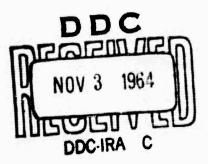
FIRST ANNUAL REPORT

ARPA Order No. 442, Item 3

AD 607616

Program Code No. 3910


NEW HYPOFLUORITES CONTAINING NITROGEN

University of Idaho Moscow, Idaho

	HARD COPY	\$ 1.00	-1
	MICROFICHE	\$.0.50	
October 196		* .0.50	

Reproduction in whole or in part is permitted for any

purpose of the United States Government.

BEST AVAILABLE COPY

٠,

Abstract

Attempts to prepare NF₂OF by (1) the fluorination of nitric oxide; (2) the reaction of N_2F_4 + HgO; and (3) the catalytic fluorination of NF₂OSO₂F, have been unsuccessful. Some preliminary data on the thermal decomposition of NF₂OSO₂F are included.

Catalytic fluorination of trifluoronitrosomethane has yielded $(CF_3)_2NOCF_3$ which has been more completely characterized and very likely $CF_3(F)NOCF_3$ is also produced. As the other member of this series, NF_2OCF_3 has been prepared and partially characterized. $(CF_3)_2NOCF_3$ is stable to at least 200° even in the presence of equimolar amounts of elemental fluorine. The thermal decomposition of $(F_3C(C)ONO$ also gives $(CF_3)_2NOCF_3$ in about 5% yields. ⇒mpted Preparation of NF₂OF

Fluorination of mitric oxide

A. Static Reactor

Known amounts of nitric oxide were frozen into an 8 ml. model tube equipped h a No. 413 Hole valve and containing AgF_2 . Fluorine was condensed on the nitric ide at liquid nitrogen temperature reactions to be observed with either NO or F_2 in cess. An excess of fluorine was the usual case. The mixture was allowed to warm owly to room temperature and to remain at this temper use for several hours. Unacted fluorine was removed by pumping on the mixture at -196°. The products which te non volatile at this temperature were separated by fractional codistillation (1) d identified with infrared. Total pressure in any reaction ranged between twelve d 85 atmospheres. Contact time was in excess of 15 hours. In every case, the products lentified were: FNO, NO₂ and N₂O₃.

B. Flow reactor

Fluorine at about 6 1/hour, with nitrogen as a diluent, was caused to flow over itric oxide in a brass vessel held at -196° . During this flow the brass vessel was llowed to warm slowly to room temperature. The gases were condensed in a glass trap t -183° . Products were identified as: SiF₄, NO₂, N₂O₃ and traces of FNO.

C. Flow reactor with AgF₂ catalyst (2)

Nitric oxide was mixed with nitrogen and combined with fluorine in a AgF_2 atalytic flow reactor. Products were trapped in a brass trap at -195°. Fluorine was ept in excess at all times, with a flow rate of 4 1/hr while the nitric oxide was aried from 14 ml/min to 31 ml/min. Products obtained at 25, 150 or 170° after a esidence time of about 15 minutes were: NO_2 , N_2O_3 , N_2O_3 and FNO. II. Tetrafluorohydrazine + mercury(II) oxide

A. Room temperature

Tetrafluorohydrazine at 40 mm pressure was admitted to a flask containing about two grams of previously dried yellow mercury(II) oxide and was allowed to remain in contact for 0.5 hr. Only N_2F_4 was recovered.

B. 96°

The N_2F_4 from above was returned to the reaction vessel and the temperature was increased to 96° for one hour. Infrared spectra showed: NO_2 , SiF₄ and NF₃.

C. Ultraviolet radiation

To a one liter Pyrex bulb which contained 2 grams of HgO, N₂F₄ was added until the pressure was 165 mm. The mixture was treated with ultraviolet radiation for 8 hours. Infrared spectra showed: NO₂, SiF₄ and NF₃.

Conclusion. Although contacting yellow HgO with elemental chlorine at room temperature permits the preparation of good yields of Cl_2O , the similar reaction does not seem to occur between N_2F_4 and HgO.

III. Fluorination of N,N-Difluoro-O-fluorosulfate hydroxylamine

N,N-Difluoro-O-fluorosulfatohydroxylamine was prepared as described by Lustig and Cady (3).

A. Ultraviolet radiation.

Ultraviolet radiation for two hours of a 2:1 mixture of NF2OSO2F and fluorine at a total pressure of one atmosphere in a flask equipped with a quartz finger brought no reaction.

