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ABSTRACT 

In 19^2, both the Russians and the Americans conducted 

a series of high altitude nuclear explosions which had wide- 

spread geophysical effects.  A study of these effects is 

useful to the geophysicist if it will shed light en the 

mechanisms responsible for similar geophysical phenomena 

which are noted in association with normally occurring dis- 

turbances. 

This paper presents a review of the effects of nuclear 

testing, with special emphasis on the trapped radiation, the 

ionosphere, and magnetic disturbances.  An interpretation of 

these different phenomena is made. 
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Introduction 

The detonation of high altitude nuclear devices has a pro- 

found effect upon the earth's atmosphere.  Man^ observations of 

these effects hetve been made and various interpretations of the 

causative mechanisms have been attempted in the part few years. 

Because of the similarity of these events to the naturally 

occurring geophysical phenomena, considerable interest in the 

subject exists at this time, and there is value in the presenta- 

tion of a review of some of the published articles that are of 

interest to the geophysicist. 

It shou'd be born« in mind throughout this review that a 

considerable amount of classilied information may still f-xist. 

High Altitude Tests 

In recent years, a number of high altitude nuclear tests 

have been conducted by both the Americans and the Russians. 

The first series, bad: in 195^, yielded onlj a limited amount 

or information useful to the geophysical scientist because 

many detail^ of the detonations were rot made public prior 

to the «.vents.  In 19^2, however, the American series was 

sufficiently well announced 4o allow ma1y scientists the 

opportunity to set up experiments designed to investigate the 

details of the geophysical phenomena associated with these 

bursts and publish tJeir results in the open literature.  In- 

deed, the rapidity with which much of the classified data were 
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made  public  has been quite  remarlcable and gratifying. 

Announcements  by both  the United  States  Atomic  Erergy 

Commission and  the  beismological   Institute at   Uppsalla  also 

afforded  scientist» some  information on  the  Russian detona- 

tions  very  soon after they were held.     Although  the  exact 

details  of the yield,   altitude,   and some of  the other burst 

parameters  are  still   not   available,   sufficient   information has 

been   released  to  allow many  useful   studies  to  be made.     Table 1 

gives  some of  the details  of   the announced high  altitude nuclear 

bursts. 

Table  1 

Location 

♦ J. .1. 

J. .1. 

♦♦c. ,A. 

J. , I. 

c. A. 

c. A. 

J. I. 

J, I. 

♦ J. I.    = 

♦*c. A.   = 

Time 
Altitude 

(km) Yield 

Jul     9,   62 ~ 0900UT  hundreds Mtgmton 

Oct  20,   62 ~ 083OUT       tens low 

Oct  22,   62 ~ O^lUT high 

Oct  26,   62  ~ lOOOUT tens 

Oct 28,   62 - O^lUT high 

Nov     1,   62 ^ 091OUT high 

Nov    1,   62 ~ 1210UT tens 

Nov    4,   62 -^ 063OUT tens 

Johnston  Island 

Centra'   Asia 

few hundred kT 

submegaton 

intermediate 

intermediate 

submegaton 

low 

Reference 

Brown et al. (1965) 

AEC E-582 

AEC E-384 

AEC E-389 

AEC B-391» 

AEC E-kOk 

AEC E-kOO 

AEC E-407 

Studies  of naturally  occurring geophysical   phenomena are 

usually   complicated  by lack of  knowledge of the   cause of  the 
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disturbance.     Although   the  tota1   amount  of  energy  contained  in any 

one  of  these  ovents  is  small   in  comparison with  a solar-associated 

disturbance,   the initiating cause is  very  localized  and the  timing 

is,   at  least   in some  cases,   so  well   known  that  propagation times 

of   various  disturbances   can be  measured.     This   is  normally not 

possible  in  the  cnse of  a  solar  disturbance.     Consequently,   exten- 

sive  interest   has been  shown  in  the  study  of  the  geophysical  per- 

turbations  associated with nuclear  testing.     Gtudies  of the  large 

scale  displays  resulting  from  this  type of  controlled  stimulus 

may be  used  to  shed light   on  the  details  of  the  mechanisms 

responsible   for naturally  occurring geophysical   phenomena. 

High altitude nuclear   detonations,   in particular,   give  rise 

to  aurora,   cosmic  noise absorption,   sporadic   E  ^Gregory,   19^2], 

shortwave  fadeout,   magnetic  disturbances   ^Kaeda   et  al.   19^1» 

micropulsations   [cane'"  and Whitman,   1962],   spread-F [Heisler and 

Wilson,   1962],   VLF anomalies   [Willard and Kenney,   1965],   D-layer 

enhancements   [Obayashi   et   al.   1959]  and other  disturbances  close- 

ly  resemling phenomena which one  notes  normally  in  nc-ure.     Many 

of   these  disturbances   can be  explained in  terms  of  debris motion 

and   fireball   expansion,   others   can be  explained  as  the  effects  of 

trapped  radiation,   while   the origin of still   other  disturbances 

is  obscure. 
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Energy   Release 

Figure  1  is a  schematic  representation of a  nuclear test 

published by Alpert   [19^2],     At  the time  of  the  explosion,   a 

large  amount  of  energy  is  released in a small   volume.     X-rays, 

V-rays,   fission  fragments,   electrons and  neutrons  are given 

off,   and a  dense hot plasma is   formed in  the  burst   area.     Gairma 

and  x-rays  spray out   in  a 4ii  geometry,   those  headed downward 

will   cause  ioriization of  the upper atmosphere and ionosphere, 

whereas  those which head  outward are  lost.     The neutrons spray 

out  also,   travelling in  a straight  line,   undeviated by  the 

magnetic  field,   at  a  velocity whicl"   depends  on the  neutron 

kinetic  energy.     The  neutrons  heading outward   can  have some 

effect,   since they may  decay  into  electrons  and protons before 

leaving  the magnetosphere.     ^he  resulting  charged particles 

will   be  constrained  to   spiral  along the magnetic  field  lines, 

either   entering the upper atmosphere on   the   first  few bounces, 

or  spending a  longer period of  time as  trapped  radiation. 

