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THE EXPANSION OF A RAREFIED GAS INTO A VACUUM

P. Molmud

Space Technology Laboratories, Inc., Los Angeles 45, California

ABSTRACT

The expansion of an initially uniform gas sphere into a vacuum is

described. The analysis p'oceeds on the basis of free molecular flow.

It is demonstrated that collisions will not seriously modify the expan-

sion process as long as the initial mean free path of a molecule within

the sphere is much greater than the initial diameter of the sphere.

Expressions are derived for the momentum and energy flow as-

sociated with the expansion of such a sphere.

The expansion of a gas which fills half space and also of a gas

initially of the form of a uniform cylinder are described.

The interaction of an expanding gas cloud with a specularly re-

flecting surface is determined.

The interaction of an expanding gas cloud with a diffusely reflecting

surface is considered.

I INTRODUCTION

Let us consider a rocket vehicle operating in interplanetary space. The

vehicle's rocket motor may be operating under steady-state thrust or sporadi-

cally in short bursts, either for orientation or for braking purposely. We are

concerned with the phenomena that may be associated with the release of exhaust

gases from the vehicle. For example: the released gases may by their very

expansion into the vacuum react on the vehicle. The release gases may also,

u nder the influence of solar radiation, fluoresce and ionize. Furthermore

some of the ions so produced, or already present in the exhaust gases, will be

trapped by the local magnetic fields.

In order to predict the magnitude and spatial extent of such effects, it is

necessary, at the very least, to be able to predict the temporal evolution of

the released gases.
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In this paper we consider the expansion of a short burst of gas (a puff)

into a vacuum. The continuum treatment of this apparently simple problem

is amazingly difficult and by no means complete.

t See, for example, the treatment by J. B. Keller, Quarterly of Applied

Mathematics, 14, (1956).

Therefore we confine ourselves to a treatment of this problem which can be

carried through to completion and where the region of validity of the solution

can be fairly well defined. The treatment we employ is that of the free

molecular flow of gases; that is, we assume that the molecules in this puff

of gas move to infinity without zolliding with one another.

The solution is simple and proceeds in a straightforward manner. After

we obtain the solution, we investigate the consequences of assuming a finite

collision cross-section for the molecules. We find that the assumption of

free molecular flow is not inconsistent with the assumption of the finite

collision cross-section, provided the in..ial diameter of the puff is much less

than the initial mean free path of the molecules.

11. THE FREE MOLECULAR EXPANSION OF A PUFF

OF GAS INTO A VACUUM

We shall simulate our puff of gas by a spherical bubble of gas in containment

by some sort of skin which can be made completely permeable at will. That is,

the skin will retain the gas until a signal is given, at which point the skin ceases

to exist and the gas is allowed to expand.

We shall furthermore assume that the gas molecules initially have a

Maxwellian distribution of velocities at a temperature T, and do not collide with

each other during the expansion (zero collision cross-section).
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1. The Source Function for Free Molecular Expansion into a Vacuum

We assume that tLe skin bounding the sphere of gas disappears at t = 0.

Since the particles do not interact with each other, it is sufficient for the

complete description of the problem to know the initial vector velocity of each

particle. Then we can allow these particles to travel in straight lines after

t = 0.

Let us take an element of volume d T containing d N particles in the

original sphere. Since, by hypothesis, these particles have a Maxwellian velocity

distribution, we may immediately write the fraction f, of the d N particles

with radial velocities ranging between v and v + dv. Thus:

f = 4 7 ) / e" v2 dv 1

where P = m/2KT (m is the mass of the molecule, K is the Boltzman con-

stant and T is the temperature of the gas).

At a time t, after the start of the expansion these particles with velocities

v to v + dv are contained between two concentric spheres having a center at

d T and radii r = v t and r + d r = (v + dv) t. Therefore, the density of these

particles, dp, is given by

dp fdN (Z)
41Tdvt 3 v

Combining (2) with (1) and setting v = r/t, we obtain

dp = e dN . (3)

Equation (3) presents the density everywhere in time and space, due to the

free expansion of a point Maxwellian ensemble of dN particles. It, therefore,

deserves the title of "source function for free molecule expansion."
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This source function is reminiscent of the source functions for diffusion

and thermal conductivity. There is an important difference, however, and that

is, time is to the first power in the exponent and to the 3/2 power in the denomi-

nator of these latter functions.

