have. In general, one may say that the behavior
of the atmosphere and ionosphere within the line-of-sight of
the burst, will, to a large extent, be controlled by the x and
y radiation, since about half of the energy released comes off
in the form of x and y radiation [Latter et al. 1961]. Without
much knowledge of the burst parameters, it is difficult to do
more than estimate the effect that this would have on the sur-
roundings. The problem is complicated by any excess material
that may te located in the burst vicinity, since this would
change the spectrum of the x and vy radiation, There is, how-
ever, no basic lack of understanding of the energy transfer

mechanisms. (As an example, see Latter and LeLevier [1963]).
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On the other hand, if one confines oneself to regions
remote from the burst area, it becomes pcssible to sort out
some of the cause and effect relationships. Many of the remote
effects, such as shortwave fadeout, VLF anomalies, sudden en-
hancement of atmospherics, etc., can be easily explained if a
mechanism exists for increasing the D-region ionization in the
proper fashion. The geographical extent, time behavior, and
maguitude ¢f these D-region enhancements must be sufficient to

explain all the observed disturbances.

VLF Disturbances

Perhaps the best evidence for enhancements of the D-region
at large distances from the burst site comes from records of VLF
disturbances in both phase and amplitude following the explosion,
For most VLF propagation paths, the relative phase of the received
signal exhibits a diurnal variation which has a ‘rapezoidal form,
The interpretation of this is rather simple. The wave propagates
in the earth-ionosphere waveguide, and the effective reflecting
height for a given frequency undergoes a diurnal change. As the
sun comes up, solar radiation causes a considerable increase in
the ionization, such that the D-layer extends downward to some
60 km or so above the earth's surface. At night, the effective
reflecting height for VLF waves increases to ahout 90 km., Recom-
bination, electron attachment etc., have caused the electrons to

disappear, and the strong solar ultra-violet source excitation is
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now absent. At nignt, any increase of ionization below about

90 km can be detected with surprisingly high sensitivity by

the VLF techniques. When a nuclear test increases the D-region

ionization, the following effects on VLF transmissions may be

expected.
1) Phase - Since the ionization increases, the effective
reflecting height is lowered, and the propagation time for
the signal to go from transmitter to receiver decreases.
This always causes a relative phase advance in the signal
[wWait and Spies, 1961].
2) Amplitude - The amplitude of the received signal may
either increase or decrease, depending on wha' happens to
the mode of transmission, If the receiver is located near
the principal minimum, the signal can either increase or
decrease as the reflection height is lowered [Frisius et al.
1964]. At larce distances, the signal strength usually
decreases with a decrease in effective reflection height
(wait, 1957]. Nevertheless, Wait and Walters [1963] have
shown a decrease in VLF reflection coefficient wuen a small
increase in ionization is formed well below the normal re-
flection heignt. If the increased ionization is formed
near the reflecting height, the apparent steepening of the
isnization gradient can increase the reflection coefficient,
Thus, even at large distances, the signal strength can either

increase or decrease,



VLF Data

Detailed studies have becn made of changes in the phase and
amplitude recordings of VLF stations during the various high
altitude tests of 1962 by several groups. In general, two types
of effect are noted in these data. The first is a prompt effect,
not noted on all the records, in which the sigral characteristics
change quickly. The second effect may be delayed several minutes

and last much longer.

One of the best documented tests is the July 9, 1962 test
held at Johnston Island, although reasonably good records exist
for all the American tests and most of the Russian tests., To
illustrate the prompt and delayed effects, let us start with the
records of phase and amplitude for the October 26, 1962 tests at
Johnston Island., These records were taken by H, R. Willard for
the NPM transmission, Honolulu to Seattle, 19.8% kHz. Figure 2
shows the amplitude record on two different time scales for this
event. H + O marks the detonation time. Approximately 80 ms
after H + O, an extremely rapid drop in amplitide took place,
followed by a very rapid recovery. At about H + 16 seconds, a
second fade started and reached a minimum signal amplitude at
H + 106 seconds. Recovery finally commenced and was esseatially
complete some 15 to 20 minutes after the burst. Figure 3 shows
a comparison of the phase and amplitude records on the short
time scale. The time constant of the electronics for the ampli-