Energetic  electrons  that   leak out of the blast   area at  the time 

of  the burst will  also  spiral  along the  field lines,   contributing 

to   the aurorn and trapped  raliation. 

The bulk of the plasma   forms a high-temperature  diamag- 

netic  cavity,   which will  slowly   expand and  exclude  the earth's 

magnetic  field  from the  immediate  vicinity of  the  explosion. 

If  there  is  an appreciable  atmosphere,   the bubble will  be buoy- 

ant,   and  gradually  rise  to   higher altitudes.      Charged particles 
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leaking out as the bubble rises will be released into the 

magnetosphere at progressively larger L values.  As the bubble 

expands, the internal energy density drops until finally the 

magnetic field re-enters the volume.  At this time, the 

charged particles which have been contained are now free to 

leave, and the energy density drops rapidly.  Using this sort 

of analysis on the July 9» 1962 event, Colgate [1965] arrived 

at the figure of two and one half seconds for the value of the 

time during which the magnetic fi^ld was excluded. 

In the immediate vicinity of the burst area, there exists 

such a plethora of both prompt and delayed radiation, that it 

is difficult to sort out the effects that each particular con- 

stituent would have.  In general, one may say that the behavior 

of the atmosphere and ionosphere within the line-of-sight of 

the burst, will, to a large extent, be controlled by the x and 

Y radiation, since about half of the energy released comes off 

in the form of x and v radiation [Latter et al. 196l].  Without 

much knowledge of the burst parameters, it is difficult to do 

more than estimate the effect that this would have on the sur- 

roundings.  The problem is complicated by any excess material 

that may be located ir. the burst vicinity, since this would 

change the spectrum of the x and y  radiation.  There is, how- 

ever, no basic lack of understanding of the energy transfer 

mechanisms.  ^As an example, see Latter and LeLevier [1965]). 
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On the  other hand,   if one  confines  oneself  to   regions 

remote  from  the burst   area,   it   becomes  possible  to  sort   out 

some of  the   cause  and   effect   relationships.     Many  of  the  remote 

effects,   such  as  shortwave  fadeout,   VLF  anomalies,   sudden  en- 

hancement  of  atmospherics,   etc.,   can be  easily   explained  if  a 

mechanism  exists   for increasing  the  D-region ionization  in  the 

proper  fashion.     The  geographical   extent,   tine behavior,   and 

mag-itude cf  these  D-region enhance-nents must be sufficient   to 

explain all   the  observed disturbances. 

VLF Disturbances 

Perhaps   the  best   evidence   for  enhancements  of  the  D-region 

at   large distances   from  the burst   site   comes   from records  of VLF 

disturbances   in  both phase  and  amplitude   following  the  explosion. 

For most  VLF propagation paths,   the  relative phase of the  received 

signal  exhibits  a  diurnal   variation  which has a  trapezoidal   form. 

The  interpretation  of   this  is  rather  simple.     The wave  propagates 

in  the  earth-ionosp1.' re waveguide,   and  the  effective  reflecting 

height   for a  given   frequency  undergoes  a  diurnal   change.      As   the 

sun  comes  up,   solar  radiation  causes  a   considerable  increase  in 

the   ionization,   such  that  the D-layer   extends  downward   to   aome 

60  km or  so  above  the  earth's surface.     At   night,   the  effective 

reflecting height   for  VLF waves  increases  to  about   90  km.     Recom- 

bination,   electron attachment  etc.,   have  caused  the  electrons  to 

disappear,   and   the  strong solar  uitra-violet  source  excitation  is 
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now absent.     At   night,   any increase of  ionization below about 

90 km can  be detected with surprisingly  high sensitivity by 

the VLF techniques.     When a nuclear test  increases  the  D-region 

ionization,   the   following effects  on  VLF transmissions may be 

expected. 

1) Phase  -   Since  the ionization increases,   the  effective 

reflecting height   is  lowered,   and  the propagation  time  for 

the  signal   to   go   from transmitter  to   receiver decreases. 

This always  causes a  relative phase advance in  the  signal 

[Wait  and Spies,   196l]. 

2) Amplitude  -  The amplitude  of  the  received  signal  may 

either increase  or  decrease,   depending on what  happens  to 

the mode  of  transmission.     If   the  receiver is  located  near 

the principal   minimum,   the  signal   can  either  increase  or 

decrease as  the reflection  height   is  lowered  [Frisius   et  al. 

