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ABSTRACT

Thermal radiation from refractory oxides is a volume,
rather than a surface phenomenon in the wavelength range
0.5-6 microns. Emissivity values have been calculated for
specially prepared A1203, Mgo, sio2 and SrTiO3 samples from
appropriate reflectivities, absorption coefficients and
scattering coefficients derived from material character-
istics (index of refraction, single crystal transmissivity,
pore size and concentration).

Experimental measurements of emissivity for these
samples have been made at tempe. .ture : up to 1200°C and
at wavelengths from one to fifteen microns. Calculated
and measured values are in good agreement for Al_O_, and

23

Sioz. Absorption coefficients of the MgO and SrTio3

were greater than the single crystal values, leading to

samples

higher measured (than calculated) emissivities. Samples
of commercial alumina had higher emissivities than the
specially prepared high purity samples.

The Hamaker equations for non-isothermal emissivity,
which lineari.e the temperature gradient, have been com-
pared with the exact solution by numerical integration.
Results are in good :greement for all cares of practical
interest for application to ceramic oxides. Solutions to
the Hamaker equations have been derived for new boundary
conditions.

Evaluation of the rotating blackbedy slot system in-
dicates it gives results in good agreement with an external
blackbody. An apparatus for measuring the effective emis-
sivity of a non-isothermal sample has been constructed and

tested.
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1.0 INTRCOUCTION

The evaluation of ceramic oxides for high-temperature
applications and the cd2sign of high-temperature structures
require a precise knowledge of the thermal gradients in and
radiant heat transfer to and from solid bodies. Energy trans-
fer tnrough there systems is by two modes: radiation and
lattice conduction. Interactions between these heat trans-
fer modes can cause large deviations from linear temperature
gradients near surfaces.

Emissivity has been widely used as a material constant
characterizing what is often considered as a surface phenomena.
However, for oxide materials which are partially transparent
in the important 0.5-8 micron wavelength range, radiant energy
erission is @ volume process. As a result there is no simple
"emissivity" for a material like alumina, but the radiant
energy emitted depends on temperature gradients and also on
material characteristics such as absorption and scattering
coefficients. Thus, the nomenclature often used for opaque
solids with "emittance" taken as a sample characteristic,
while "emissivity" is a material constant is not applicable.
We will use the term "emissivity" for the ratio of energy
emitted from an isothermal sample to the energy emitted from
an ideal black body at the same temperature, fully recognizing
that this is & sample characteristic rather than a material
constant.

In the present investigation we have been mainly con-
cerned with evaluating the material characteristics for well

defined systems, developing a method for calculating the

Manuscript released by the author, July 1964, for publication
as an RTD Technical Documentary Report.
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isothermal emissivity from these characteristics, and compar-
ing the calculated results with direct experimental measure-
ments. This is an ambitious approach, but if successful, it
allows us (a) to estimate the thermal emissivity from material
characterization rather than having to make expensive and dif-
ficult mceasurements on every sample, and (b) to evaluate the
effect of changing material characteristics on thermal emis-
sivity behavior and thus provide a rational basis for new
material development.

In addition we have evaluated the basic Rydel- Hamaker2
equations for calculating and applying isothermal and non-
isothcrmal emissivities, extended the Hamaker relation to
new bhoundary conditions, and developed a technique and appara-
tus for carrying out controlled measurements of non-isothermal

emissivity.




2.0 CALCULATION OF ISOTHERMAL EMISSIVITY FROM MATERIAL
CHARACTERIZATION

The material factors which enter the expression for
isothermal emissivity are the reflectivities for entering

and leaving radiation and the material constant,

Bo =Jva/(a + 2s)

where a and s are the absorption and scattering coefficients
discussed subsequently. The emissivity for a thick sample

is given by:

2
(1-p)) " + 28 (1-p,) (p*p;) - B 2(14p,) (1-p;-2p ) (5

(1 -¢) = 2
(1-pi)2 + zBo(l-pi ) + Boz(1+pi)2

where Py is the reflectance of diffuse radiant energy emergent
from the solid and Po is the reflectaince of diffuse radiant
energy incident on the solid. Thus calculation of emissivity
requires evaluation of p.. p_, and Bo'

As discussed by Folweiler~” the ratio a/s can be measured
independently of the emissivity by measuring diffuse trans-
missivity of thin samples. Unfortunately, the measurements
are not very precise. For example, two measurements of trans-
missivity for beryllia gave values within +3%. However, calcu-
lations of o_ =Ja(a + 2s) gave values different by a factor
of two and the a/s ratios varied by a factor of five; this
leads to a difference in calculated emissivity of a little
less than a factor of two. The magnitude of these errors

results from the fact that the calculations depend on a rela-




tively small difference between large measured values, and is
inherent in the form of the mathematical relationships between

variables.

2.1 Reflectivity

The total reflectivity for diffuse radiation incident
on a surface depends on the index of refraction of the solid
as discussed by Ryde1 and Ryde and C.ooper.4 Values for a range

of refractive indices are listed in Table 2.1.

Table 2.1
Total Reflectivity for Diffuse Radiation and for Radiation at
Normal Incidence (After Ryde and Cooper4).

Total Reflectivity

Index of Refraction normal incidence diffuse radiation

1.00 0 0

1.1 0.0023 0.026
1.15 0.0049 0.035
1.2 0.0083 0.045
1.25 0.012 0.053
1.3 0.017 0.061
1.35 0.022 0.069
1.4 0.028 0.077
1.45 0.033 0.085
1.5 0.040 0.092
1.55 0.047 0.100
1.6 0.053 0.107
1.65 0.060 £.114
1.7 0.067 0.121
1.3 0.082 0.134
1.9 0.096 0.146




From the values of Po given in 2.1, we can obtain
the reflectivity of emergent radiation, Py from the relaiion:
(1-p,)

pom i (2.2)

2.2 The Absorption Coefficient, a

The absorption coefficient, a, in the Hamaker rela-
tion refers to the absorption of energy from diffuse radiation
as it passes through a body containing scattering centers. 1In
contrast, the intrinsic absorption coefficient, @, is measured
by and refers to the absorption of energy from parallel radia-
tion in a body without scattering centers.

Thus, application of measured values of @ to calcula-
tion of Bo must take into account the larger path length for
diffuse radiation as it passes through a thin layer of thick-
ness dx. Let us consider the specific intensity of radiation,
I', where © measures the angle from the x direction (see
Fig. 2.1). We consider situations in which I' varies with
angle © from the x direction, but is independent of the azi-
muthal angle (i.e., symmetrical about the x axis); that is,
I'=1'(x,8). Consider first an intensity field in free space

specified by

I'(x,0)

I'o for 0 6 < 1/2, (2.3)
and I'{(x,0) =0 for m/2 < B8 < T.

This field is isotropic over the left and right
hemispheres separately, and the flux associated with this
field is

TF = i I'cos 6 dw (2.4)

where the integration is over all solid angles.




Then,

2n n
TF = J I I'(x,9) cos © 8in ©6 A6 4y =
¢=0 6=0

n/2

27 I I' cos © sin ©6 A0 = 11" . (2.5)
o=0 © o

So, " =1' .
o

Now suppose that instead of free space we specify
this radiation field for 0<6<r/2 on the plane x = 0 in a
material with absorption coefficient & per unit length. At
X = d we specify that no radiation is incident on the material

from the right. Then, the intensity I' must satisfy

d I'(x,0)

T) = - a1I'(x,0) (2.6)

where / measures path length in the direction 6. Clearly,

L = x sec 6. So,

%iL =—a gsec O I' ,
I'(x,0) =1I' (0,6) exp [~@ x sec 0] 0 < 9_5'% ,

and I'(x,0) = I'(d,0)exp [-@(x-d)sec 0] §<an, (2.7)

But we specify 1'(0,6) = I'ofor 0 <6 xgT1/2,

and I'(d,9) 0 for 7/2 <0 <,




So,

I'(x,0) =1' exp [- @ x sec Olfor 0<8<n/2, (2.8)

and I'(x,0) = 0 for n/2<6<m. (2.9)

The flux is given by

TF(x) = i I'(x,0) cos 6 dw. (2.10)
/2

TF(x) = 27 oJ I'o exp(-ax secH)cos® sin 6 46, (2.11)

Since cos 6 = (sec 9)_1: dsec® _ gino d9, and
(sec ©O)

0]

F(x) = 2 I I exp(-a x sec 6) 32€ 8 _ 5 11 5 (ex)

(o) 3 o 3
1 (sec 9)

(2.12)

where E3 is the exponential integral of order 3 given by

chandrasekhar,5 Appendix I, {p. 373).