tude recording was very short, as one can see from the individual
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dots and dashes of the code transmission. The time constant
of the phase measuring device was a couple of seconds. Con-
sequently, one may say that a prompt (i.e., 80 ms) and large
effect took place on both phase and ampiitude, the phase re-
covering first, and then starting again with another phase
advance which was delayed. The rapidity with which the proapt
effect recovered shows that the electron removal processes
were rapid. The entire effect was consistent with excess
ionization created deep in the D-region from a sudden impul-
sive source, followed at a later time by a delayed injection
of excess ionization wnich lasted a much longer time. At

H + 106 seconds, the transmitter went into a frequency shift
keying sequence which accounts for the double envelope of
amplitude in this and in the preceding figure, and the loss

of phase track on this record after H + 106 seconds.

Turning now to the records of cther observers, one sees
in Figure 4 the data taken by Zmuda et al. [1963] on three
propagation paths for the July 9 test. A prompt effect is
present in the NPG-APL path, not present on the NBA-APL path,
and only marginally perceptible on the WWVL-APL path. All

three paths certainly have delayed effects.

The next sets of data were taken by Frisius et al. [1964]
on the paths shown in Figure 5. This chain of stations is par-

ticularly useful in that it allows a very compiete monitoring

TR L R S AN ST S A S s s
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nf changes in the mode of propagation over this region by com-
paring the way amplitude builds up and decreases on a station
to station basis. Figure € shows the data taken on this net-
work for the October 22, 1962 Russian burst around O341UT,
Again a prompt and a delayed effect are noted on these records.
Figure 7 shows a similar data taken on this same network for

the October 28 Russian test.

Finally, let us return to additional records taken in
Seattle, Washington of the reception of a VLF station from
Boulder, Colorado [R. Meuse, private communication]. Looking
at Figure 8, one sees that the appearance of the WWVL reception
for the October 26 event with a slow-speed response in the
phase detection system has the following form., At the time of
the burst, there is a very sudden advance in phase coupled with
a gradual recovery. We have earlier seen from a recording with
high speed resolution that a prompt and a delayed effect were
both present. Because of the very slow response time of this
equipment, it is impossible to resolve the two effects., However,
one can cee that a large and prompt increase in D-region ioniza-
tion is certainly present. In Figure 9, one sees that the ef-
fect of tne much larger burst on July 9 has the same shape, but
a larger magnitude., Indeed, in Figure 10, again one notes that
the very small effect due to the low yield burst of October 20,

1962 has the same shape. In Figure 11, note the interesting fact
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that the American test on November 1, 1962 again produced an
effect which has the same shape on the trace, but the Russian
test some three hours earlier had only a delayed effect. This
burst which occurred somewhere around 0910UT had no evident
effect for some 20 minutes, then it reached its maximum distur-
bance about H + %5 minutes and was essentially recovered within
an hour. In Figure 12 one notes again that the Russian burst
of October 22 had no prompt effect on this propagation path;
the delaryed effect also had a different appearing trace on the
record than that of November 1, being much larger, delayed only

a few minutes, and lasting a much longer time,

Without showing ary more data of this kind, let us sum-
marize what has been shown. Both prompt and delayed effects
can occur in the ionosphere after a nuclear burst. ror the
Russian bursts, prompt effects were noted all over Western
Europe, but not the Western United States, For the American
tests, prompt effects were always noted in the Western Urited
States, and only sometimes in the Eastern !nited States, depend-
ing on the paths involved., The time behavior of the delayea
effects could also vary even though the explosion location and
detection sites remained the same. lLet us now attempt to explain

the cause of all these effects,
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Prompt Effects

Records taken over the United States with oniy half-minute
time resolution saw the effects commencing "simultaneously" with
the burst. X and y radiation must be ruled out as the cause of
the prompt effect because this effect was not confined to regions
within the line-of-sight of the burst. We can also eliminate
direct 3 particles and debris as the cause of the first phase
advance since no charged particles can reach the NPM transmis-
sion path directly from the blast area soon enough, Dumping of
trapped radiation, ionospheric enhancements due to travelling
hydromagnetic waves, and similar causes must a'so be ruled out
as the cause of the prompt effect because the temporal and spatial

behavior of these sources can be shown to be unsuitable.