19^1.     At  lar£;e  distances,   the signal   strength usually 

decreases with a  decrease in  effective reflection  height 

[Wait,   1957].     Nevertheless,   Wait  and Walters  [1963]  have 

shown a  decrease  in  VLF reflection   coefficient  waen  a  small 

increase   in  ionization is   formed well   below  the normal   re- 

flection  height.     If the increased   ionization  is   formed 

near  the  reflecting height,   the  apparent   steepening of  the 

-•nization gradient  can increase  the  reflection coefficient. 

Thus,   even at   large distances,   the  signal   strength   can  either 

increase  or decrease. 
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VLF Data 

Detailed  studies have been made of changes  in the phase and 

amplitude  recordings  of VLF stations  during the  various high 

altitude  tests  of  1962  by  several   groups.     In general,   two   types 

of effect  are  noted  in  these  data-     The   first  is  a prompt   effect, 

not noted on all  the  records,   in which  the  signal   characteristics 

change qu'.ckly.     The second  effect  may be delayed  several  minutes 

and last  much longer. 

One of  the  best   documented   tests   is  the July  9»   19^2  test 

held at   Johnston   Island,   although  reasonably good  records   exist 

for all   the  American  tests and most   of  the Russian   tests.     To 

illustrate  the prompt  and delayed  effects,   let us  start  with  the 

records  of phase and amplitude   for  the  October 26,   1962  tests at 

Johnston   island.     These  records  were  taken  by  H,   R.   Willard   for 

the NPM  transmission,   Honolulu   to  Seattle,   19.^  kHz.     Figure 2 

shows  the  amplitude  record on  two  different   time scales   for  this 

event.     H   +  0 marks   the detonation  time.     Approximately  80 ms 

after H  +  0,   an  extremely  rapid  drop  in  amplitude   took place, 

followed by  a very  rapid recovery.     At  about  H   f 16  seconds,   a 

second  fade  started  and  reached  a minimum signal  amplitude  nt 

H   + 10^  seconds.     Recovery  finally  commenced and was  esseitially 

complete some  1?   to  20 minutes  after  the burst.     Figure  5  shows 

a  comparison  of  the  phase and  amplitude  records on  the  shjrt 

time scale.      The  time  constant   of the  electronics  for the ampli- 

tude recording wa.^  very short,   as  one  can see  from   .he  individual 
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dots and dashes of the code transmission.  The time constant 

of the phase measuring device was a couple of seconds.  Con- 

sequently, ;>ne may say that a prompt (i.e., ^0 ms) and large 

effect took place on both phase and amplitude, the phase re- 

covering first, and then starting again with another phase 

advance which was delayed.  The rapidity with which the pro.apt 

effect recovered shows that the electron removal processes 

were rapLd.  The entire effect was consistent with excess 

ionization created deep in the D-region from a .sudden impul- 

sive source, followed at a later time by a delayed injection 

of excess ionization which lasted a much longer time.  At 

H + 106 seconds, the transmitter went into a frequency shift 

keying sequence which accounts for the double envelope of 

amplitude in this and in the preceding figure, and the loss 

of phase track on this record after H -t- IOC   seconds. 

Turning row to the records of other observers, one sees 

in Figure 4 tie data taken by Zmuda et al. [19631  on three 

propagation paths for the July 9 test.  A prompt effect is 

present in the NPG-APL path, not present on the NBA-APL path, 

and only marginally perceptible on the 1VW7L-APL path.  All 

three paths certainly have delayed effects. 

The next sets of data were taken by Frisius et al. [l96k] 

on  the paths shown in Figure t?.  This chain of stations is par- 

ticularly useful in that it allows a very complete monitoring 

■■MM 
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Fig.   h,       VLF  d ist urbane ei.-. raeaKured  at  APL,   July  9,   1962 
[Zrauda et  al.   1963]« 



-14- 

of changes in the mode of propagation over this region by com- 

paring the way amplitude builds up and decreases on a station 

to station basis.  Figure 6 shows the data talcen on this net- 

work for the October 22, 1962 Russian burst around 03/+lUT. 

Again a prompt and a delayed effect are noted on these records. 

Figure 7 shows a similar data taken on this same network for 

the October 28 Russian test. 

Finally, let us return to additional records taken in 

Seattle, Washington of the reception of a VLF station from 

Boulder, Colorado [R. Meuse, private communication].  Looking 

at Figure 3, one sees that the appearance of the WWVL reception 

for the October 26 event with a slow-speed response in the 

phase detection system has the following form.  At the time of 

the burst, there is a very sudden advance in phase coupled with 

a gradual recovery.  We have earxier seen from a recording with 

high speed resolution that a prompt and a delayed effect were 

both present.  Because of the very slow response time of this 

equipment, it is impossible to resolve the two effects.  However, 

one can see that a large and prorpt increase in D-region ioniza- 

tion is certainly present.  In Figure 9, one sees that the ef- 

fect of the much larger burst on July 9 has the same shape, but 

a larger magnitude.  Indeed, in Figure 10, again one notes that 

the very small effect due to the low yield burst of October 20, 

19^2 has the same shape.  In Figure 11, note the interesting fact 

.4 . ». «M. 
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that the American test on November 1, 19^? again produced an 

effect which has the same shape on the trace, tut the Russian 

test some three hours earlier had only a delayed effect.  ;. :. 

burst which occurred somewhere around 0910UT had no evident 

effect for some 20 minutes, then it reached its maximum distur- 

bance about H + 55 minutes and was essentially recovered within 

an hour.  In Figure 12 one notes again that the Russian burst 

of October 22  had no prompt effect on this propagation path; 

the delayed effect also had a different appearing trace on the 

record than that of November 1, being much larger, delayed only 

a few minutes, and lasting a much longer time. 