As can readily be demonstrated,

f-4wrZdpdr = dN

independent of time; and, also, the time integral of the flux of particles through

the surface of a surrounding sphere

f O 4 irr
Z

STr -dpdt

is equal to dN, independent of r. These are necessary properties of a source

function and are possessed by (3).

2. The Source Functior for a Moving Source

The source function (3) can be generalized to take into account the motion

of the source (i. e., the initial Maxwellian distribution is centered about a drift

velocity V).

Let us treat tht case of the moving observer, since the moving source can

always be transformed to such a case. We have, according to Figure 1, an

observer moving with velocity V. At t = 0 he is a distance ro , from the source,

s, and V makes an angle of 0 with respect to the radius vector, ro , drawn

from the source.

r 
Vt

S r
0

Figure 1
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Now, the radial distance from the source will be given by

r 2 + V 2 t2 2Vtro cos 0 (4)

Thus since solution (3) is valid for all r and all time, the density

encountered by the moving observer is:

- e-(ro2+V 2 t 2-2Vtr Cos O)/t2

dp = dNe 0 (5)

The situation as viewed by a stationary observer and moving source is

thus:

-(r2 +V 2 2tZ +2Vtr cos

dp = 3/dNe 00 (5a)
M ~tT

When the source is in motion V can, in general, be a function of position so

that (Sa) is the source function for a body of gas, the individual parts of which

are in relative motion (in the hydrodynamic sense) at t = 0.

3. The Uniform Gas Sphere in Free Expansion

Figure 2

Using the source (3) we may now set up an expression, valid everywhere

in space and time, for the density produced by the free expansion of an initially

uniform sphere of gas with initial density p0 .

5



With reference to Figure 2:

p(R,t) e- 2 r sin Od Od r (6)fp (Rt) Po k:" t3

where o = dN/dT. Since .1 = r2 + R - 2rR cos 0 we may pexform the

tedious integration and obtain

p(R,t) = -r-- rf R+a) Erf R-a)

+2Rpt [e - (a + R)2 P/t 2 -e- (a -R)2 PA- (7)

where

2
Erfx =e y dy

Equation (7) is simplified at either R = 0, the center of the sphere, or R > > a,

where a is the initial extent of the sphere.

At R = 0 our solution becomes

p(0,t) = poErf ) 2Po (-e" (8)

and for large R, (R>> a), t R andaI Po 2rr sin OdO= N, the total

number of partic&.-s in the original sphere. Thus for large R

3/2 e-PR /tp(R, t) = (.) N , (9)

p having exactly the same form as the source function.

We can cast Eq. (9) into a form with more physical meaning by borrowing

a description employed by J. B. Keller. 2 We assume the gas to have the specific

2J. B. Keller, "On the Solution of the Boltzmann Equation for Rarefied Gases."

Comm. Pure Appl. Math., 1, 275 (1948).
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heat ratio y and the velocity of sound in the original sphere is C =/-y (K0Tm).

Then y/2C and therefore:
0

3/2 - R2 /(Cot)

p(Rt) =3/ N e Z (9a)
(C0 t)3

An inspection of Eq. (9a) readily reveals that the main body of the gas is

contained in a sphere, the radius of which is expanding with the velocity Vi C .

4. The Pressure and Impulse Due to anExpanding Gas Sphere

The pressure at any point w,: to an expanding gas sphere may be determined

by computing the momentum transport through a unit area per unit time. We set

up a unit area as in Figure 2, perpendicular to the radius vector, R. The

normal momentum flow per unit area per unit time due to each source element is

(dp)mv 2 cos 2P. Therefore, the pressure at R is:

r 2 t2)
P(R,t) P z. mv cos 2fir sin~dOdr e. (10)

where v = I/t, lcos=R- rcos, 2 r2 +R 2 2rRcos.
2

Again, at large distances (R>> a), I R, cos 2 2I and P becomes

(2)3/2 R2 2 3 / 2 M R2 e R 2  /(C2 t ) 2P =M ) t e "P 3 R 2 / t2) = 2 )  t (o)3e /t) (l0a)

7r (Ct)

where M = Nm, the total mass within the original sphere.