The answer to the prompt effect lies in the neutrons which
leave the blast area. As was first suggested by Crain and
Tamarkin [19613, a small fraction of the neutrons formed in the
fission area (see Figure 13) will decay into protons and electrons
before they leave the earth's magnetic field. Those neuiron-decay
products which mirror at high altitude will contribute to long
lasting radiation belts; those which mirror at low altitude will
be lost quickly; and finally an appreciable fraction will be lost
in the earth's atmosphere on the first north-south passage. This
last category will be comprised of those neutron-decay products

injected into the magnetic field with pitch angles such that they
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would mirror in or below the atmosphere,

Since the neutrons are uncharged and would have energies
in the low Mev region [Watt, 1952], they can travel across field
lines without being deflected and decay at regions remote from
the blast site within an extremely short time. Calculations
have been made by the authors [Kenney and Willard, 19637 to
determine if the magnitude of the neutron source is sufficient
to explain the prompt D-region enhancements, and if the geo-
graphical distribution is also correct. Calculation of the con-
tribution of this source to the trapped radiation have also been
carried out. To do this, one assumes a source of neutrons at
the burst point, and computes the decay density in the illuminated
portions of the magnetosphere. To separate those decay products
which enter the atmosphere on the first pacs and cause prompt
effects from those which have a longer life, the injection pitch
angle distribution is important. Because of momentum and energy
considerations, the decay proton comes off in essentially the
same direction as the parent neutron, whereas the electrons are

produced isotropically.

Looking at Figure 14, one sees that neutrons decaying in
different portions of the magnetosphere will cause different in-
Jectior pitch angle distributions for protons and eclectrons, but

one can take account of these different distributions. For a
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Fig. 14. Shadow plane and proton pitch angle.
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given flux *ube, all n=utrons which decay rorth of a certain

point will be travelling in such & direction that their protons
will be dumped into the northern hemisphere. All those neutrons
decaying scuth of a certain point in a given flux tube will pro-
duce protons that are dumped immediately into the scuthern hemi-
sphere. Those in between contribute to the trapped radiation,

The electron distribution can be similarly accounted for, although
they are produced isotropically at the decay point. These calcu-
lations have been performed for fission bursts at the top of a

slab atmosplere, and the results have been plotted or world maps.

Figure 15 shows the effects of a one kiloton fission burst
at Johnston Island., The numkers assigned to the contour lines
indicate the numoer cf electrons or protons formed by neutron
decay in a flux tube connected to cre cﬂz of the surface of the
earth, Figure 1f chows the effects of a similar burset at a dif-
ferent latitude, The USAEC has announced that the Russian high
altitude bursts were held in "Central Asia'", end atmospheric
bursts et Gemipalatinsk. Fcr lack of more precise information,
we have assumed that "Central Asia" is in the vicinity of Semi-
palatinsk. The contours for tiese different latitudes are quite

similar.

Figure 17 shows the effect that this same burst would have
on prompt electron deposition, The numbers attached to the con-

tours are equal tc the number of electrons dumped on the first
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Contours of neutron decay inside a flux tube of unit
area at the surface of the earth for a one kiloton
detonation over Semipalatinsk.
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entry into the atmosphere. Since the effective energy for a
neutron decay beta is about 350 kev, and it takes about 35 ev

to form one ion pair in the atmosphere, each cf these electrons
forms about lOu ion pairs as it enters the atmosphere. Most of
this erergy loss will take place in a layer about 5 km thick,
somewhere around 70 km. Figure 18 now shows the similar prompt
beta deposition for this typ- of burst at Johnston Island. Again
note that the general outline of the prompt beta deposition ex-
tends all over the western part of the United States and over to
Japan, covering part of Australia, but missing Russia and Europe

completely.