Without showing any more data of this kind, let us sum- 

marize what has been shown.  Both prompt and delayed effects 

can occur in the ionosphere after a nuclear burst.  For the 

Russian bursts, prompt effects were noted all over Western 

Europe, but not the Wtstern United States.  For the American 

tests, prompt effects were always noted in the Western United 

States, and only sometimes in the Eastern United States, depend- 

ing on the paths in/olved.  The time behavior of the delayed 

effects could also vary even though the explosion location and 

detection sites remained the same.  Let us now attempt to explain 

the cause of all these effects. 
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Prompt Effects 

Records taken over the United States with uniy half-minute 

time resolution saw the effects commencing "simultaneously" with 

the burst.  X and v radiation must be ruled out as the cause of 

the prompt effect because this effect was not confined to regions 

within the line-of-sight of the burst.  We can also eliminate 

direct 3 particles and debris as the cause of the first phase 

advance since no charged particles can reach the NPM transmis- 

sion path directly from the blast area soon enough.  Dumping of 

trapped radiation, ionospheric enhancements due to travelling 

hydromagnetic waves, and similar causes must also be ruled out 

as the cause of the prompt effect because the temporal and spatial 

behavior of these sources can be shown to be unsuitable. 

The answer to the prompt effect lies in the neutrons which 

leave the blast area.  As was first suggested by Grain and 

Tamarkin [1961], a small fraction of the neutrons formed in the 

fission area (see Figure 15) will decay into protons and electrons 

before they leave the earth's mag-netic field.  Those neutrun-decay 

products which mirror at high altitude will contribute to long 

lasting radiation belts; those which mirror at low altitude will 

be lost quickly; and finally an appreciable fraction will be lost 

in the earth's atmosphere on the first north-south passage.  This 

last category will be comprised of those neutron-decay products 

injected into the magnetic field with pitch angles such that they 
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would mirror  in or  below  the  atmosphere. 

Since   the   neutrons  are  uncharged and  would have   energies 

in  the low  Mev   region   [Watt,   1952],   they   can   travel   across   field 

lines without  being deflected  and  decay  at   regions  remote   from 

the blast   site  within an extremely   short   time.     Calculations 

have been  made  by  the  authors  [Kenney  and Willard,   19^3]  to 

determine   if the magnitude of  the neutron source is  sufficient 

to   explain   the  prompt   D-region   enhancements,   and  if  the  geo- 

graphical   distribution  is also   correct.     Calculation  of  the  con- 

tribution   of  this  source  to   the   trapped  radiation  have  also  been 

carried out.     To  do   this,   one  assumes a  source of  neutrons at 

the  burst   point,   and  computes   the  decay  density  in   the  illuminated 

portions  of  the raagnetosphere.      To   separate   those   decay  products 

which enter  the atmosphere on  the   first  pass and  cause  prompt 

effects   from those which  have  a   longer  life,   the  injection pitch 

angle distribution  is  important.      Because  of momentum  and  energy 

considerations,   the  decay proton   comes  off   in  essentially  the 

same  direction  as  the  parent   neutron,   whereas  the   electrons are 

produced  isotropically. 

Looking at   Figure   14,   one   sees  that   neutrons  decaying in 

different   portions  of  the magnetosphere will   cause  different   in- 

jection  pit cJ   angle  distributinr.s   for protons and   electrons,   out 

one  can  take  account  of   these  different   distributions.     For a 
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Fig.   14.     Shadow plane and proton pitch angl e. 
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given   flux  tube,   all   neutrons  wir. ch decay  north  of a   certain 

point  will  be  travelling in  such a direction  that   their protons 

will  De  dumped  into  the northern  hemisphere.     All   those neutrons 

decaying sr uth of a  certain point   it:  a given  flux  tube will pro- 

duce protons  that   arc  dumped  immediately  into  the southern hemi- 

sphere.     Those in between  contribute  to  the   trapped  radiation. 

The electron  distribution  can be  similarly accounted   for,   although 

they are produced  isotropicaliy  at   the  decay point.     These calcu- 

lations have  been performed  f^r   fission bursts  at   the  top of a 

slab  atmosphere,   and  the  results  have been plotted or.  world maps. 

Figure   15  shows   the  effects  of a  one  Jd loton  fission burst 

at   Johnston   Island.     The  numbers  arsigned  to   the  contour  lines 

indicate  the   numoer of electrons  or protons  formed by   neutron 
2 

decay   in  a   flux  tube  connected   to  ere  en    of the  surface of the 

earth.     Figure  if  chows  the   effects  of a similar burst  at   a  dif- 

ferent   latLtud»-.     The  USAEC has   announced  that   the Russian high 

altitude bursts  were  held  in "Central   Asia",   and  atmospheric 

bursts et   Gemipalatinsk.     For  lack of more precise  information, 

we have assumed that  "Ctntral  Asia"  is  in the vicinity  of  S«mi- 

palatinsk.     The  contours   for  these  different  latitudes  are  quite 

similar. 