For a small argument, E_, has the power series

3
expansion

-

Ey(z) = 1/2 - 2 + 1,2 (-y-ln z + 3/2) z° + %z oo . (2.13)

where v is Euler's constant (see Van de Hulst,6 p. 244). Thus,
F(x) =I' (1 -20¢x+0 (02 2))
o Xh-. (2.14)

So for optically thin slabs, we have




F(x) - P(0)
F(0)

That is, the equivalent absorption coefficient for diffuse

radiation in a thin slab is

a = 2a. (2.16)

When there are scattering centers present the analysis
is complicated by the fact that, as a result of scattering, some
path lengths are increased and some path lengths are decreased.
Thus it is not obvious whether scattering will increase or de-
crease a. If we consider a slab of material between x = 0 and
x = d, let the material contain a random distribution of scat-
tering centers that scatter isotropically with a scattering
coefficient S per unit path length. We consider the situation
in which the intensity just inside the left boundary (at x = 0+)

is given by
I'(0+, ©) = I'o for 0 £ 6 <mw/2, (2.17)
and just inside the right boundary (at x = d-) is given by

I'(d-, ©)

0 for m/2 <8 <,

Let I'nS be the intensity of radiation which has
not been scattered at all, and I's the intensity of once
scattered radiation. The only source of I'ns is at the bound-
ary x = 0. In the material I'ns is decreased by two processes.
Some is absorbed by the material; this process is characterized
by the absorption coefficient, @. The other process that

decreases I'ns is scattering (this energy goes into I‘s) which




d

X=0 X||X+dX X

Fig. 2.1 Diagram of geometry of radiation in a thin
slice of absorbing material.




may be characterized by the scattering coefficient S. Taking
both absorption and scattering into account,

a1’

d(x sec 8) (o + S)I'ns (2-18)

and the solution satisfying the boundary conditions is

' = T - < <
I' g =1', exp [-(@ + S) x secO] for0 < © < T7/2,

and I'(x,0) = 0 for n/2 <06 <. (2.19)

Now the amount of radiation scattered in all direc-
tions per unit volume of material from I'ns (x,0) is SI'ns (x,0).
Scattering is isotropic, so the amount scattered per unit
volume per unit solid angle is (S/4W)I'ns(x,6).

Integrating this over all directions of incoming
radiation gives the emission coefficient jl for once scattered
radiation. jl is defined as the amount of radiant energy
emitted per unit volume per unit time per unit solid angle

(Cue to scattering of I'ns). So we have

m 2m
jl == I ' _(x,0) do= — I J I' (x,06) sin 6 d¢ deé.
4m ns 4 ns
w 6=0 ¢=0
(2.20)
m
jl =2 J. I' (x,0) sin 6 d6 =
2 0 ns
n/2
s ,
3 J I', exp [ - (@+S)x sec 6] sin © ae. (2.21)
0]
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Let 1 = cos ©O.

1
sI' sI'
31 = —2—° _c[ exp ! -(a+S) i‘-] au = -—59 E, [(e+s)x] (2.22)

where E2 is the exponential integral of order 2.

The equation of transfer (see Chandrasekhar,5 p- 6)
for once scattered radiation is
dI' SII

= = - (a+S)I's + j1 = _(a+s)]:'s + 2

E., [(a+s)x] (2.23)

sec O dx 2 2

This may be writtean as

1 dI's S

- - ! P ' )
(@+5) sec 6 ax ~ l's T Z(aws) Lo Ha [(@+S)x] (2.24)

For 0 < & < m/2 the boundary condition is I's (0+,0) = 0, and

for /2 < © < 7T the boundary condition is I'S(d-,e) = 0. The

solution to the equation which satisfies this boundary condition

is

)
I's(x,e) = —2— I E2 [(e+S)x'] exp [~-(a+S)secO(x-x') ]secHd dx'
0

2
T
for QSQSE . (2.25)
Let t' = (a+S)x' and p = cos ©. Then,
t
SI'o sec O J
I's(x,e) = "7 (a+g) P [-+8) sec 6 x]) A E,(%') exp (t/n)dat’
(2.26)
SI' sec ©
= 7 (a+s)  °XP [-(a+S) se~6 x] F,(t,n) (2.27)

for 0 < 6 < Tm/2.

11




5
where t = (a+8)x and F, is defined in Appendix 1 of Chandrasekhar.

2
He gives
Fz(t.u) =41 [Fl(t,u) + exp (t/\u) Ez(t) - 1], (2.28)
So,
SI'O
I's(x,e) =2(Q+S)[exp (—t/u)Fl(t,u)+ Ez(t) - exp (-c/H)]  (2.29)

for 0 < 6 < /2.

Now let I' = I'n + I's and neglect all) higher order scatterirg.

8
This is a good approximation if the slab of material is optically
thin. We wish to calculate the flux of energy across any plane

x = const. This is given by

i
T™(x) = J I'(x,0) cos 6 & = 2 1 I I'(x,0) cos O sin © d6 (2.30)
w 0
n
TF(x) = 2n I [r* (x,8) +I' (x,8)] cos O sin 6 46 (2.31)
0 ns s

Now we know I'ns(x,e) = I'c exp [-(a+8)x sec€] for 0 < 6 < 7/2
(2.32)

and I'ns(x,e) =0 form/2 <06 <. (2.33)

Also I's(x,e) is known for 0 < © < 7/2. But we also need to
know I'ns for m/2 < O < T to do the complete flux integral.
We have not sclved for I's for thes. angles and we do not need
to if we restrict ourselves to calculating the flux at x = d,

where the boundary condition 1is I's(d,e) =0, 7/2 <6 <.

12




That is, no scattered radiation comes from the right. Using

this fact, we have
Ti/2

TF(d) =2n I [I'ns (4,0) + I 8(d,e)] cos 6 sin 6 4d° (2.34)

0
1
TTSI'o I
- arr Byl(@s)dl +grg s J exp [H@S)A] By L(me)dila

(2.35)
Thus the integral is recognizable ac the function Gé 2[(a+s)d]

given by Chandrasekhar5 in Appendix 1.

So,

TF(d) = 27 1'o [E3 ([a+s]d) + ([a+s]d) ] (2.36)

S '
2(a+s) © 2,2

van de Hulst gives power series expansion of E3 and G‘2 2 in

Appendix 1 of his 1948 paper in Astroghzs.J.6

12 - x+1/2 (~y -lnx +3/2) x° + . . . (2.3D)

E3(X)

x+ (y + 1n x - 3/2) X2+ ... (2.38)

G'y o (¥

where x > 0, and v is Euler's constant.

So, for (a+s)d << 1 we have,

TE(d) = 2w1°'b§ _ (a+5)d + 0{ (a+s) 2a%)+

S 2.2
3{ats) L(@*8)d + O[(a+s)"d 1] (2.39)
TF(d) = Zon.P% - (a+s/2)d + 0 { (a+S)2d2}] (2.40)

13




So,

TR(d) _ 2.2
TF(0) 1l - (20 + 8)d + 0 [(a+s)"d"] (2.41)

This result has an easy physical interpretation.
For an optically thin slab of thickness 4, a fraction 2 (a+s)d
of the incident flux is absorbed or scattered. Of the fraction
2ds which is scattered, half goes into backward flux and halr
into forward flux, since scattering is isotropic. Neglecting
further scattering and absorption, we see that a fraction sd
of the original flux is added to the forward flux by scattering.
A fraction 2 (a+S)d is removed by absorption scattering and a
fraction Sd is added by the scattering. So the net fraction
removed is (220+S)d. That is, the absorption coefficient
appropriate to the Hamaker conditions is not affected by
isotropic scattering centers, and Eq. 2.16 is the appropriate

one to use for calculating a.
2.3 The Scattering Coefficient, s

The scattering coefficient, s, as used in the
Hamaker equations refers to back scattering of diffuse radia-
tion. 1In contrast, the commonly measured and calculated
scatteriry coefficient, S, refers to total scattering for
parallel radiation. Assuming, as Hamaker did, diffuse radia-
tion, by the same analysis as given for the absorption co-

efficient above, = 2S; taking only the back scatter-

Sdiffuse
ing (assuming isotropic scattering) as shown in Eq. 2.41,

=

S =5 Sqiffuse _ ° (2.42)
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The scattering coefficient, S, is related to the
number of pores per unit volume, N, and the pore radius, r,
by the scattering factor, K, in the relation
2
S =KN (rr") (2.43)

If the volume fraction porosity is P,

3
S = 2 K

AL

(2.44)

The scattering factor K varies beiween zero and
four and depends on the pore radius, r, wavelength of radia-
tion, A, and the relative index of the scattering center
and medium m. Van de Hulst7 has summarized solutions for a
number of systems in terms of the dimensionless parameter,

p = 4Tt |m-1| /A\m.

R. H. Boll, R. D. Gumprecht, and C. M. Sliepcevich8
have calculated the scattering factor K from the Mie equa-
tions for values of the relative refractive index of 0.93,
0.9, and 0.8 corresponding to our situation of spherical
pores in a solid media. Their results show that the excur-
sions of K from an average value near 2 are less marked as
m decreases. D. W. Lee and W. D. Kingery9 extrapolated Boll
et al's results to lower values of m and compared calculated
and directly measured scattering coefficients for alumina
and Vycor having pore sizes in the range 0.7-7 microns with
good results (agreement within about +10%).

Now a basic question is "How isotropic is the

scattering by pores in an oxide matrix?" That is, can we

15




use the available calculations for the total scattering co-
efficient discussed above to evaluate the back scattering
appropriate to the Hamaker relation?

The angular intensity distribution of the scattered
radiation depends on the size of the scattering center, the
wavelength of radiation, and the relative refractive index.

For very small particles (relative to the wavelength) scatter-
ing is nearly isotropic. For very large particles having an
index of refraction greater than the media (m > 1), the scat-
tering is almost completely forward. However, for the reverse
case, pores of lower index embedded in a media of higher index,
this is not the case. As shown in Fig. 2.2 when m = 0, the
back scactering is just half the total scattering.7 For A1203
and MgO, the back scattering is about 25% for the total scat-
tering.