It is very interesting now to look at Figure 19 where the
prompt deposition of protons is shown, Ncte that the patch is
much smaller but more intense. Since the protons are nore ener-
getic, they also create more ion pairs as they enter the atmo-
sphere. This gives a much more intense patch in the vicinity of
the burst, and also in the conjugate area. Figure 20 shows the

prompt proton deposition for the Semipalatinsk area.

Figure 21 shows the general outline of the prompt electron
deposition for a Johneton Island burst, and also what it would
have been if the burst had been held at different altitudes.
Any VLF path which was discussed previously for which there was

a prompt effect on a Johnstor Island burst lay inside of thecse



Fig. 17. Contours of prompt beta deposition above one square
centimeter of the earth's surface for a one kiloton
detonation over Semipalatinsk.,.



o 25* 150° as® »o* s 130° 133° 130° 08" w* 7

LATITUOE

08° 120° 125° 1%0° ws® 00°® ws® 150° 128° 120° 0s® ”® 7s°®

Fig. 18, Contours of prompt beta deposition above one square
centimeter of the earth's surface for a one kiloton

detonation over Johnston Island.
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prompt areas. Those fcr which ro prompt effect was noted lay
outside of these areas. Those which were borderline were right
or. the fringes of these areas. An example ol this good agree-
ment car be seen ir the data putlished by Zmuda et al. [1964]
for the Octcber 20, 1962 shot (s.e Figure 22) ir which prompt
effects were ncted orn the NPM-APL, NPM-Anchorage, ard NPC-APL
paths, but not on the NBA-APl, path. The same sort of good
agreement is indicated by the Japanese records [Takenoshita

et al, 19637 taken of the July 9, 1962 tecst.

Similar observations hold for the Russian bursts, and for
other geophysical phenomena which depend on D-region enhancements,
such as shortwave fadeout and SEA. The extremely gocd agrecment
wits experiment as far as geographical distribution is ‘concerned
lezds orne to the conclusion that prompt D-region enhancements
outside of the line-of-sight can be accounted for by the neutron
decay. As far as the magnitude of the effect is cuncerned, things
are not as encouraging sirce the calculations indicate that the
amount of ionization produced is far too small to account for
all the effects. In looking back at the approximations we have
made, we find that every approximation has caused us to under-
estimate the magnitude of the effect. We are at present refin-

ing the approximations and repeating the calculations to see if
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agreement in magnitude can also be reached. Consideration of
the following effects must be made.
1, Different altitudes must be allowed for the burst.
This will change the geogrephical outline somewhat as
shown in Figure 21 and affect rather considerably the
prompt proton deposition.
2. Consideration must be given to a fusion reaction.
This will increase the number of neutrons, and also
give them more energy, thus making the protons more
effective for causing ionospheric disturbances.
3. The presence of any material, such as rocket
housings, in the burst area will have a moderating
effect on the neutrons. This will cause the velocity
to decrease and therefore increase tre decay density
in the ionosphere. Without a knowledge of the burst
parameters, it is impossible to estimate the magnitude
of this effect.
4, Killeen et al. [1963] have pointed out that, if
the turst ie held above the atmosphere, about 80% of
the neutrons headed downwards will be reflected from
the atmosphere and also te slowed down., This will

again increase the decay density.
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To explain the delayed effects, we must now consider

trapped radiation and its precipitation into the ionosphere.