The momentum or impulse transmitted through the unit area is given by

the time integral of (10). The total impulse per unit area is:

= 2irP3 r sin OdOpom C d dr

70 
21 P
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At large distances, this reduces to

I_ M - M C02R2P If/2. 3/2 ( 2W 3/2 0la)

This last result is readily obtained by other means: Consider d N particles

in a Maxwellian distribution. The momentum contained in those particles which

have velocities v to v + d v, in a solid angle d 9 is

dl my ( 3/2 v2

dl = m 3e- I dvd2dN . (12)

The average momentum in the direction of the infinitesimal solid angle

d 9 is obtained by integrating over the velocity, thus

d 1 3 /2 mdN d 2 (12a)dI =(.d ()a

Now instead of d £Z we can substitute its measure, the area, d A, subtended

2
by this solid angle at the distance R, divided by R2 . Th-s

dI mdN ( 2b)
TX3/2 1777

equivalent to (1 la).

5. Total Power and Energy Transmitted through Unit Area by an Expanding

Gas Sphere
2

The flux of energy is given by 1/2 my (dp) v cos ti (refer to Fig. 2) where

v = I/t. Thus, the power transmitted through a unit area is given by the

following expression:

W = m ) 2r/ P 3 e /t cos isinOdOr dr. (13)

Again at large distances (R >>a), W reduces to
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w ( )3/Z M R 3  P(R 2t) (1 3a)

tT

where M = Nm, the total mass in the initial sphere.

The total energy, E, passing through a unit area is obtained by integrating

Eq. (1 3a) with respect to time. The result is

E - M (14)

Thus the total energy crossing a large sphere about the original one is just

4 wR 2 times Eq. (14) or 3M This is a resonable resuIc, for the average

3 m 3
energy of the molecules originally in the sphere was - - or y KT. Thus

3 Mthe total energy in the sphere was T- and this total energy is transported

through the boundaries of the large bounding sphere, yielding Eq. (14).

III. THE CONSISTENCY CRITERIA FOR THE VALIDITY

OF FREE MOLECULAR FLOW

We have up to this time assumed that the molecules do not interact with

one another, that is, they have zero collision cross-section. We have des-

cribed the expansion of a sphere of gas under these assumptions. We now

ask the question: Under what criteria is this description valid for real

molecules with finite collision cross-sections ?

We proceed to determine these criteria by the following method: Each

molecule in the gas is to be endowed with a finite collision cross-section,

but each molecule is artificially constrained to move in a straight line to

infinity, even though it might collide with another molecule. The expansion

of the gas is described according to the methods of Section II, but now we

determine the number of collisions the average molecule encounters on its

10rigid and prescribed path to infinity. If this number is much less than one,

9



then we are correct in assuming that most of the molecules escape the sphere

without suffering a collision. Consequently, the description of the expansion

according to free molecular flow is valid.

1. The Collisions Between one Particle from one Source and a Swarm of

Particles from Another Source

We first consider two point, particle sources, s I and s. , and a particle

of velocity V, emanating from s I at t = 0 and proceeding along a straight line.

We shall assume that this particle does not collide with any other s 1 particles.

The sl particle will pass through a swarm of particles emanating also at time

t=0 from b 2 (see Fig. 3).

s 2

I v

Si Vt

Figure 3

The collision frequency between the s I particle and the s 2 particles is

given by P2 QV 1 2 , where p 2 is the density of the 2 particles encountered

by the first particle in its path, Q is the collision cross-section and V2 is

the relative velocity between the two particle species. When the expression

P2 QV 1 2 is integrated over all time, the result will be the total number of

collisions suffered by the s 1 particle in traveling an infinite distance from

S1"
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The relative velocity, V 1 2 , between particle s I and the particles it

meets on its rectilinear path is just r/t, independent of the velocity of the

s I particle. This is made evident by first considering those s I particles of

zero velocity. The s. particles they meet have a velocity r/t. Now consider

s I particles with velocity V in any direction. The s. particles that are going

to be encountered must have this velocity, V, vectorially added to r/t. Thus,

the relative velocity remains r/t.