For wavelengths of 0.5-8 microns and pore sizes from
0.5-5 microns (experimentally observed) we cover the gamut
from "very small* to "very large" pores. Complete solutions
of the Mie equations would be required for the intermediate
range. Since the relative ind@:x enters each term of the re-
quired summations, there is no easy way to transpose available
solutions to the case of scattering pores in a solid matrix.

Fortunately, the relative values of forward and
backward scattering for pores in a solid matrix cover a much
narrower range than is found for the more usual case of solid
particles in a matrix of lower refractive index. For pores in

alumina, for example, we can write:

<8 < 3 K
4

L]

3
8 K

L]

(A1203) (2.45)

That is, we can calculate the appropriate back scattering co-
efficient to better precision than it can be evaluated from

measurements of diffuse transmissivity.

16
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It should be recognized that tl.is calculation is
appropriate only for pores in a solid matrix -- which is the
system we are concerned with. It is not applicable to more
complex multiphase compositions in which scattering centers

have a higher index than the matrix material.

2.4 The Material Constant, Bo

The constant, Bo =Ja/(a+2s) can be calculated
directly from values of a and s determined as described in
the previous section. Since this calculation involves taking
the square root of s, the precision of calculating Bo is
better than the evaluation of s. That is, the maximum expected

two-fold error in s leads to only a2 error in Bo'

2.5 Calculation of Emissivity in the Wavelength Range 0.5-8
Microns

In this range of wavelengths emissivity is a volume
process, and calculations have been made from Eq. (2.1).
Values of the reflectivities for each wavelength were taken
from Table 1. Values of the appropriate absorption coefficient
were calculated for each wavelength from measured values of
the intrinsic absorption coefficient with Eq. (2.16). values
of the appropriate back scattering coefficient were calculated
for each wavelength and pore size from Eq. (2.44) using values
of the scattering factor K taken from Fig. (2.3).

Results are compared with directly measured isothermal

emissivity in Section 8.0.

2.6 Calculation of Emissivity in the Wavelength Range 8&-15
Microns
At wavelengths above 5-8 microns, the absorption

coefficient increases to such an extent that emissivity becomes
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a surface process depending on the reflectivity. Eg. (2.1)

reduces to:
- = (2.
1l £ [0 (2.46)

Emissivity values can then be calculated directly from the
data in Table 2.1

At variable wavelengths, which are above 10-12 microns
for most oxides the restrahl frequency is approached, the
reflectivity increases and the emissivity drops off. We have

not analyzed behavior in this wavelength region in detail.

2.7 Normal vs. Hemispherical Emissivity

In the calculations discussed thus far, we have
been concerned with the spectral hemispherical emissivity,
while our experimental measurements have been for spectral
normal emissivity.

For the wavelength range 8-15 microns where emis-
sivity is essentially a surface process, and Eq. (2.46) applies,
the difference is directly related to the difference in normal
and diffuse reflectivity as given in Table 2.1. Comparable
expected emissivity values are given in Table 2.2.

For the wavelength range below about 8 microns where
emissivity is a volume process, we are concerned with the an-
gular distribution of the emergent radiation. Radiation of
intensity I'e at angle O will be partly reflected and partly
refracted at the surface. Assuming isotropic diffuse radia-
tion just below the surface we can calculate the angular in-

tensity distribution of the emergent radiation.
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Table 2.2'
Expected Normal and Hemispherical Emissivity for Smooth
Surfaces Having Given Values of the Refractive Index (for

Sample with a >> s8).

Refractive Normal Hemispherical
Index Emissivity Emissivity
1.1 .998 .974
1.2 .992 .955
1.3 .983 .939
1.4 .972 .923
1.5 .960 .908
1.55 .957 .900
1.6 .947 .893
1.65 . 940 .886
1.7 .933 .879
1.8 .918 .866
1.9 . 904 .854

Let 4I be the rate of transport of radiant energy
per unit area in directions confined to an element of solid
angle dv (see Fig. 2.4). dI is then expressed in terms of

intensity I':

dTl = I' cos 6 dw. (2.47)
Consider isotropic radiation of intensity I' incident on
a plane interface. Of the energy dI incident on a unit area

from the solid angle

& = sin 6 d6 d¢ (2.48)
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Fig. 2.4 Diagram of Geometry of Diffuse Radiation Leaving
a Material of Index n (where n 1).
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redI is reflected and (1-re) dI is refracted into the solid
angle

do'= sgin ©' 46' d¢! (2.49)
where ¢ = ¢'

sin ©6'= n sin 6 (2.50)

The intensity I'e, of the refracted radiation is defined by

(l-re) dIl = I'e,cos g' dw' (2.51)
which, with the use of equations (2.47), (2.48) and (2.49)
becomes

(l-re) I' cos © sin 6 d6 dgp =1 cos O' sin ©' 460'd¢

le.

(2.52)
From equation (2.50)
cos ' sin ©' 4d6' = n2 cos © sin © 4d6 (2.53)
and using (2.53) in (2.52)
l--re
I'e, = (—;5—)1' (2.54)

The reflectivity is given by the well-known Fresnel equation

sin(6-6") | tan®(6-6') :

2 2 (2.55)
sin (6+0') tan (6+6')

r ='% [

S
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Thea for any value of n, we can calcu.ate the
angular distribution of the relative intensity of the reflected
and transmitted energy. This is shown for A1203 (n = 1.7) in
Fig. 2.5. The relative values of the normal and hemispherical
emissivity are determined by comparing the normal intensity
t- "he average value integrated over all wavelengths.

The integrated energy f%?; rate per unit area is

m

, 8in26' 4o’ (2.56)

I = I I‘e, cos 6' &' =T J I‘e
hemisphere c
wheire use has been made of equation (2.49)and the integration
over the azimuthal angie ¢ has been carried ou:t to arrive at
the right-hand expressicn in equation (2.56). If I'e, 1S an
isotropic intensity, I', the integration over ©' can be

carried out to give
I=71 (2.57)

Therefore an "equivalent" isotropic intensity will be defined

by

n/2
I = J I'y, sin 26" @6’
o
n/2
= = [l—ro(e')J sin 20' de (2.58)
n
o
From equation (2.54)
I =L (L -p)) (2.59)
0'=0 = 2 Pn - 9%
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2.5 Distribution of Intensity of Reflected and Trans-
mitted Energy of Isotropic Radiation Incident on

an A1203 - Air Interface.
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where Pp = is the reflectivity for normal incidence

Tor =0
tabulat:1 in 1able 2.1.

Hence dividing (2.59) by (2.58)

I 1 - Pn

t=0 _
= = 772 (2.60)

I(l-re) sin 20' @6
o
The ...egral in the denominator may be evaluated by
changing the variable of integration from 6' to © according
to equation (2.50) and noting that the range of integration
will then be from 6 = 0 to © = arc.sin (1/n). Thus:

T/2 arc.sin(1l/n)

2 ] | I 2 - .
j (1-r,) sin 20'd6'= n f (1-r,) sin 26 d6
o) 0]
arc.sin(1l/n)
=1 - n? [ r, sin 20 d9 (2.61)
(o]

This integral has been evaluated by Walsh,10 and the

result is also recorded by Folweiler3 (p 18). The result is

finally
m/2 2, 2 2
I (l-re) sin 20'4d6' = % - in-lli3n-;1) - n (2 ":D3 lOg (! ;::-i)!
o 6 (n""l) (n +1j

2n3(n2+2n-1) - 8n4(n4+l)
T 4 2 4
(n +1) (n -1) (n +1) (n -1)

> log n

= l - po (2.62)

26




Po is the reflectivity for diffuse radiation tabulated in
Table 2.1.

Hence equation (2.60) may be written

Laa)
=
1
O
m

(2.63)

5" |

That is, for isotropic radiation emergent from a
surface, the ratio between the normal and hemispherical emis-
sivities is given by the relative value of (1 - pn) and
(1 - po). Values for different refractive indices are given
in Table 2.3.
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Table 2.3
Ratio of the Normal to Hemispherical Emissivities for Varying

Index of Refraction.

l—pn _ iﬂ
£ 1-py 1-pg 1Py n
1.0 1.000 1.000 1.000
1.2 .992 .955 1.038
1.3 .983 . .939 1.047
1.4 .972 .923 1.053
1.5 .960 .908 1.057
1.6 .947 .893 1.060
1.7 .933 .879 1.061
1.8 .918 .866 1,060
1.9 .904 .854 1.058
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2.8 Reflectivity for Parallel Radiant Flux at Normal
Incidence

If a beam of parallel radiation is incident normally
on a slab, it is necessary to extend the calculation for3dif-
fuse incident light in Section 3.1 of Folweiler's report.
The necessary calculations have been done by Ryde.1 Some
of Ryde's equations are reproduced here to have them available
in the notation of this report. It is necessary to define
three new scattering coefficienits, £, £', and s', where these
are a rforward scattering coefficient for the diffuse radiation
and forward and backward scattering coefficients for the
parallel radiation respectively.