Figure   17 shows the effect   that  this same burst  would have 

on prompt   electron  deposition.      The  numbers attached  to   the con- 

tours are  equal  to  the number of  electrons dumped on  the  first 
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Fig. 15,  Contours of neutron decay inside a flux tube of unit 
area at the surface of the earth for a one kiloton 
detonation over Johnston Island, 
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Fig,   16,     Contourv.  of  neutron  decay   inside  a   flux   tube   of  unit 
area at   the   surface   of  the  earth   for a  one  kiloton 
detonation   over  Semipalatinsk. 
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entry   into   the atmosphere.     Since  the  effective  energy for a 

neutron  decay beta is about   ^50 kev,   and it   takes about   35 ev 

to   form one  ion pair  in  the atmosphere,   each  of these  electrons 

forms about   10    ion pairs  as  it   enters the atmosphere.     Most  of 

this  energy  loss will   take place  in a layer  about   5 km thick, 

somewhere around 70 km.     Figure  18 now shows   the similar prompt 

beta  deposition   for this  typ^ of burst  at  Johnston  Island.     Again 

note  that   the  general  outline of  the prompt   beta  deposition ex- 

tends  all  over  the western  part   of the United  States  and over to 

Japan,   covering part of Australia,   but  missing Russia and Europe 

completely. 

It   is very interesting  new to  look at  Figure  .''9 where  the 

prompt  deposition of protons  is shown.     Ncte   that   the patch is 

much  smaller but  more  intense.     Since  the protons are more ener- 

getic,   they  also   create more  ion  pairs  as  they  enter  the atmo- 

sphere.     This  gives a much  more intense patch  in  the  vicinity of 

the  burst,   and also  in  the  conjugate area.     Figure 20  shows the 

prompt  proton  deposition  for  the Semipa1atinsk area. 

Figure 21   shows  the general  outline of  the  prompt   electron 

deposition  for a Johnston   Island burst,   and also  what   it  would 

have  been  if  the burst  had beer  held at   different  altitudes. 

Any  VLF path  which was  discussed previously  for  which  there wa? 

a prompt   effect  on a .'ohnstor.  Island burst  lay  inside of these 
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Fig, 17. Contours of prompt beta deposition above one square 
centimeter of the eartn';-. surface for a one kiloton 
detonation  over  Cemipalatinsk. 
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Fig. l8. Contours of prompt beta deposition above one square 
centimeter of the earth's surface for a one kiloton 
detonation  over  Johnston  Island. 
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Fig, 19.  Contours of prompt proton deposition above one square 
centimeter of the earth's surface for a one kiloton 
detonation over Johnston Island. 
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Fig, 20.     Contours of prompt proton deposition above one square 
centimeter of the earth's surface for a one kiloton 
detonation over SemLpalatinsk. 
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Fig;.   21,      Outline   of extreme   neutron  decay  injection  showing 
effects  of  increased  burst  altitude. 
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proapt  areas.     Those   for wMch  ro  prompt   effect  was   noted  lay 

outside cf  these  areas.     Those which  were  borderline  were  right 

on   the  fringes  of   these-  areas.     An  example  of  this  good  agree- 

ment  car  be  seen  ir    the  data published by   Zmuda  et  al.   [l9£4] 

for  the October 20,   1962  shot   (t^e  Figure  2?)   ii   which prompt 

effects were   noted   on   the  NPM-APL,   NPM-Anchorape,   and  NPG-AP1. 

paths,   but   not  on   the  N3A-APh path.     The   same  sort  of  good 

agreement   is  indicated  b^   the  Japanese  records   ^Takencshita 

et  al.   1965]   taken  of  the July  9,   1962   test. 

Jimll&r observations  hold   for  the  Russian bursts,   and  for 

other geophysical   phenomena which  depend  on  D-regiou  enhancements, 

such as  shortwave   fadeout  and SFA.     The   extremely  good  agreement 

•ith   experiment  as   far  at.  geographical   distribution  is   concerned 

leads one  to   the  conclusion  that   prompt   D-region  enhancements 

outs:de of   the   line-of-s:ght   can   be  accounted  for by   the  neutron 

decay.     As   far as   the  magnitude  of the   effect   is  concerned,   things 

are   not  as   encouraging  slice  the   calculations   indicate  that   the 

amount of ionization produced  it   far  too  small   to  account   for 

all   the  effects.      In  looking back  at   the  approximations we  have 

made,   we   find   that   every  approximation  has   caused  us   to  under- 

estimate the  magnitude  of the  effect.     iVe  are  at  present  refin- 

ing  the approximations  a-.d  repeating the  calculations   to   see  if 
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agreement in magnitude can also be reached.  Consideration of 

the following effectt must be made. 

1. Different altitudes must be allowed for the burst. 

This will change the geographical outline somewhat as 

shown in Figure 21 and affect rather considerably the 

prompt proton deposition. 

2. Consideration must be given to a fusion reaction. 

This will increase the number of neutrons, and also 

give them more energy, thus making the protons more 

effective for causing ionospheric disturbances. 