Let us denote dn as the total number of collisions encountered by a

.rticle of velocity V in the presence of source s Thus:

dn= p Q dt (15)

but

P -2 = Pd v3 /2 e - P ( 2 t 2)

2 2 V2t2 .

where dT is the volume of the source s2, Po its density and 1 2=r +V t -

2rVtcos 0, [cf. Eq. (5)]. Thus:

dn = OrPodT 3/() dze "V2(z2+i) e "cos . (I5a)

2. The Average Number of Collisions between Particles from one Source

and a Swarm of Particles from Another Source

Now the number of particles from s with a velocity V to V + d V, at

an angle 0 and in a solid angle 2 irsin 0d0, is 27r(P/7r)3/2 sin 0d0V2 e-P V dV.

We now weight (iSa) with this factor and integrate over all angles and velocities,

thus obtaining the average number of collisions encountered by all particles

emanating from s and proceeding to infinity.

11



We perform the 0 integration first and obtain

Qp 0dT 2 U3 O 2 r V2(1 2 2 2 '
- n/ V3 ze dzdvLe eP- -(  1zi+ 16 )< n0 r 2 zw dzdv Je(16

Next, the velocity integration

O

QdN I dF 11(7<<dn>o>v = r-'-  I zdz 1 / (17)
Zr V L(z- 1)2 +1 (z+) +1I

where d N = p0 d T and, finally the z integration

/dn = QdN (18)
'dno0, V 2 ,-rr

3. The Average Number of Collisions Encounted by a Particle in Escaping

From a Uniform Spherical Gas Cloud

We now determine the average number of collisions encountered by

particles from sI when sI is located in an initially uniform spherical cloud

and sI is a distance R from the center.

We choose a polar coordinate system such that sI is on the polar axis,

as in Figure 4.
z

r I
R 0

y

XX

Figure 4
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Then r 2 = R 2 + R2 - 2RR cos 0 and therefore from (18)0 0

a

<n> 0 1  O= ipf R 2 dR sin 0dO (19)0, go R 2  R 2+ - ZRR coso 0O o
00 0 0

Performing *he 0 integration first, we obtain

Po _R 2

<n'>0, V Qp0V RdRtn RR,(19a)

Then the R integration:

<n - I n 2) + R In+ 2](19b)La 0- 0]a +

Thus, when R 0 0 , <n>oV Qp oa; when R ° =a,<n>o, V QPo a and

whn 1 7when R0 = I a, n >, V -- Qpoa.

Since p0  is the reciprocal of the mean free path and 2 a is the diameter

of the sphere, we see that the requirements for neglecting collisions are pre-

cisely what we would expect, namely, that the diameter of the sphere be much

less than the mean free path of the moleculec, or equivalently that P<< 1

-16 2
Since the cross section is usually on the order of 10 cm this means that

po<< 10 16 /2a. Thus, for example, the expansion of a sphere initially with a

diameter of one millimeter and with a particle density of 1016 per cm+ 3 may

be treated as in the first two sections of this report.

13



APPENDIX I

OTHER TRANSIENT PROBLEMS INVOLVING THE FREE

EXPANSION OF GASES INTO A VACUUM

Using the source function, Equation (3), we may solve other problems

involving the free expansion of gases into a %racuum.

1. The Free Expansion of a Gas, Filling Half Space, into a Vacuum

We consider the problem, already solved by Keller 3 of the expansion of

a gas for which p = p0 for x< 0 and p = 0 for x>.O at time t.<O.

3cf. footnote 2.

First we determine the source function of a flat slab extending to infinity

in the *-y and *z directions but of thickness dx. Consider Figure I-I where

dy-

I

y

x 0 R

dx

Figure 1- 1

we have the infinite slab'of density p0 and an observer at distance R -

normal to the slab. The element of volume, dr, is 2Twydydx and also

2 2 21 _ (R-x) +y . Now using the source function (3), we find the density

at R due to the initially uniform infinite slab.