The equations for the forward and backward diffuse

flux are then:

dr _ _, _
ax - £ Ip (a+s) I + sJ (2.64)
dJ ,

- =g Ip -~ (a+8) J+ sI (2.65)

and for the parallel flux Ip

dI

P _ . : .
ax (a + s + £) Ip g Ip (2.66)

The solutions to these equations obtained by Ryde

are

-g'x (2.67)

o

I=2a(1-8)e® +B(148 ) e °© _ye 9 (2.68)
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o X -0 X

g=a(+B8)e° +B(1-B) e - ve ¥ (2.69)
wheore
u _ l2af' + (s+f')§s'+f')1 (2.70)
2af + (s'+£')
v = —ts=8')(f'+s') (2.71)

[2af + (s'+f')2]

and A, B are to be determined from the appropriate boundary

conditions, which are,

Ipo = (1 - pn)IPi and I, = Py J at x = 0;

and JD = piID at x = D.
I is the parallel flux incident on the surface of the slab.
Aléo, the assumption is made that Ipru.o at x = d or more
explicitly that g~>>¢.

From the second and third boundary conditions we find:

-(U-V){(I-Pi) - (1+p.) Bo] exf (-0 _d)

2[[(1-91\2 + (l+pi)2 8%} sinh o @ - 2 (1- “)B_ cosh o d]

(2.72)

(U-v) ((1-p,) + (1+p,) B} exp (o _d)

2 2 2, . 2
2[[(l-pi) + (1+p)) Bo }sinh 6 d -2 (1-p.9 Bo cesh o d]

(2.73)
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and using the first boundary condition the reflectivity p of

the surface is

J
Zo _ . )
P=pP,*tT (1-p;) = p, * (i-p ) (1 pi) I (2.74)
i

Substituting for Jo

p=r, 7 (1-p,) (1-p;)

(u-v) ([(1-p,) - (1+p,)B_?] sinh ¢ d + 2 p.B_ cosh o_d] }
-V

2 2, 2 ) 2
[(l—pi) + (l+pi) Bo ] sinh ood +2(1-pi )Bo cosh ood

(2.75)

If the incident radiation is diffuse, the reflectivity p may
be obtained from the above by setting f' = £ and s' = g, in
which case U = 1 and Vv = 0; and by replacing Py by Py which

gives

P=r, + (I-p)) (1-p,)

2
- - i B
(1-p,) (1+pi)8o sinh ¢ d + 2p.B8 _ cosh cod

2 2, 2 . 2
[(1-pi) + (1+p,) Bo ] sinh 0 d + 2(1-p; )Bo cosh cod

(2.76)

which is the same as Fy. (20) of Folweiler's report.3
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3.0 THE HAMAKEkR APPROXIMATION FOR CONDUCTIVE HEAT FLOW

In the development of the Hamaker equations, an approxi-
mation is introduced for the conductive part of the combined
heat transfer by conduction and radiation. Measurements of
the effective thermal conductivity of polycrystalline alumina
at temperatures near 2000°C indicate that the conductive part
is still a major contributor, even at this high temperature.9
This results from the relacively high conductivity and large
scattering coefficients in polycrystalline oxides.

Since the utility of the Hamaker equation depends on the
validity of the underlying assumptions, we felt it essential
to critically evaluate the nature of these limitations.

The exact equations for describing the transmission of
heat by combined conductive and radiative transfer in a homog-

eneous medium are (for the one-dimensional case and the steady
state) :

2
kg-%—Zanzc'T4+a(I+J)=0 (3.1)
dx
%i = a nz g' T4 - (a+8) I+ sJ (3.2)
Y = (a+s8) J~-sI -a n2 o T4 (3.3)
uX

where I and J are the radiant fluxes in the +x and -x direction,
T is the absolute temperature, ¢' 1is the Boltzmann constant,

n is the refractive index, k 1s the thermal conductivity, a

is the absorption coefficient for diffuse radiation, and s

is the back-scattering coefficient for diffuse radiation.
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3.1 Direct Numerical Integration

It is convenient to reduce the set of Eq. (3.1),
(3.2), and (3.3), to a single second-order equation. Eq. (3.2)
and Eq. (3.3) are added and the sum integrated once to give:

I +J=- (a+28) (Hx + kT) + A (3.4)

in which A is a constant of integration and H is the constant
heat flux defined by:
art

H=1-J-%k 3; (3.5)

Substituting in Eq. 3.1 we obtain:

2
d -2 a n2 o' T4 -af(a+2s) (Kx +kT) +aad =0
dx (3.6)

|

k

(V]

For simplicity we will consider the one-dimensional
flow of heat by conduction and radiation inside a medium as
shown in Fig. 3.1l. Once the material constants, k, a, s, and
n2 are specified, there remain four independent initial con-
ditions to be fixed; i.e., To' (dT/dx)o, Io' and Jo' For
various values of these initial conditions we have constructed
a family of solutions by numerical integration of Eq. (3.6).

The calculation consists of (1) selection of material
constants and initial conditions; (2) evaluation of A and H
from Egs. (3.4) and (3.5); (3) calculation of T(x) by numerical
integration of Eq. (3.6); (4) calculation of k (dT/dx); and

(5) calculation of I{(x) and J{x) from the relations:

[- (a+28) (X +XT) +a+H+Xk (%)—'1"-)1 (3.7)

-
it
(N[
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Fig. 3.1 Heat flow by combined radiation and conduction.
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[ - (a+2s) (Hc + XT) +C - H - k(gf)] (3.8)

o
I
([

3.2 The Hamaker Approximaticn

Hamaker's approximation consists of replacing the
first term in Eq. (3.1) k (dzT/dxz) Ly k/To3 dz(T4)/dx2 in
which To is some average temperature in the material. This
replacement makes the set of Egs. (3.1), (3.2)and (3.3} linear
and homogeneous in the quantities I, J, and T4 so that a solu-

tion in closed form can be obtained readily.

3.3 Numerical Evaluations of the Hamaker Solutions
The Hamaker solutions fur the radiant fluxes are

given in terms of the lumped material constants:

-

b = 4n2 o' To3 (3.9)
2ab

o = +/-—k— + a (a+2s) = GOJ (1 + x) (3.10)

B = ag/(a + 2s) (3.11)

kK = 2b/k (a + 2s) = 2bB/ko (3.12)

Then, the radiant energy fluxes and temperature are given by:

I =2a(1-B) % + B(14B) e ™ + ¢ (0x-B) + D (3.13)

7 = a(1+8)e”® + B(1-B)e °* + c(ox+B)+D (3.14)

E = --A/ceGx - B/ce-CTx + Cox + D (3.15)

T=T +Z (E-E) (3.16)
o b o
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where

4dE
J (148) - E, (2Bo) - (E;;) 28

A= 4B o (k + 1) (3-17)
-J o (1-B) - E (2B0) + (913—) 28
o o dxo
B = 480 (r+1) (3.18)
dE
Jo 2 Ko+ (dx ) 2B
c = e (3.19)

4 B o (£ + 1)

J 2B ko +E (48 o)
o o

D=7 Bo (k+1) (3.20)

The calculation consists of (1) selection of material
constants and initial conditions; (2) evaluation of b, o, B
and « from Egq. (3.9), (3.10), (3.11), and (3.12); (3) evalua-
tion >f A, B, ¢, and D from Egs. (3.17), (3.18), (3.19), and
(3.20); and (4) calculation of I, J, E, and T for various values

of x from Egs. (3.13), (3.14), (3.15), and (3.16).

3.4 Comparison of the Exact and Hamaker Solutions

A compar...on has been made between numerical inte-
gration of the exact equation as described in Section 3.1 and
numerical evaluation of the Hamaker solution as described in
Section 3.3 for the system shown in Fig. 3.1 for a range of
initial conditions. Computations were done cn an IBM 7090
computer at the Aeronautical Systems Division, Wright-
Patterson Air Force Base. For one set of conditions a hand
calculation was done in excellent agreement with the computer

calculation as shown in Fig. 3.2.
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Fig. 3.3 Typical results between exact and Hamaker equ: tions

for small values of a and s. I = O; J0 = J;

k =0.01l;: T = 1,000; (ﬂr— = 10; a = 0.1; s - 0.1;
2 o dx

n = 3.

38

A ———— o gpom——

HEAT FLUX (CAL SEC-!cM~2)



HEAT FLUX (CAL SEC-!cM~2)

TEMPERATURE (°K)

2000

500

400
o
1
>
(&)
(1Y)
w
-4
g
(&)
x
3
-t 200 wu
-
L ¢
W
s o
XACT SOLUTION
O € 0 -4 100
* HAMAKER SOLUTION
| H ] ]
1 l 1L 1' °
.0 1.5
X (MM)
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For all calculations IO was set equal to zero; physi-
cally this corresponds to radiation from the surfa-e into a
semi-infinite media with the same index as the test section
(no surface reflection) and having perfect transmissivity (no
scattering or absorption). Values of Jo ranged from 0.26-125
cal em 2 sec—l, values of (dT/dx)o ranged from 10-1000°K —
and values of T_ ranged from 100-3000°K. Material constants
were varied in the range: k, .005-05 cal em ! gec”t °K_l;

a, 0.1-1.0 cm_l; s, 0.1-100 cm_l; n2 = 3. Some typical re-
sults are shown in Fig. 3.3 and Fig. 3.4. Tabu.ated input
data and a comparison of results between the Exact and
Bamaker solutions are given in Table 3.1.