3. The presence of any material, such as rocket 

housings, in the burst area will have a moderating 

effect on the neutrons.  This will cause the velocity 

to decrease and therefore increase the decay density 

in the ionosphere.  Without a knowledge of the burst 

parameters, it is impossible to estimate the magnitude 

of this effect. 

k.     Killeen et al. [1965] have pointed out that, if 

the bur^t is held above the atmosphere, about 80% of 

the neutrons headed downwards will be reflected from 

the atmosphere and also be slowed down.  This wilJ 

again increase the decay density. 
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To   explain  the delayed  effects,   we must  now  consider 

trapped  radiation  a'.d its precipitation into   the  ionosphere. 

Trapped  Radiation 

Several   excellent  papers   have been published on  the 

trapped  radiation injected into  the magnetosphere  from  nuclear 

bursts,   and  Dr.   Hess  [l96k]  has  just  given an  excellent   review 

paper on  the  topic.     Let  us  therefore  linit  our discussion of 

this  topic  to   consideration  of  the  injection  distribution. 

When  the device is  detonated,   the magnetic   field is  excluded 

from  the  immediate  vicinity of  the  rising and  expanding ball 

of plasma because  of the high  conductivity.     The  fission   frag- 

ments  continually  decay as   they are  contained  in   this  diamag- 

retic   cavity  and  form high  energy   electrons which are  injected 

at  progressively  larger 1   values  as  the bubble rises.     This will 

be the general   control   for  the  spatial   distribution  of most of 

the  trapped radiation.     The   3   rays  injected with low pitch 

angles will   be seer  primarily  a£.  auroral   electrons  in  the  two 

conjugate  regions.     Those which  undergo  scattering a.id  change 

their pitch angles will  not  be  lost  so   quickly.     This  component 

will   remain as   trapped  radiation,   and must   subsequently  bounce 

back and  forth   from hemisphere   to  hemisphere as  it  slowly  drifts 

around   the world.     The bounce  time  depends on  the  velocity of 

the particle,   and  the drift  time on  the  energy of the particle. 
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The other principal source of trapped radiation beside 

fission decay is neutron decay which we just described.  Al- 

though many more fission electrons will be formed than neutron 

decay electrons, the fission electrons must be injected into the 

magnetosphere only near the burst point.  This then gives a 

larg^ quantity of high er.erg;, electrons from fission decay 

at L shells near the burst, and also seme neutron decay elec- 

trons scattered all over the remaining illuminated L shells. 

Since the spectrum of the fission electrons is harder than the 

natural trapped radiation, it is possible to detect these elec- 

trons over the background of the natural trapped radiation. 

The neutron decay electrons will have a spectrum very similar 

to that of  the natural trapped radiation and will be very hard 

to detect in small quantities. 

Data on the spatial distribution of these electrons has 

been presented by Katz et al. [19^5] for the Russian burst on 

October 28,  One notices in Figure 25 the omnidirectional flux 

of electrons of E > 1 Mev, showing a double humped enhancement 

after the Russian burst.  Going to more energetic electrons in 

Figure 2^, one sees the same double humped curve, and one is able 

to follow out the shapt of this curve for the next few days.  In 

Figure 25, the same sort of thing is noticed again.  Additional 

injection on ".-enber 1 due to another Russian burst can be seen. 

Walt et a . r.963] have calculated the lifetime of these 
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particles on a theoretical baeis and obtained rather good agree- 

ment with the flux measurements of Van Allen [1963] for the 

Starfish burst, es one can s^e from Figure 26.  In general, 

most of the electrons are lost very quirkly because they are 

mirroring at low altitudes i- the dense atmosphere.  As time 

passes, the lifetime increases and eventually stabilizes at a 

very large value.  At this time, a state of quasi-equilibrium 

has come about, in which the principal source of the particles 

which are being lost comes from those which previously were 

mirroring at very high altitudes, near the equator.  By a 

series of small-angle coulomb scattering, the pitch angles 

gradually change until the particles mirror in the lower 

atmosphere and then lose their energy rapidly.  This pitch 

angle diffusion is valid only on lo* L shells.  At larger L 

values, other loss processes predomirate. 

Additional experimental evidence for the detection of the 

^hort-lived trapped radiation can be seen from the VLF records 

which were presented earlier.  Returning back to Figure 11, one 

sees that a good explanation of D-region enhancements is provided 

if one has a time profile of precipitated trapped radiation which 

would start overhead at about H + 20 minutes, reach its maximum 

value at H ♦ 35 minutes, and le essentially undetectable at 

H + 50 minutes.  Note that another phase advance follows about 

an hour later.  This could possibly be the second trip around 

the world of the remaining trapped radr'ation.  The neutron decay 
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Fig,   25.     Omni-Uirectional   flux,   electrons of E   > 1  Mev, 
Satellite  1962ßK.     [Katz et al.   1963]. 

10' 

UNCORRECTED 
COUNT 
RATE   JO* 

/ COUNTS \ 

\ SEC  / 

K)4 

1.6 2.2 
L SHELL VALUE 

2.8 

Fig. ZU.     High energy electrons (E  > U  Mev), Satellite 19628K. 
[Katz et al. 19631. 



-41- 

B-0.170-0.205 

IC1 

UNCORRECTED 
ENERGY 

FLUX       K)7 

/ U^X 

\«m*-»«c-»f«r/ 

»' 
1.0 

s     l/\ NOV. I 

NOV. 4 

J I I 
1.6 2.2 

L SHELL  VALUE 
2.8 

Fig.   25.      Integral   energy   flux   (E  > SO  kev),   Satellite   19623K. 
[Katz  et   al.   1965]. 

c/tcc 
10.000 

1000 

R      fOO  ^ 

10   - 

1000 2000 9000 4000 
AT HOURS 

Fig.   26.     Decay  of  artificial   trapped  radiation  [Van Allen,   1963J. 