B. Fluorination of the amine in a catalytic flow reactor.

The procedure was to carry the NF_2OSO_2F with nitrogen at the rate of 10 ml/min. into the reactor where it was mixed with an excess of fluorine at 125°. The products were trapped in glass and separated using fractional codistillation (1). The main reaction is given by

$$NF_2OSO_2F + F_2 \xrightarrow{AgF_2} NF_3 + SO_3F_2$$
.

-2-

lowever, large amounts of SO_2F_2 and smaller quantities of an unidentified low-boiling compound with a strong infrared absorption at 10.5 microns were obtained, also. The same reaction was run in the presence of a CuF_2 catalyst. In this case, only NF_3 and SO_3F_2 were identified.

Investigation is continuing in this area and reaction will be examined at newperatures lower than 25° and also at high pressure (ca. 100 atmospheres). V. Thermal decomposition of N,N-Difluoro-O-fluorosulfatohydroxylamine

All decompositions were carried out isothermally in two one-liter brass cans which had been fluorinated at temperatures in excess of 150°. One was packed with copper gauze. The cans were thermostated in a Fischer Isotemp Junior model gravityconvection oven, whose temperature, as measured by chromel-alumel thermocouples, was observed never to vary more than $\pm 0.25^{\circ}$ at equilibrium. Initial and final pressures were obtained with a mercury menometer. The products, after decomposition, were trapped in glass tubes held at -183° , separated via fractional codistillation and identified from infrared spectra. The data given below are preliminary and this study is continuing in a new all metal system equipped with a Bourdon-type pressure indicating device.

Some decompositions were run at temperatures between 100 and 200°.

	NF20S02F	T ₽_G	Time ht	Reactor type	Products
	38	105	Ĵ	packed	$NF_{2}050_{2}F + trace (S0_{2}F_{2}, N_{2}F_{4}, S_{2}0_{5}F_{2})$
	29	153	المع	packed	$M_2F_4 + small amcs. (NF_3, NF_2OSO_2F, SO_2F_2, S_2O_5F_2)$
	73	175	2.5	unpacked	$N_2F_4 \Leftrightarrow small amts. (SO_2F_2, S_2O_5F_2, NF_2SO_3F) + trace N_2O$
	122	198	2	unpacked	$N_2F_4 + SO_2F_2 + S_2O_5F_2 + trace (NF_2OSO_2F, N_2O)$
Because of the variety of products and nonreproducibility of the decomposition curve and					
because of increasing interest in other projects, the decomposition was temporarily					

abandoned but is now being considered again.

Pluorination of trifluoronitrosumethane.

Trifluoronitrosomethane may be prepared in good yield by the following:

=<u>]</u>=

$$(CF_3CO_2NO + H_2O_3 \longrightarrow CF_3CO_2NO$$
(4)
 $CF_3CO_2NO \longrightarrow CF_3NO + CO_2 + other products* (5)$

* Other products are discussed below.

A glass trap containing a known amount of CF_3NO in a Dewar was allowed to warm slowly from -183° as nitrogen was bubbled through. The CF_3NO was mixed with an excess of fluorine immediately prior to entering the AgF_2 catalytic reactor. The products were caught in a glass trap at -183°. Fluorine was passed through an HF scrubber before entering the reactor.

Preliminary separation of products was made using a dry ice-acetone bath which permitted the most volatile materials to be collected in a second trap at -183°. Products in each of the traps were separated using either fractional codistillation or a 10-foot column filled with Kel-F adsorbed on Chromasorb P at -25°.

				T	F ₂	N2
Run	mM CF ₃ NO	mMC2F6	mMCOF ₂	* C	1/hr	m1/min
1	9.9	0.9	0.2	24	1.2	33
2	9.9	0.9	0.2	57	1.0	33
3	51.9	4.7	1.7	128	1.0	33
Reaction Products			Run 1	2	Э	
	CF4 *C2F6 *C0F2 (CF3)2NF			6%	5.54%	31.0%
				-	-	6.0
				-	-	2.41mM
				12.7	2.72	9.3%
	U	-V ^{-V}		2.4	0.71	3.45
	(CF3)2NOCF3 CF30F NF3			6.4	14.7	14.9
				trace	100 C	0.13mM
				trace	-	trace
FNŐ				-	trace	

 Amount in excess of that present in the starting material. Amounts of NO2, SiF4, CO2 and N2O were not measured.