The depth of the sample contributing to the emis-
sivity characteristics is that part that is optically "near"
the surface. Thus, even though calculations were carried out
to a greater sample depth in most cases, we have compared
results at x = (a + 25)—1 and x = 2(a + 25)—l in Table 3.1.
As shown there for the entire range of conditions where a
and s are greater than unity, agreement between the exact
and the Hamaker eguations was within 0.1%. For the calcula-
tion with a = 0.1 and s = 0.1, agreement was within about 1%
at x = {a + 2s) ~. Considering that values of thermal con-
ductivity up to the highest observed for oxides (0.05 for BeO)
and values of temperature gradients up to 1000°/cm were
evaluated, the results clearlyv show that the Hamaker equation
is a satisfactory approximation for any tlrermal conditions

likely to be encountered for heat transfer problems related

to oxide materials.
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4.0 EXTENSION OF THE HAMAKER EQUATIONS
The Hamaker equations for radiant energy fluxes and

energy distribution are:

A(1-8)e°® + B(1+B)e °* + c(ox-B) + D (4.1)

H
]

J= a(1+B)e”™ + B(1-B)e T + c(ox+8) + D (4.2)
E = -A/ceox - Bke X + Cox + D (4.3)
where 0 = Jfg_ai_o + ala+2s) = ool (1+k) (4.4)

k
and B = o/(a+2s) (4.5)
and £« = 2b/k(a+2s) = 2bR/ko (4.6)

We have recalculated the values of the constants A,
B, C and D for boundary coaditions when Io' Jo, (%f)o and Eo

are given at x = 0 without the limitation that Io = 0. We

find:
-28 {gg) - g (1-8) I +o (1+B}Jo - 2 Bch
(ax) |
A= 4B ¢ {(1+x) (4.7)
2B (dE) + 0 (1 +8B) 1 - o (1-B) J - 230E
o— (o} O (®)
(dx)o
B = - (4.8)

4Bs (1+k)




48 (dE) - 2on° + ZKOJO
(dx)o

c= 480 (1+x) (4.9)

208k (1543 ) + 480E

P = T"4Bs (1%x) (4-10)

We have also calculated values for the boundary condi-

tions I =0atx=0,T (or E) at x =0, T, or E, at
o o o d d

x = d, and a constant for the heat flux H, where

0

= (4.11)

Inserting the boundary conditions in equations 4.1 and

4.2,
I, = A (1-B) + B (148) - cB + D (4.12)
g, = A (1+8) + B (1-B) + cB + D (4.13)
From 4.3
dE = -Ar\:oecx + Bnoe—ox + Co (4.14)
dx
H=1 -~-J - 3 (- Ao + Bro + Co) (4.15)
o) o) b

From 4.12, 4.13, and 4.14,

- (kK 4 _k _(k
H = (b ko-28)A + (28 5eC) B (ba+2B)c (4.16)
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also, at x =0

E =o'n’r % = -ac - Bk + D (4.17)

while at x = d,

E. = -30'n2T é + 4o'n2T 3T = -Afcecd - Bxeuod + Cod + D
d o o d
(4.18)

Then, equations 4.12, 4.15, 4.17 and 4.18 constitute the
boundary condition: ai.' a set of four simultaneous linear al-

gebraic equations in A, B, C and D:

I =, (1-8) A + (148) B -BCc + D (4.12)
Eo = -KA - KB + D (4.27;
ED = -erdA - xe_oda + doC + D (4.18)

_ K N _ (k _ _(k
H= '~ «o 28)a (b ko - 2B )B (b g+ 28)c¢C (4.16)

Solving these equations for A, B, ¢, and D, we ocobtain,

for I =0,
o

A = 1 {Eéiiiﬁl [-Eo(1+8+ne-cd) + Ed(1+8+x)]

>

d

+ H[do (1+B+x) + nB(l-e-G )1} (4.19)
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[

B = --{gééliﬁ)[gc(1-8+xecn) - Ed(l-B+K)]

- Hldo(1-8+x) + rB(1-e"%) 1) (4.20)
¢ = L mel(1-Bre) (1-e™%%) - (1484x) (1-37) ) (4.21)

F=E +Tlfc [M [E (¢ sinh od-B) + BE.]

o A K o) d
+ H [2B(do + k sinh o0d)])} (4.22)

= E +x(A+B)
(o]
where

A Z (1+k) 4 B{B(l-cosh od) -~ (l+k)sinh od) (4.23)

The suitability of the Hamaker solution for this kind of
boundary conditions is cne of its strong features. In contrast,
there is no chvious way ia which the exact solution can be
utilized except when the four necessary boundary conditions are

all given at one point.
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5.0 SAMPLE PREPARATION AND CHARACTERIZATION

Samples of several materials were prepared for emissivity
measurements. The materials and their sources and average par-

ticle size were:

Material Powder Particle Size Fabricator
A1 O , ) ,
2 3 Linde A 0.3 micron Lexington
Laboratories
MgO0 1 micron Avco RAD
SrTiO3 TAM C.P. -325 mesh Lexington
Laboratories
SiO2 Avco RAD
& Corning
CaFr Baker CP Lexington
2 .
Laboratories

Initial attempts were made to prepare all of the

materials except SiO. by isostatic pressing and sintering. This

2
procedure resulted in complete success with the Al1_O partial

204
success with SrTiO3 and CaF2. Other methods were usid to pre-
pare the remaining samples.

Measurements of density were performed by both point
count on a polished section (counting the pores falling under
the intersections of a uniform grid) and by immersion in xylene.
Xylene was chosen because of its low surface tension relative
to the solids to be immersed. Weights of the sample were taken
(a) dry, (b) immersed and (c) saturated but not immersed. The
measurements have been generally reproducible within 1%.

Pore radius was computed from the measured average length

of line intersected by the pores. The relation used to obtain
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the value of the pore radius was

n (5.1)

r =

W

where r = average pore radius and %= average length of line
intercepted by pore.

5.1 A1203

5.1.1 Preparation

Five samples of Al were prepared by isostatic

2°3
pressing at 8000 psi. An addition of 20 wt % distilled water
was made to aid green strength. The samples, as pressed, were
disks approximately 5 inches in diameter by 2 inches in thick-
ness; extra material was allowed in order that the surface be
characteristic of the bulk material.

Firing was done in air using a furnace with a
program controller. Variations of time and temperature were
used to control the density. Where necessary samples were
fired more than once to adjust the density to a desired value.
5.1.2 Characterization

The measured density of the A120 samples is as

3
follows (% of theoretical):

Sample Point Count Immersion Fiqure
al-1 g88.1 95.8 5.1
AL-2 77.4 86.0 5.2
Af-3 96.4 95.8 5.3
Al-4 85.5 90.0 5.4
AL-6 77.0 87.6 5.5

Greater discrepancies were observed between the less dense

samples for two reasons: (1) low density and fine grain size
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made preparation of polished sections extremely difficult and
(2) immersion measurement problems increase with low density.
Pore radius measurements yielded values for the

various Al,O_, samples as follows:

273
Sample Pore Radius (microns)
Afl-1 2.50
aAL-2 1.69
Af-3 1.77
Al-4 1.17
Al-6 1.68
5.2 Mgo
5.2.1 Preparation

Controlled th pressing, performed at Avco RAD,
was done in graphite dies. A measured charge was placed in
the die, then pressure and temperature increased until a pre-
determined ram travel was observed.

Machining of the finished samples was done dry
using diamond tools. Sgecial care was observed with the lower
density sample because of the tendency of fine particle MgO

to react with atmospheric CO2 and Hzo.

5.2.2 Characterization
Density measurements provided the following

values (% of theoretical):

Sample Point Count Immersion Fiqure
Mg-3 88.0 94.0 5.6
Mg-5 90.0 97.5 5.7

The fine grain size of the less dense material
generated exceptional difficulty in producing ¢ polished section

that could be photographed.
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The average pore radius observed for each sample

was
Sample Pore Radius (microns)
Mg--3 2.13
Mg-5 1.78

5.3 SrTiO3

5.3.1 Preparation

Isostatic pressing and sintering was used to
obtain a high density sample (Sr-1l); slip casting was used to
obtain a lower density sample. Both samples were fired in
air using slow heating rates.

Samples were machined wet using diamond tools.

5.3.2 Characterization
Sample densities were observed as follows (% of

theoretical):

Sample Point Count Immersion Figure
Sr-1 92.9 98.7 5.8
Sr-2 (cast) * 63. 64. 5.9

Average pore radius for the two samples was

Sample Pore Radius (microns)
Sr-1 2.47
Sr-2 (cast) 3.00

5.4 5102

5.4.1 Preparation

Two sample preparation technigues were used; a
higher density sample was hot pressed by Avco, and two of lower

densities were slip cast bv Corning, and fired to a terminal

* Because of the difficulty in polishing Sr-2 (cast), the
value .63 was used; it was obtained both on a xylene im-
mersion measurement and by mechanical measurement of the
weight and volume of a regular cylinder of the material.
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density. In both cases, the maximum temperature was low enough
to cause little or no devitrification.

The hot pressed sample, however, was observed
to be over 99% dense. As a result, it was not considered a
semi-transparent material with pores as scattering centers, but
a nearly transparent glass. The two samples from Corning were
measured and the resulting data used.