1 

-42- 

spectrum fits this drift time behavior very well.  Looking back 

at Figure 12, however, we see a coopletely different behavior. 

This drift time behavior is, however, consiste t with a fission 

electron source.  It then becomes clear that, at large L values, 

the October 22 shot injected fission decay betas, but the 

November 1 burst did not.  The November 1 burst, did, however, 

inject a considerable amount of neutron decay betas.  These data 

can be used to speculate on the burst size and altitude of these 

two events. 

We have thus far shown that the trapped radiation and D-region 

behavior can probably be explained by the two sources, fission de- 

cay and neutron decay.  The observatjon of synchrotron radiation 

at Jicamarca and Huancayo [Ochs et al. I963] with no absorption in 

cosmic noise, coupled with the delayed absorption at the Maipu 

Observatory T-Iusick ot al. ISSkl  and the data taken on the 

USNS Eltanin [Basier 1963] off the Chilean coast 230S geomagnetic, 

also lend considerable credence to these ideas.  Depending on the 

location and type of experiment either of the^e sources can be 

relatively more or less effective than the other.  These D-region 

enhancements can be used to explain many of the observed geophysi- 

cal effects, such as SGWF, SOU, SEA, etc.. 

Magnetic Effects 

There seems to have been three separate magnetic effects, I, 

one "instantaneous", li, a second effect which was delayed a few 
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«econds,   and   finally,    HI,   a main  effect. 

I.       An  instantaneous pulse  with  high   frequency   (f >  2   cps) 

was  noted  simultaneously at   H   +  0  seconds on many  stations. 

The accuracy of  determining simultaneity  varies   from milli- 

seconds   to   tenths  of seconds,   depending on  the  timing  resolu- 

tion of  the  various stations.     The most  likely  explanation 

for this  is   that   a  spheric  was   excited  near  t^e burst  by  x 

and  v ray   emission.     This,   like a  lightning stroke,   would 

travel  with the velocity of light   in  a  vacuum and have high 

frequency   components,   including Schumann  resonances   [Baiser 

and Wagner,   1963].     Since most  magnetic   stations  do   not   have 

sufficiently  high   frequency   response,   this instantaneous 

signal   may  be present  at  all   stations,   but   remain   undetected 

because  of  instrumental   limitations. 

II.     At   H   +  a   few  seconds,   a  world-wide   effect   v;is  noted. 

This  consisted   of  an  oscillatory  signal   with an  initial 

period of about   four  seconds  which  probably  decreased   to 

about   two   seconds  within a   few oscillations.     The  signal 

was  very  highly   damped.     Many  people   have  reported on  these 

disturbances,   such  as  Wilson  and  Sugiura  [l9^3],   Bomke   et   al. 

[i960],   fid  Berthold  et  al.   [i960]  and  uave  interpreted   this 

as  the   result  of  travelling  hydromagnetic  waver, with posalbly 

two   velocities,   the  modified  Alfven   (or   fast)   and  generalized 

Alfven   (or  slow)   modes.     Ideally,   one   could  then  take  a  net- 

work of  stations  located at   different   distances,   and measure 
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these propagation velocities.  The trouble with this is that 

confusing results are obtained because of the very wide dif- 

ference in velocity calculations.  Indeed, Caner [1964] has 

recently looked at this problem and attempted to determine 

the accuracy of the various station delay times that have 

been reported.  The result of his study is quite surprising; 

since he finds that the stations which he believes to have 

the best timing accuracy all report that the onset of the 

rapid fluctuations disturbance is delayed about 2 seconds 

after the burst, independent of the location of the station. 

If Caner is right, then, one rules out hydromagnetic 

waves as the cause and looks for a delayed electromagnetic 

wave.  Of the many suggestions which he has advanced for 

this mechanism, one of the most plausible is that a broad 

band packet of energy is released from the burst site and 

travels via a hydromagnetic wave to the southern conjugate 

region, talcing 2.  seconds to get there.  Some of the energy 

is then coupled into electromagnetic radiation, but the 

bulk is transferred back to the northern region.  No coup- 

ling takes place there due to the high degree of ionization 

at that end.  The packet returns to the southern region where 

the process 5s repeated.  The ionization along the path 

changes rapidly, so the propagation velocity changes and 

one can explain all the detailed features of this rapidly 

oscillating signal via this mechanism. 
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It is clear that the way out of this problem is to 

have the various experimenters put realistic limits on 

their timing accuracy and report these limits at the time 

they report the disturbances on their data.  Analysis of 

data from other tests would also quickly point out which 

approach is the correct one. 

III. Finally a general or main magnetic disturbance was 

reported by many stations.  These slow variations were 

different at each station, but world-wide in character. 

Maeda [196*0 has attempted a treatment of this topic, and 

has computed the effect due to: 

1. Diamagnetic plasma at the burst site, 

2. ring current of trapped particles, and 

3. augmentation of the S currents, associated with 

an anomalous ionization in the ionosphere created by 

x and v radiation. 

After computing these effects, a world-wide map was con- 

structed to compare with the experimental values, and 

reasonable, but not perfect agreement was attained. 