Trapped Radiation

Several excellent papers have been published on the
trappred radiation injected into the magnetusphere from ruclear
bursts, and Dr. Hess [1964] has just given an excellent review
raper on the topic. Let us therefore limit our discussion of
this topic to consideration of the injection distribution.
When the device is detonated, the magnetic field is excluded
from the immediate vicinity of the rising and expanding bsall
of plasma because of the high conductivity. The fission ‘rag-
ments continually decay as they are contained in this diamag-
netic cavity and form high energy electrocns which are injected
at progressively larger L values as the bubble rises. This will
be the general control for the spatial distribution of most of
the trapped radiation., The 3 rays injected with low pitch
angles will be seen primarily as aurcral electrons in the two
conjugate regions., Those which undergo scattering and change
their pitch angles will not be lost so quickly. This component
will remain as trapped radiation, and wmust subsequently bounce
back and forth from L.emisphere to hemisphere as it slowly drifts
around the world. The bounce time depends on the velocity of

the particle, and the drift time on the energy of the particle.
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The other principal source of trapped radiation beside
fission decay is neutron decay which we just described. Al-
though many more fission electrons will be formed than neutron
decay electrons, the fission electrons must be injected into the
magnetosphere only near the burst point. This then gives a
larg- quantity of high energy electrons from fission decay
at L shells near the turst, and alsoc some neutron decay elec-
trons scattered all over the remaining illuminated L shells.
Since the spectrum of the fission electrons is harder than the
natural trapped radiation, it is possible to detect these elec-
trons over the background of the natural trapped radiation.

The neutron decay electrons will have a spectrum very similar
to that of the natural trapped radiation and will be very hard

to detect in small quantities.

Data on the spatial distritution of these electrons has
been presented by Katz et al. [1963] for the Russiar burst on
October 28. One notices in Figure 23 the omnidirectional flux
of electrons of E > 1 Mev, showing a double humped enhancement
after the Russiar burst. Going to more energetic electrons in
Figure 24, one sees the same double humped curve, and one is able
to follow out the shape of this curve for the next few days. In
Figure 25, the same sort of thing is noticed again. Additional

injection on I':vember 1 due to another Russian burst can be seen.

Walt et a.. ".963] have calculated the lifetime of these
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particles on a theoretical basis and obtaired rather good agree-
ment with the flux measurements of Van Allen [1963] for the
Starfish burst, es one can s-e from Figure 26. In general,
most of the electrons are lost very quickly because they are
mirroring at low ultitudes i the derse atmosphere. As time
passes, the lifetime increases and eventually stabtilizes at a
very large value., At this time, a state of quasi-equilibrium
L.as come about, in which the principal source of the particles
which are being loect comes from those which previously were
mirroring at very high altitudes, near the equator. By a
series of small-angle coulomb scattering, the pitch angles
gradually change until the particles mirror in the lower
atmosphere and then lose their energy rapidly. This pitch
angle diffusion is valid only on low I. shells. At larger L

values, other loss processes predominate.

Additional experimental evidence for the detection of the
short-lived trapped radiation can be seen from thLe VLF records
which were presented earlier. Returning back to Figure 11, one
sees that a good explanation of D-region enhancements is provided
if one has a time profile of precipitated trapped radiation which
would start overhead at about H + 20 minutes, reach its maximum
value at H + 35 minutes, and te essentially undetectable at
H + 50 minutes. Note that another phase advance follows about
an hour later. This could poseibly be the second trip around

the world of the remaining trapped radiation., The neutron decay
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spectrum fits this drift time behavior very well. Looking back
at Figure 12, however, we see a completely different behavior.
This drift time behavior is, however, coasiste:t with a fission
electron source. It then becomes clear that, at large L values,
the October 22 shot injected fission decay betas, but the
November 1 burst did not. The Novemtier 1 burst, did, however,
inject a considerable amount of neutron decay betas. These data
can be used to speculate on the burst size and altitude of these

two events,

We have thus far shown that the trapped radiation and D-region
behavior can probably be explained by the two sources, fission de-
cay and neutron decay. The observation of synchrotron radiation
at Jicamarca and Huancayo [Ochs et al. 1963] with no absorption in
cosmic noise, coupled with the delayed absorption at the Maipu
Observatory [Jusick et al. 1964] and the data taken on the
USNS Eltanin [Basler 1963)] off the Chilean coast 23°S geomagnetic,
also lend considerable credence to these ideas. Depending on the
location and type of experiment either of these sources can be
relatively more or less effective than the other, These D-region
enhancements can be used to explain many of the observed zeophysi-

cal effects, such as SSWF, SCN., SEA, etc..