Calculated values for emissivity of fused silica

were computed on the basis of the microstructure of the Corning

samples.
Machining was done wet with diamond tools.
5.4.2 Characterization
Observed values of density were (% of theoretical):
Sample Point Count Immersion Figqure
FS-7 100.0 99.5 5.12
Average pore radius for the two samples was:
Sample Average Pore Radius (microns)
FS-3 1.28
FS-5 3.06
5.5 Can
5.5.1 Preparation

Efforts at preparing a satisfactory sample were
thwarted by adsorption of water on the surface of the powder;
during firing the water reacted to form a complex hydrate and
finally Ca0O. Attempts at preparing the powder and firing the

slug in an atmosphere of dry, CO, free nitrogen were partially

2
successful. Two samples, free of CaO, were prepared; but failed

in machining.
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Fig. 5.1 AZ-1 532X. Point Count Density = 88.1% of
Theoretical Density.

Fig. 5.2 Af£-2 532X. Point Count Density = 77.4% of
Theoretical Density.
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Fig. 5.3 A[-3 532X. Point Count Density = 96.4% of
Theoretical Density.

Fig. 5.4 A{-4 532X. Point Count Density = 85.5% of
Density.




Fig. 5.5 A(-6 532X. Point Count Density = 77.0% of
Theoretical Density.

Fig. 5.6 Mg-3 532X. Point Count Density = 88.0% of
Theoretical Density.




Fig. 5.7 Mg-5 532X. Point Count Density = 90.0% of
Theoretical Density.
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Fig. 5.6 ©5r-1 1064X. Point Count Density = 92.9% of
Theoretical Density.
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Fig. 5.9 Sr-2 1064X. Immersion Density = 63% of Theoretical
Density.

Fig. 5.10 FS-3 532X. Point Count Density = 65.9% of
Theoretical Density.
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Fig. 5.11 FS-5 532X. Point Count Density = 71.7% of
Theoretical Density.

Fig. 5.12 FS-7 532X. Polarized Incident Light Shows
Crystalline Phase. Immersion Density = 99.5%

Theoretical Density.
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6.0 SINGLE CRYSTAL ABSORPTIVITY

Transmission of various single crystals was measured to
determine the absorptivity, @, as a functionrn of wavelength and
temperature. Measurements were made at temperatures up to
1200°c and at wavelengths as long as 15 microas or as permitted
by material prcperties. In the calculation of @, correction

was made for surface reflections by the foliowing formula:

<= (1-p e (6.1)
o
where I = transmitted energy
Io = incident energy
t = thickness of sample (cm)
e = natural logarithm base
p = surface reflectivity

The value of p at a particular wavelength may be calculated

if the index of refraction, n is known at that wavelength.

)\I
The relation is
2
(l-nx)

p = m(lmx)? (6.2)

6.1 Experimental Technique
A small high temperature furnace with a rectangular
cross-section was used to heat the samples. Special optics

are required for use with the spectrophotometer. Details have

(3)

beern presented previcusly.

6.2 Samples

Single crystals of Al 03, MgO, SrTiO., and Can, were

2 3




measured as well as samples of sio2 glass. Isothermal emis-
sivity measurements were done on most of the same group of

materials. Sources of the materials were

A1203 Linde

MgO Semi-Elements

Sio2 A. D. Jones Optical

SrTio3 TAM Division
National Lead

CaF2 Semi-Elements

6.3 Results

Figures 6.1 through 6.5 show absorption coefficients

as a function of temperature and wavelength.
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Fig. 6.1 Absorption coefficient of Single Crystal A1203.
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Fig. 6.2 Absorption coefficient of Single Crystal MgO.
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Fig. 6.4 Absorption coefficient of Single Crystal Can.
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7.0 ISCTHERMAL EMISSIVITY AND CALIBRATION MEASUREMENTS

Measurements of isothermal emissivity were made on well
characterized samples and a check of the effectiveness of the
blackbody source was performed using a special blackbody as a

reference.
7.1 1Isothermal Emissivity

7.1.1 Measurements

Measurements of emissivity were performec using
the same equipment as previously described.3 Basically it
consists of two disk shaped samples adjoining each other within
a furnace with optical access through a water cooled port.
Transfer optics provide two beams to a recording spectrophotom-
eter, one the reference beam from a cylindrical groove between
the samnles that provides a blackbody; the other from the cylin-
drical surface of the sample as it rotates past the port. Thus
the spectrophotometer records emissivity of the sample directly

with no correction for temperature.

7.1.2 Results of isothermal measurements

Figures 7.1 through 7.29 present the results
of measurements. Figures 7.30 through 7.36 present comparison
calculations made during the present contract and measurements

made on the previous contract.

7.2 Blackbody Calibration

Emissivity measurements made by direct comparison
of the radiation emitted from a sample surface and a reference
blackbody can only be as good as the blackbody reference. Two
general requirements must be met: (1) the blackbody must have
an emissivity near unity and (2) the blackbody must be at the

same temperature as the sample.

h5




In the Lexington Laboratories design, these require-
ments are met with a rotating wedge which is actually part of
the sample and thus is at the same temperature. The slot sur-
face is blackened with a silicon carbide coating having an
emissivity near 0.9 over most of the wavelengths of interest
and above 0.7 at all wavelength. wi h this surface, the geom-
etry is such as to give an emissivit above 0.995 over all

wavelengths of interest.

7.2.1 Apparatus

A blackbody furnace has been constructed and
the essential details of the unit are shown in Fig. 7.37.

The unit is based on a design used at the National Bureau of
Standards.ll By their calculations, the calculated emissivity
was 0.999, although the actual emissivity is probably some-
what less.

The only changes in the NBS design are: (a)
the use of Kanthal A-1 instead of Pt-20%Rh, (b) machining the
core instead of casting, and (c) use of air cooling instead
of water.

The furnace is introduced to the optical system
of the spectrophotometer by rotating one of the mirrors in the
external entrance optics (See Fig. 7.38). By rotating this
mirror, the system may be adjusted to the proper energy source
without introducing any auxiliary mirrors but still using the
full complement of mirrors. Introduction of auxiliary mirrors,
exclusion of any mirrors, or changes in reflection angle would
tend to introduce differences in the beam path. Such differ-

ences would prevent useful calibration.

7.2.2 Calculations
In emissivity measurements and comparison tests

using a separate blackbody, it is essential to have well-defined

0b




temperatures. The energy emitted by a blackbody as a funct un

of temperature is given by Planck's radiition law:

-5 1
Ua,r T C1 C,/AT
e -1

(7.1

For considerirg the effect of small temperat

differences, Wien's radiation law is a good approximation,

5

=\ e-C, /AT (7.2

U\, T

Then, if the reference blackbody and the san

are at slightly different temperatures,

-5 -C,/\T
U1,  CA @l
L. (7.3
a1 =5 “Cy/NT,
2 C.A
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where C. = 1.435 when )\ is given in centimeters and T in °k
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7.2.3 Results and discussion

inspaction of equation 7.5 shows that tle effect
of temperature differences is particularly important at the
shorter wavelengths. That is, at 1000°C, a difference in tem-
perature of 5° between the standard aznd the reference leads
to a difference of enerqy emittec by the blackbody of about
5% at 1 micron and only .5% at ten microns. Thus, in comparing

lackbodies, measurements at the snorter wavelengths are of
particular significance.

Results of one set of measurements are illustrated
in Fig. 7.39. The blackbody furnace was at a temperature of
1008°C and stabilized; the rotating slot was stabilized at a
tewmperature of 107°2°C. The ratio of measured energy emitted
was within less than 1% of the calculated value over the entire
range of wavelengths and no systematic deviation was observed,
except perhaps at the shorter wavelengths where small variations
in temperature assume greater significance. We interpret these
results as cunfirming the blackness of our rotating wedge con-
figuration, and illustrating the need for precise temperature
neasurement and control when an exterior blackbody source is
used.

In the case of these measurements we also con-
firmed previous observations of the need for care in alignment,
particularly at the longer wavelengths when the spectrometer
glit is wide open. A measurement under similar conditions for
those shown in Fig. 7.39 is illustrated in Fig. 7.40. Here
the agreement batween blackbody furnace and rotating wedge is
good at the shorter wavelengths, but decreased energy is ob-
tained from the rotating wedge at wavelengths above about 11

microns because of misalignment.
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Thus the present results confirm our previous
experience that experimental measurements are reproducible
within + 1%. However, the possibility of minor misalignment,
changes in optical path, or other minor variations, leads
us to conservatively claim no more than 2 maximum possible

error of up to 5% for any individual measurement.
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8.0 COMFARISON OF MEASURED AND CALCULATED EMISSIVITIES

Directly measured values of the normal emissivity are
compared with values calculated from our material characteriza-

tion in Figs. 7.1 -7.29.

8.1 Aluminum Oxide

Measured and talculated values for specially prepared
high purity aluminum oxide are shown in Fig. 7.1 - 7.15, 1In
the 2-4 micron range where absorption is low and the scatter-
ing coefficient high the emissivity is low; calculated and
measured values generally agr~e to better than + 0.05. In some
cases the calculated values are greater than, and in some cases
less than, the measured values. Inasmuch as the sum of the
precision of measurement and calculation is about + 0.05, we
regard the agreerent as good.