This general approach to the problem is quite probably 

correct, although there are so many uncertainties involved 

in the parameters, that it would be surprising if perfect 

agreement did exist.  Perhaps further work along similar 
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llnes will  enhance this agreement.    As further information 

on anomalous ionization becomes available,   refinements on 

these calculations will be possible. 

F-Region Disturbances 

Observations of changes  of f F- and spread-F leave little 

doubt  that  the F-region also  becomes disturbed by high altitude 

nuclear bursts.     The mechanisms used to  explain D-region enhance- 

ments simply do not  fit  the F-region.     Changes in the F-region do 

not occur simultaneously on a world-wide basis.     Measurement of 

the delay time  for onset of the disturbances detected at different 

stations gives multiple values  for the velocity of propagation 

ranging from a hundred meters  sec"     to  thousands of meters sec" 

[Berthold et al.  I960;  Obayashi,  1962].     Hydromagnetic waves and 

gravity waves seem to be necessary and sufficient  to  explain 

these disturbances in remote regions. 

E-Region Disturbances 

Davis and Headrick [1964]  have recently described short 

period fluctuations  in the B-region over the United States 

following a high altitude nuclear burst,   and point  out  the 

striJcing resemblance that  these  fluctuations bear to  the magnetic 

disturbances.     This is interesting because it again demonstrates 

the intimate connection between changes in the earth's magnetic 
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field intensity and ionospheric currents at   E-layer heights. 

D-Region Parameters 

Because of the impulsive nature of the ionization source 

in the nighttime ionosphere,   it was hoped that additional in- 

formation oa some of the  D-region  electron removal processea 

could be obtained.     Along this line Le Levier  [19^4]  h»6 

recently published an analysis of the transient  effect  on the 

D-region due  to  the prompt  x and v radiation and has arrived 

at a new estimation for the  D-region dissociative recombination 
_7 

coefficient.     This has been  estimated to  be  between  3  x 10 

-7       3      -1 and  7  x 10       cm sec "   for  70 km altitude.     Perhaps  better 

values  for the electron attachment  coefficient  can also be 

obtained. 

Outstanding Problems 

Although  a great   deal   of  information was  obtained,   all 

the phenomena associated with  high  altitude  bursts  has   not  yet 

been  clarified.     A partial   listing of some of  the  unexplained 

phenomena  is   given below. 

1. As pointed out   earlier,   the magnetic   effects  are not 

completely  understood. 

2, Approximately a  1% increase   in  equatorial   neutron 

monitor  rates  was  reported by   Cacaverde  et   al.   [19^3] 

for  the July 9»   19^2   event,     Th^  reason   for   this  is  not 

clear. 
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3.     Filz et al.   L1963]  has reported a sharp increase in 

the loss of high energy protons (~ 55 Mev)   from the inner 

belt over quite a long period subsequent  to  the Russiar 

bursts. 

k.     High latitude aurora«;, well above the burst  conjugate, 

were observed over New Zealand [Neff,   1965]  at   the time of 

the July 9,  19^2 test. 

5. Similarly,   high latitude riou.eter absorption was noted 

in Alaska [Basler et  al.   19^3] in synchronism with the test 

on July 9,   1962. 

6, The July 9 increase in counting rates [Durney et al. 

1965]  delay by approximiitely 20 seconds  that  was  detected 

by Ariel  cetellite at   high L values still  remains unexplained. 

Many of the principal   outstanding problems can perhaps be 

solved  if more  data are  forthcoming fron difCerent   experimenters. 

In  this line,   we. would particularly request  three things. 

1. That   experimenters put,   where possible,   limits on accuracy 

of their data,   particularly as far as  timing is concerned. 

2, That  the results of other tests be published.     A great 

deal of information has been released about  the July 9f  1962 

test  but   relatively little about  the others,   particularly 

the Russian  tests. 

5. That negative results also be reported if negative re- 

sults ere found, (^uite frequently, these negative results 

»re just   as important   as positive results when one is attempting 
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to  evaluate the validity of a particular theory 

Note Added in Proof 

After this paper was given,  we were pleased to note that 

part  of the controversy over the magnetic  effects may have been 

resolved by a later publication of Bomke  et  al.   [1964],     These 

authors report on the results of a network of high-time-resolu- 

tion magnetometers in  the Pacific area,   and indicate that a 

strong oscillatory signal  was  detected simultaneously at all 

stations  1.9 seconds  after the burst.     TMs   confirmation of 

Caner's analysis is interesting and leads one  to  look for the 

delayed  emission of radiation. 

A possible  connection between this  delayed  electromagnetic 

emission,   and the  rapid  re-entry of  the magnetic   field into   the 

diamagnetic  cavity at   the burst  site  [Colgate,   1965] should  not 

be overlooked,   although  a rigorous mathematical   treatment  is 

needed  to   evaluate  this   suggestion. 

Recently,   an alternate  explanation of  the prompt   D-region 

effects  has appeared in  the  literature.     Foderaro   il%k]  has  pro- 

posed a model  in which  a  neutron  diffusion mechanism produces   the 

D-region  ionization by   neutron-air molecule   collisions.     The 

shape of  the affected  regions differs significantly  from that 

I 
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given by the neutron decay model  and data may be evailable to 

distinguish between that model and the one of Grain and 

Tamarkan [1961]. 
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