/22 22
dp = 2iTP(o) ee ItI dydx

~e' 3(R\//2

e P(Rx) dx (.

14



The source function (I. 1) when integrated over x from -co to 0 will give us

the solution to the problem. Thus:

P ( 1/20 (-x 2 A2
p(R,T) ' 0- e-R'x)2/t dx . (1.2)

Let P/t (R-x) = X. and we obtain

PO - X 2

p(R,T) = e" dX (1.3)

the same result obtained by Keller. This solution, as Keller points out, also

describes the expansion of a semi-infinite gas in an infinite cylinder of rectangular

cross-section with specularly reflecting walls.

2. The Free Expansion of a line Source of Gas

Consider a line source of gas of infinite length and of linear gas density,

d N/dl. Then consider, Figure 1-2, which illustrates the computation of the

density at time t at a distance R from this line.

R

Figure 1- 2

Now r = 12 +R 2 and from Eq. (3)

d PN 2 22 -PR 2 It2

dp -- e'P/t (R d = . (1.4)

We use this result immediately in the next section.

15



3. The Free Expansion of a uniform cylinder of Gas, of Infinite Length,

into a Vacuum

We determine the source function of a cylindrical shell of infinite length.

Consider Figure 1-3

d =rd~drdz

Figure 1-3

The source function due to the generators of the cylinder is given by (1. 4)

and dN/dI replaced by p0 d0dr and 'R byl . Therefore

dp = Po " de e" (-2rRcos0+r +R

rdr -P/t 2 (r2 1+R2 ) +0 i 2rRA= Z =p - e 0 . (. 5)
t t /

The density due to an initially uniform expanding cylinder of radius a is

th e refo re e P R2 /t 2 r Z /t 2  o (i r R . (1.6 )
p = 2 Pop) rdr e( 6

t

We need not concern ourselves with the difficult integrations required in

(I. 6) provided we are at large distancee (R>>a) from the cylinder, for then

21 = R and (1.6) reduces to (1.4) where dN/dI = p0 wa

16



Equation (. 6) may, by a simple transformation be reduced to

p= p0 e P A 0ja dzez Jo (i 2 y'z) (I. 6a)

2 2where y=R it

The integral in (I. 6a) has been tabulated.3 ' 4

3 A. D. Wheelon and J. T. Robacher, A Table of Integrals Involving Bessel

Functions, The R-W Corp., 1954, p. 57 Integral No. 3. 108.

4Math Tables and Aids to Comp. 6, 40, 1952.

17



APPENDIX 11

THE INTERACTION OF AN EXPANDING GAS CLOUD WITH A SURFACE

1. Specular Reflection

a. A Source of Distance, R, from an Infinite Plane

Let us assume we have a point source, s, a distance, R, from an

infinite plane. At t = 0, the gas molecules are emitted and travel radially.

Those particles that strike the plane are assumed to be reflected specularly.

We determine the source function for this problem. Consider Fig. Il-I

Reflecting Plane

R R

M

Figure I- I

It is obvious that half of the particles emitted by s are reflected from the

plane and upon reflection appear to emanate from s MR the mirror image.

Because of this symmetry, the distance traveled by a particle from s to the

plane to a point, P, is exactly the same in magnitude as 12 , the length of a

ray from s M to P.

Now the density observed at a point, P, on the source side is com-

posed of two parts, one due to the original source with a source strength d N,

the other due to the mirror image, s M , with the same source strength. Thus

18



d p = d N 3- ( 2 /t 2 ) + d N ( 3 2) ( 1 t ( 1. )

Now I and 1 may be written in terms of R, 0 and I, as in Fig. II-1,

but we shall not do this here. Equation (1) may be used as a source function to

describe the evolution of any gas cloud of any initial configuration in front of a

plane.