At wavelengths of 1 and 5 microns, where the absorp-
tion coefficient is increasing rapidly, the calculated values
are in 3ll cases slightly or significantly lower than the meas-
ured values. This results from the fact that the purity of
the polycrystalline samples is less than the single crystals,
and thus the absorption coefficient is less for the single
crystals, giving a low value for the calculated emissivity.

In all cacses the general shape of the calculated

and measured curves are similar.

8.2 Silica Glass

Measured and calculated values for silica glass
samples are shown in Fig. 7.16 - 7.19. As with the alumina
samples, calculated and measured values are in close agree-
ment in the 2-4 micron range. Calculated values at 1 and 5

microns are lower than measured values, and the general shape
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of t'e emissivity wavelength curve is the same for the calcu-

lated and measured values.

3.3 Maunesia

Measured and calculated values for hot-pressed magne-
sium oxide samples are shown in Figs. 7.20 - 7.25. Here the
influence of the absorption coefficient is particularly pro-
nouniced. The hot-prossed samples were observed to darken
during testing, presumably because of carbon pick-up in the
hct pressing operation (dene in graphite dies). As a result,
the measured emissivity is several times as large as that cal-
culated; that is, the siagle crystal absorptior data are com-

pletely unsvitable for the hot-pressed polycrystalline samples.

8.4 strontium Titanate

Measured and calculated values for sintered strontium
titanate are shown in Pigs. 7.26 - 7.2%9. Sample SR-1 was sin-
tered for a long time at high temperatures end was visually
observad to darkea. 3as a result, the measurad emicsivities
are subistantially greater than those calculzted from singilie
crystal data. Sample SR~2 (having higher porosity) was sin-
tered for a short time, darkened less, and the measured and
calculated values are in much better agreement.

Because of the tendency for the absorpticn coeffi-
cient of strontium titanate to chnange as a function of heat
treatment, the emissivity will also change as a function of

thermal history.

8.5 Commercial Alumina
A comparison between the measured and calculated
emissivities for several samples of commercially prepared

alumina are shown in Figs. 7.30 - 7.36. Fcr the purest of
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these, AD995, agreement between calculated and measured values
is reasonably good. For the least pure, AD-85, measured and
calculated values differ by a factor of four. This results
primarily from the fact that calculated values are based on
the absorption coefficient of a single crystal, while actual
absorption coefficients of the impure polycrystalline samples

increase with the impurity content.
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9.0 AFPARATUS AND METHOD FOR MEASURING NON-ISOTHERMAL
EMISSIVITY

The purpose of the apparatus herein described is toc pro~
duce a controlled temperature gradient across a disc-shaped
ceramic sample whose emissive properties are to be measured.
The gradient is produced only in the radial direction, there-
by reducing the analysis to that of a one dimensional heat
transfer problem. A rotating sample arrangement is used to
maintain symmetric temperature conditions.

The apparatus operates inside the furnace which has been
used for isothermal emissivity meacsurement; the latter has
been described previously. The fur..ace heating elements pro-
duce either a uniform temperature threughout the sample, or
adjust the surface temperature. An internal resistance ele-
ment is used to produce a positive gradient across the s-mple
while a hollow shaft i3 used to cool the samples with forced
air. The -omplete apparatus is shown in Figure 9.1.

The samples and the internal heating element are supported
on a one-half inch alumina shaft. The alumina shaft is sup-
ported and rotated by Inconel shafts with conical points to
mate with conical holes at each end of the alumina shaft.

The two Inconel shafts are rotated by an electric mo*or and
synchronized by a pair of selsyns. This arrangement assures
minimum stress and vibration on the shaft and sample assembly
while giving a uniform rate of rotation.

Prcvision has been made for cooling the interior of the
:ample by air. A hollow alumina shaft is used in this arrange-
ment wi h compressed air forced through this shaft. This

arrangement has not been tested.
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9.1 Production of Radial Thermal Gradient

In crder to minimize the effects of thermal varia-
tions, the apparatus was designed to produce a radial tempera-
ture gradient in the sample. The gradient is obtained in a
sample which has a width of one-half inch and which is placed
between ceramic discs of the same dimensions and made of a
material with similar thermal properties. The discs are held
together by an axial spring load; the resulting thin air gap
between adjacent discs reduces axial heat transfer and result-
ant temperature gradients along the samples and s-ipport plates.

The interior heating element is wound for a length
of nine inches under the sample and support plates, with the
samples located at the center of the winding. This arrange-
ment gives a uniform axial heat zone in the region of the
sample and support plate assembly; no axial gradient is pos-
sible since there is no variation in thermal properties in

the axial direction.

9.2 Internal Heating Element

The internal heating element, producing the non-
isothermal condition consists of a Pt-40% Rh alloy resistance
element rotating with the samples. This wire element is spi-
rally wound around a one-inch O0.D. alumina core. The core
is grooved for a ten turns per inch winding and flame sprayed
with alumina to cover the resistance wire. The outer surface
is ground true to facilitate assembly of the sample and sup-
port plates on the heating element. The power for this heater
is supplied to the rotating element through two slip-ring
assemblies located on the drive shafts at either end of the

furnace.
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9.3 Measurement of the Temperature Gradient
The radial temperature and temperature gradient in

the disc shaped samples are measured by eight thermocouples
imbedded in the samples and supported by the backup plates.
These thermocouples are arranged in two groups of four to
give two sets of measurements for locations 180° apart on
the sample. Each set of couples is positioned on a radial
spiral covering 90° of sample. This minimizes any effect
the couples have on the radial heat transfer or temperature
distribution in the samples. Normally two samples will be
run adjacently with one set of thermocouples in each.

The thermocouple elements are Chromel-Alumel en-
cased in an Inconel sheath. The thermocouples may be wired
to indicate both absolute and relative temperatures. Signals
from the thermocouples are received at one end of the furnace
by a low noise slip ring assembly mounted on the exterior
drive shaft. Measurement is done with a Leeds & Northrup

K-3 potentiometer.

9.4 Operation

The same optics used for isothermal emissivity meas-
urements are used in this experiment with one change. As
shown in Fig. 7.38, one mirror is rotated to receive the radia-
tion from a blackbody furnace. The latter furnace is main-
tained at a temperature near the surface temperature of the
sample.
%.5 Non-Isothermal Measurements

Fig. 9.2 is a plot of the ratio of the emissivity of
an A1203 body under isothermal conditions (radiating surface
at 895°C) to the emissivity of the same body (radiating sur-

face at 898°C) with a positive temperature gradient across
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the sample of 114°C (60°C/cm). In both cases measurement of
emissivity was made relative to an external blackbody at approx-
imately the same temperature as the radiating surface. Tempera-
ture differences between blackboudies and radiating surfaces

were corrected using Wien's law (Eq. 7.5).
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10.0 DISCUSSION

Over the wavelength from 0.5-15 microns different processes
affect the emissivity of oxide materials and as a result no
single analysis is suitable for the entire range of material
behavior. At wavelengths shorter than about 6 microns the
absorption coefficient is sufficiently low that emissivity is
a volume process and is strongly affected by the absorption co-
efficient and scattering coefficient of the oxide. At wave-
lengths above about 6 microns the oxides are essentially opaque;
as a result, emissivity is a surface characteristic which is
affected by the surface reflectivity (depending on the index
of refraction) and surface roughness, and in general is simi-
lar to metals and other opague solids as far as the material
characteristics which need to be defined. Because the reflec-
tivity is low, the emissivity is high in the range up to about
11 microns. At higher wavelengths, as the reststrahl frequency
is approached, the absorption coefficient remains high, but
the reflectivity increases and as a result, the emissivity
drops off.

Under conditions where oxides are opaque, that is at wave-
lengths greater than 6 microns or so, the process is not sig-
nificantly different than for other opaque solids and does
not offer significantl-’ new problems. At wavelengths shorter
than about 6 microns, the process is quite dissimilar from
that in most materials which have been studied previously,
and as a result, it is in this wavelength range that we have
concentrated our efforts.

In the region where a high absorption coefficient does not
overwhelm the volume process, the emissivity depends on the re-

flectivity of the surface (a function of the index of refraction)
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and on the matcrial constant Bo =Ja/(a+2s). Thus, in order
to estimate the emissivity, it is necessary to calculate the
values of the absorption coefficient and scattering coeffi-
cient. Values of the absorption coefficient have been deter-
mined from transmissivity measurements with single crystals.
Values for the scattering coefficient have been calculated on
the basis of pore size, relative index of refraction, wave-
length and pore concentration. The precision of this calcu-
lation (which requires knowledge of the back scattering co-
efficient as well as total scattering) is not high, but since
it enters as a square root relationship in the determination
of emissivity, the precision of the final emissivity calcula-
tion is better than that for the estimation of the scattering
coefficient.

A comparison of the calculated and measured values of
enissivity at 2-4 microns shows good agreement for specially
prepared high-purity aluminum oxide (within + 0.05 emissivity
units). This result is regarded as satisfactory considering
that it is determined entirely from material characteristics
such as microstructure and pore concentration and is inde-
pendent of actual optical property measurements. It indicates
the strong influence of porosity on fixing the emissivity -
the emissivity decreases linearly with increasing porosity.
It also, by comparison with other samples of alumina, par-
ticularly impure commercial materials, shows the great in-
fluence of small changes in composition and microstructure
on the resulting emissivity. At a wavelength of 3 microns
impure commercial aluminas have emissivity values as large
as 0.5, while the high-purity and small pore size samples

specially prepared for this study have values as low as 0.03.
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That is, for a material such as "alumina" an order of magni-
tude difference in the emissivity can result from control
of microstructure and composition.