Magnetic Effects

There seems to have been three separate magnetic effects, I,

one "instantaneous", II, a secord effect which was delayed a few
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seconds, and finally, III, a main effect.
1€ An instantaneous pulse with high frequency (f > 2 cps)
was noted simultaneously at H + O seconds on many stations,
The accuracy of determining simultaneity varies from milli-
seconds to tenths of seconds, depending on the timing resolu-
tion of the various stations., The most likely explaration
for this is that a spheric was excited near the burst by x
and y ray emission, This, like a lightning stroke, would
travel with the velocity of light in a vacuum and have high
frequency components, including Schumann resonances (Balser
and Wagner, 1963]., Since most magnetic stations do not have
sufficiently high frequency response, this instantaneous
signal may be present at all stations, but remain undetected

because of instrumental limitations.

II. At H + a few seconds, a world-wide effect was noted.
Tnis consisted of an oscillatory signal with an initial
period of about four seconds whkich probably decreased to
about two seconds within a few oscillations. The signal

was very highly damped. Many people have reported on these
disturbances, such as Wilson and Sugiura [l9ﬁ?j, Bomke et al.
{1960], end Lerthold et al. [1990) and aave in‘erpreted this
as the result of traveiling nydromag:netic waves with possibly
two velocities, the modified Alfven (or fas*) and generalized

Alfven (or slow) modes. Ideally, one could taen take a net-

work of stations located at different distances, and measure
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these propagation velocities. The trouble with this is that
confusing results are obtained because of the very wide dif-
ference in velocity calculations. Indeed, Caner [1964] has
recently lcoked at this problem and attempted to determine
the accuracy of the various station delay times that have
been reported. The result of his study is quite surprising;
since he finds that the stations which he believes to have
the best timing accuracy all report that the onset of the
rapid fluctuations disturbance is delayed about 2 seconds

after the burst, independent of the iocation of the station,

If Caner is right, then, one rules out hydromagnetic
waves as the cause and looks for a delayed electromagnetic
wave, Of the many suggestions which he has advanced for
this mechanism, one of the most plausible is that a broad
band packet of energy is released from the burst site and
travels via a hydromagnetic wave to the southern conjugate
region, taking 2 seconds to get there. Some of the energy
is then coupled into electromagnetic radiation, but the
bulk is transferred back to the northern region. No coup-
ling takes place there due to the high degree of ionization
at that end. The packet returns to the southern region where
the process is repeated. The ionization along the path
changes rapidly, so the propagation velocity changes and
one can explain all the detailed features of this rapidly

oscillating signal via this mechanism.
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It is clear that the way out of this problem is to
have the various experimenters put realistic limits on
their timing accuracy and report these limits at the time
they report the disturbances on their data. Analysis of
data from other tests would also quickly point out which

approach is the correct one. y

III. Finally a general or main magnetic disturbance was
reported by many stations. These slow variations were
different at each station, but world-wide in character.
Maeda [1964] has attempted a treatment of this topic, and
has computed the.effect due to:

l. Diamagnetic plasma at the burst site,

2, ring current of trapped particles, and

3. augmentation of the Sq currents, associated with

an anomalous jonization in the ionosphere created by

x and Yy radiation.
After computing these effects, a world-wide map was con-
structed to compare with the experimental values, and

reasonable, but not perfect agreement was attained.

This general approach to the problem is quite probably
correct, although there are so many uncertainties involved
in the parameters, that it would be surprising if perfect

agreement did exist. Perhaps further work along simiiar

e EEE———— s
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lines will enhance this agreement. As further information
on anomalous ionization becomes available, refinements on

these calculations will be possible.