The method of images employed here may be extended to more compli-

cated cases of a source expanding in front of several intersecting planes. But in

such cases, as in the equivalent electrostatic case, multiple images must be

considered.

b. A Finite Source at the Center of a Sphere

A source is released at t = 0 at the center of an evacuated sphere of

radius a. The particles travel radially until they strike the wall where they

are reflected and then return to the center, traveling a distance 2 a all together.

The particles continue to travel back and forth from the center to the boundary.

Our task is to predict the evolution of the gas density in time and space.

Let us assume that our source is a finite gas sphere of uniform density

initially. It is at the center of a much larger sphere, so much larger that for

most of the region within the sphere the evolution of the gas cloud may be

described as though it came from a point source containing N particles rcf.

Eq. (9)].

r

*a r

Figure 11-2
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We now ask, what particles will be found a distance, r, from the center

between the two concentric spheres, r and r + d r, at time, t (see Fig. 11-2)?

The answer is: those particles with velocities v i = rt, v 2 = (2a- r)/t,

v 3 = (2a+r)/t, v4 = (4a- r)ft, v5 = (4a+r)ft, etc. Therefore we may write the

density in space for all r much greater than the initial radius of the source

sphere

p(r,t) = N ( + r z e-

t r

+ (2 a+r)2 e P/t (Za+ r)2 + r2 eP2/t (4a-r) 2+.. .

2. Diffuse Reflection: An infinitesimal source interacting with a diffusely

reflecting surface. Let us consider a source, s, of dN particles, released

at time, t = 0. This source is some distance in front of a convex surface which

acts as a diffuse reflector (see Fig. 11-3).

/ n ormal

s

Figure 11-3

Each element of area, dA, of this surface is assumed to reflect any

incident particle into a random direction within a solid angle 2 nt. The

reflected particles are also to have a Maxwellian velocity distribution with

an associated temperature, T not necessarily the temperature of the surface.

20



We are to determine the density of particles everywhere in space and

time.

Now, the number of particles falling on d A per unit time and therefore

emitted per unit time from d A is just:

N(t) = -E dAcosOdp(t,R) (11.3)t

where dp (t, R) is described by Eq. (3). We now proceed as in the development

of Eq. (3).

During a time interval t' to t' +At', &(t)At! particles are emitted from

dA. Of these particles, the fraction, f, have velocities ranging between v and

v + Av. Now, by hypothesis f has the following form:

3/2 PAv2

f = (11.4)

Thus at a time, t (greater than t'), after the release of the source, particles

of number, f & (t')At', will be found within a hemispherical shell of radius, r,

and thickness, Ar. It is obvious that r = v (t - t') and r +Ar = (v +Av) (t - t' -At').

The density of these particles at r is therefore:

3/2 2
t At (11e.5Av Av

dp Av -(t-t') 2 [vAt' + Av (t-t')] (11.5)

where v = r/t-t' and dpA v is the density of particles reflected from the

surface with velocity, v.

Now, the density of all reflected particles at r and at time, t, is obtained

by counting particles with all velocities. The velocities for particles emanating

from dA and found at r,t, range from a minimum of rt to infinity, or equivalently,

t' ranging from 0 to t. The density of reflected particleb may therefore be

obtained by
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2

t 3/2 -PA r(.

dpA 1 2No (t'dt ,  e(

T / (t - t')

Substituting (II. 3) for & (t') and Eq. (3) for dp we obtain the formidable

integral:

dt' 12 tR 2r 1
d'A =o t,4lt't, RdAcos OdNexp- ,2 - (11.7)

Eq. (II. 7) can obviously be generalized to the case of a finite gas source. The

density at r due to the whole reflecting surface may also be obtained from (II. 7)

by integrating the expression over the surface. The density of all particles,

dpt, will be given by

dpt = dp + dpA (11.8)

where dp is the density of particles due to the free expansion of the source, s.

The solution of even the simplest problem (e. g., a point source in front of

diffusely reflecting plane) presents formidable analytic difficulty in contrast

to the case of specular reflection. No such solutions are presented in this

paper.

The treatment of diffuse reflection from a concave surface requires con-

sideration of multiple reflections and thus increases the difficulty of an already

difficult problem.
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