A comparison of the calculated and measured values for
MgO and strontium titanate indicates the strong influence of
the absorption coefficient on experimental results. The MgO
samples tested were darkened, presumably resulting from carbon
pick-up during hot pressing in graphite dies, and as a result
had values of emissivity at 3 microns as high as 0.8 compared
with calculated values of the order of 0.1, which would apply
to the pure material witnout contamination. Thus, in the
preparation of low emissivity materials, contamination is of
significant importance. For strontium titanate heat treatment
affects the absorption coefficient (presumably as a result of
changed oxidation states). Thus, measurements of the emis-
sivity of strontium titanate and similar materials are subject
to change with changing environment, and one must specify care-
fully the conditions of preparation and testing in order to
report useful material data. This characteristic further
limits the utility of tabulated emissivity values for oxide
materials independent of detailed sample description.

In general then, in the important 1-5 micron range cor-
responding to the range of maximum energy emission over tem-
peratures from 1000-2500°C the emissivity of oxide materials
can vary, or be varied, over a wide range. For low emissivity,
high purity, high porosity, and small pore size is preferred;
under such conditions the emissivity can be well below 0.1.
For high emissivity, the main requirement is to increase the
absorption which can be done by the introduction of impurities
or contaminants which give rise to absorption in this wave-

length range. For materials such as this, emissivities of
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the order of 0.8-0.9 can be achieved. This wide range in
values found for oxides an? a quantitative evaluation of the
means necessary for control of the emissivity is an important
consideration in any application of these materials at high
temperatures involving heat transfer considerations.

In the measurement of isothermal emissivity we have
compared our blackbody slot system (in which the sample it-
self corresponds to the reference standard) with an external
blackbody designed to have an emissivity greater than 0.995.
Experimentally the results with an external blackbody and one
machined into the sample were indistinguishable. The greater
ease in maintaining temperature uniformity when the blackbody
slot is actually part of a sample makesit a preferable system
for experimental observation.

In the calculation of emissivity, it is necessary to
know the back scattering coefficient for diffuse radiation
and also the absorption coefficient for diffuse radiation.

As a result, we have analyzed the absorption coefficient for
diffuse radiation relative to the value measured for plane
parallel radiation, and also evaluated the scattering coeffi-~
cient - particularly for systems in which pores are the main
scattering centers and the index of refraction of the pore

is smaller than that of the solid matrix material. Under
these conditions the back scattering coefficient can be
evaluated with sufficient precision to make a useful estimate
of the resulting emissivity.

One aspect of the problem has been that we calculate
hemispherical emissivity while our measurements have been
for normal emissivity. After an analysis of the transfer

of radiation through the boundary of the sample, we have
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evaluated the ratio of normal and hemispherical emissivity
and find that it depends on the relative index of refraction
but is not far from unity for most of the oxide materials of
interest.

Application of this data to non-isothermal systems in-
volves use of the Hamaker approximation which essentially
linearizes the temperature gradient in order to obtain a
group of differential equations for which an analytical solu-
tion is available. Using numerical techniques, we have com-
pared the Hamaker and exact equations for a series of condi-
tions for temperature up to 3000°C, for scattering coeffi-
cients up to 100 cm-l, and for temperature gradients up to
1000°C/cm. For these conditions we find that the Hamaxer
equation is in satisfactory agreement with the exact equation
except when values of the lat ice conduction are much greater
than for radiant energy transfer. For all practical applica-
tions of oxide materials at temperatures above 1000°C, the
Hamaker equation gives a satisfactory approximation to the
exact equation; in fact, for values of the absorption and
scattering coefficient greater than unity it is within 1/10
of one per cent of the exact equation for all the conditions
that we have evaluated.

One advantage of the Hamaker equation over the exact
solution is that it is not necessary to specify all of the
boundary conditions at one surface, and we have extended the
Hamaker equation to some additional boundary condit ions which
are of greater utility than specifying all the boundary condi-
tions at one point in the system.

The application of the Hamaker equation of most interest
is to conditions of non-isothermal emissivity. In this case,

the effective emissivity depends on temperature gradients
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within the body as well as on the surface temperature itself.
We havs designed and tested an apparatus which allows us to
meazure the energy emitted from a surface of a sample con-
tainine a known temperature gradient in comparison with that
of a klackbody standard. Test measurements indicate the
energy emitted from aluminum oxide ceramics does strongly
depend on the temperature gradient as welil as on the surface
temperature. With a temperature gradient of 60°C/cm the
effective emissivity for the same surface temperature is
experimentally found to increase about 22% at 1000°C. In
subsequent work we plan to carry out additional experimental
measurements and compare these directly with calculations
based on sample characteristics. As for the case of isothermal
emissivity it is essential to have a detailed sample charac-

terization to make useful analyses and predictions.
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APPENDIX I

VALUES FOR INDICES OF REFRACTION USED IN EMISSIVITY
CALCULATIONS*

n, at A (u) =

A
MATERIAL O0.54 1 2 3 4 5 8 11
A1203 1.78 1.75 1.74 1.72 1.65 1.60 (1.33)
SrTiO3 2.48 2.31 2.27 2.23 2.18 2.11 (1.85)
9606 1.45 1.45 1.43 1.41 (1.35) (1.30)
9608 1.45 1.45 1.43 1.41 (1.35) (1.30)
MgO 1.75 1.72 1.70 1.68 1.65 1.55 (1.45)
CaF2 1.43 1.42 1.41 1.41 1.40 1.39 1.35 1.28
SiO2 1.45 1.45 1.43 1.41 (1.35) (1.30)

Parentheses indicate extrapolated values.

* from Woife and Ballard Proc. Inst. Radio Engineers 47, 1540
(1959)
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APPENDIX II

SAMPLE CALCULATION OF EMISSIVITY

II.1 cCalculation of @ and a for Af-6 (3u) at 904°C
The calculation of emissivity for Af-6 (3u) at 904°C is

typical of the method used for obtaining all values of calcu-
lated emissivity. From the microstructure of Af-6 in Fig.
5.5 values of P (pore volume fraction) and r (average pore
radius) are obtained.

The absorption coefficient for single crystal A1203 was
calculated rrom the ratio of eneryy transmitted through an
optically polished section 0.313 cm thick to that incident
upon it and corrected for the surface reflectance at the

polished surface from the following relationship:

I 2 -~a
R N
o)

(Ir.1)

where:
I = transmitted energy
I = incident energy
a = absorption coefficient
t = thickness of section in cm.
The value of surface reflection is calculated from the
index of refraction:
) (1- n )\)2
P (1 + nk)l

(11.2)

The value of the absorption coefficient @ may then be
determined by solving Eq. (II.1l)

I 1
X

o = I [ I, (1 - p)z ] (II.3)

127




For A1,0, at (3 u) and 904°C

2

I
T = .81
0
1
7 = 1.155 (at A =3 4, n = 1.72)
(1-p)

t = .313 cm.

When II.3 is evaluated for the stated conditions
a = ,215 (:m_l
Equation 2.16 states:
a=2¢a (2.16)

Where a is the absorption coefficient for a polycrystalline
material with pores as scattering centers, therefore:

a = .430 em t

IXI.2 cCalculation of s for Af-6 (3u) at 904°cC

The scattering factor s is defined by the expression:

s=—— K — (2.44)
P = pore volume fraction
r = average pore radius
K = scattering factor from Fig. 2.3
4nr lm-ll
P =" (II.4)

where:
r = average pore radius (1.68u)
1

ny
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For AL-6 (3u) at 904°C, P = 0.23 and K = 1.70
From 2.44 then

8 = 1.751 x 103em~t

II.3 Evaluation of Bo from values of a and s for Af-6 (3n)
at 904 C
/’ a

BO =+Y a + 2s (I1.5)

where:

a is the absorption coefficient for poly-
crystalline materials with pores as
scattering centers. (.430 cm_l)

s is the scattering coefficient (1.751 x 103
cm-l)

B is a material constant

8 4.30 x lOulcm-l
o =% [T 21 -1 3 -1
4.30 x 10 "cm + 3.502 x 10 em

4

+ J%1.23 x 10

™
i

Bo =1.11 x 1072

I1.4 Calculations of the reflectivity, p and the emissivity,

¢ from values of BO’ Po and py

Values of p, and p; are found in Table 2.1
for a range of refractive indices. Values between were inter-
polated.

The value of ¢ is derived from equation 2.1.
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(l-pi)2 - Boz(l - Py - 2po) (1 + pi) + ZBO (po + pi)(l —pi)

pn
(1-pp2 487 +pn?saB-p

where:
B_ is a material constant

Po is the reflectivity of diffuse energy
incident on the sample

Py is the reflectivity of diffuse energy
emerging from the sample.

The following terms are evaluated numerically:

4 2
Py = -122 (1 -p.%) = .506
py = -703 p = .938
BO =1.11 x 102 230 = 2.22 x 10°2
(1-p,) = .297 B 2 -1.23x 10°%

i 0
2

(1-p;)" = 0.0882 (pg * p;)= -825

(1 - p; - 2py) = .053

Substituting in 2.1, we find:

p = 0.938 and
(L -p) =c¢
e = ,062
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