F-Region Disturbances

Observations of changes of f°F2 and spread-F leave little
doubt that the F-region also becomes disturbed by high altitude
nuclear bursts. The mechanisms used to explain D-region enhance-
ments simply do not fit the F-region. Changes in the F-region do
not occur simultaneously on a world-wide basis. Measurement of
the delay time for onset of the disturbances detected at different
stations gives multiple values for the velocity of propagation
ranging from a hundred meters Bec'1 to thousands of meters sec'l
[(Berthold et al. 1960; Obayashi, 1962]. Hydromagnetic waves and
gravity waves seem to be necessary and sufficient to explain

these disturbances in remote regions.

E-Region Disturbances
Davis and Headrick [1964] have recently described short

period fluctuations in the E-region over the United States
following a high altitude nuclear burst, and point out the
striking resemblance that these fluctuations bear to the magnetic
disturbances. This is interesting because it again demonstrates

the intimate connection between changes in the earth's magnetic
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field intensity and ionospheric currents at E-layer heights.

D-Region Parameters

Because of the impulsive nature of the ionization source
in the nighttime ionosphere, it was hoped that additional in-
formation cn some of the D-region electron removal processes
could be obtained. Along this line Le Levier [1964] has
recently published an analysis of the transient effect on the
D-region due to the prompt x and y radiation and has arrived
at a new estimation for the D-region dissociative recombination
coefficient. This has been estimated to he between 3 x 10~/
and 7 x 10-7 cmBse::..l for 70 km altitude., Perhaps better

values for the electron attachment coefficient can also be

obtained,

Qutstanding Problems

Although a great deal of information was obtained, all
the phenomena associated with high altitude bursts has not yet
been clarified. A partial listing of some of the unexplained
phenomena is given below.

l. As pointed out earlier, the magnetic effects are not
completely understood.

2. Approximately a 1% increase in equatorial neutron
monitor rates was reported by Casaverde et al. [1963]
for the July 9, 1962 event. The reason for this is not

clear.
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3. Filz et al. {1963) has reported a sharp increase in
the loss of high energy protons (-~ 55 Mev) from the inner
belt over quite a long period sutsequent to the Russian
bursts,

4, High latitude aurora:, well above the burst conjugate,
were observed over New Zealand [Neff, 1963] at the time of
the July 9, 1962 test.

5. Similarly, high latitude riomweter absorptio: was noted
in Alaska [Basler et al. 1963] in synchronism with the test
on July ©, 1962,

6. Tre July 9 increase in ccunting rates [Durney et al.
1963] delay by approximately 20 seconds that was detected

by Ariel sestellite at high L values still remains unexplained.

Many of the principal outstanding problems can perhaps be
solved if more data are forthcoming from different experimenters.
In this line, we would particularly request three things.

1. That experimenters put, where possible, limits on accuracy

of their data, particularly as far as timing is concerned.

2. That the results of other tests be published. A great

deal of informatior has been released about the July 9, 1962

test but relatively little about the others, particularly

the Russian tests.

3. hat negative results also be reported if regative re-

sults are found. Quite frequently, these negative results

sre just as important as positive results when one is attempting
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to evaluate the validity of a particular theory.

Note Added in Proof

After this paper was given, we were pleased to note that
part of the controversy over the magnetic effects may have been
resolved by a later publication of Bomke et al. [1964]. These
authors report on the results of a network of high-time-resolu-
tion magnetometers in the Pacific area, and indicate that a
strong oscillatory signal was detected simultaneously at all
stations 1.9 seconds after the burst, Tris confirmation of
Caner's analysis is interesting and leads one to look for the

delayed emission of radiation.

A possible connection between this delayed eleciromagnetic
emission, and the rapid re-entry of the magnetic field into the
diamagnetic cavity at the burst site [Colgate, 1963] should not
be overlooked, although a rigorous mathematical treatment is

needed to evaluate this suggestion.

Recently, an alternate explanation of the prompt D-region
effects has appeared in the literature. Foderaro [1964] has pro-
posed a model in which a neutron diffusion mechanism produces the
D-region ionization by neutron-air molecule collisions., The

shape of the affected regions differs significantly from that
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