A. The compound labeled, U-V, appears to be $CF_3(F)NOCF_3$. This has not been entirely confirmed pending mass and NMR spectra. Infrared absorptions occur at: 1360, 1300, 1230 1190, 995, and 735 cm⁻¹.

-4-

Bis (trifinoromethy1) trifinoromethoxyamine.

The compound $((CF_3)_2HOCF_3)$ has been reported by Yekulovich (6). It has been more pletely characterized in this laboratory. Extrapolation of a vapor pressure curve icates a boiling point of 7° (compared to 3.5°). Experimental molecular weights an average of 2.12 compared to the calculated 2.37. Elemental analyses, mass and NMR otra are in accord with CF_NOCF_3. It is a colorless gas which oxidizes iddide to iddine. For F

The thermal stability of $(CF_3)_2 NOCF_3$ was examined by heating the compound slowly mn room temperature to 200⁺ in a fluorinated one-liter brass reactor.

Run	Initial Pressure	Max. Temp. °C	Time at Highest T	Pressure-Temp. Curve
1	(CP ₃) ₂ NOCF ₃ 21 mm	200	24	Ideal Gas
2	(CF ₃) ₂ NOCF ₃ + N 1:1:2	$12 + F_2$,	
	99 mm	200	16.5	Ideal Gas (as reaction)

Earlier in this work, fluorinations of CF3NNF were run, but since essentially the compounds were obtained as with CF3NC, this was not pursued.

With the proparation of $CF_3(CF_3)NOCF_3$ and $CF_3(F)MOCF_3$, it seemed of interest to tempt the preparation of F_2NOCF_3 . This was easily accomplished by the ultraviolet liation of an equimolar mixture of either bis(trifluoromethyl)peroxide (CF_3OOCF_3) or [fluoromethyl hypofluorite (CF_3OF) and tetrafluorohydrazine

$$(CF_{3}OP + N_{2}F_{4} \xrightarrow{UV} CP_{3}ONF_{2} + NF_{3})$$

$$(CF_{3}OOCF_{3}) \qquad Pyrex$$

/luoro(trifluoromethoxy)amine is a coloriess gass at room temperature with a boiling int of -60°. An average experimental molecular weight of 140 was obtained relative to calculated value of 137. The infrared spectrum has absorptions at 1305, 1240, 1030, 940, 2, 875, and 720 cm⁻¹. Maps and NMR spectra are being obtained.

--<u>4</u>-

Pyrolysis of trifluoroacetyl mitrite.

Pyrolysis of trifluoroacetyl nitrite by passing the nitrogen-carried compound through a glass tube (2 x 28 cm) in an air thermostat (190-192°C) at the nitrogen flow rate of 100 ml/minute not only gives rise to good yields of the blue CF_3NO but also several other interesting products.

 $(CF_3)_{2NOCF_3}$ is obtained in approximately 5% yields. Also included are COF_2 , C_2F_6 , SiF_4 , NO_2 , CF_3NO_2 and two other compounds which have not been identified. Infrared spectra indicate a carbonyl group in one but not in the second. Work is continuing here.

Reaction of carbon monoxide and tetrafluorohydrazine.

Carbon monoxide and N_2F_4 were mixed and subjected to a variety of reaction conditions with addition of two difluoroamino groups or one difluoroamino and one fluoro group to the carbon monoxide as the desired reaction products.

Actually Ruff (7) has reported the preparation of the CF_3NO isomer, $FCONF_2$ as a result of the fluorination of AgCN. Freliminary investigation of the $CO-M_2F_4$ reaction is incomplete and inconclusive, but results are very promising when conditions of lowpressure and high-intensity ultraviolet radiation are applied. Work is rapidly progressing here.

-6-

RIBLIOGR/ PHY

- (1) G. H. Cady and D. P. Siegworth, Anai. Chem., 31, 618 (1959).
- (2) K. B. Kellogg and G. H. Cady, J. Am. Chem. Soc., 70, 3986 (1948).
- (3) M. Lustig and G. H. Cady, Inorg. Chem., 2, 388 (1963).
- (4) D. E. Rice and G. H. Crawford, J. Org. Chem., 28, 872 (1963).
- (5) C. W. Taylor, T. J. Brice and R. L. Wear, ibid., 27, 1064 (1962).
- (6) A. Ya. Yakubovich et. al., Doklady Akad. Nauk SSSR, 141, 125 (1961).
- (7) O. Ruff and M. Giese, Chem. Ber., 69, 684 (1936).