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SOME PROBLIMS ub FLOW, FEAT THANSFER,
AND DIFFUCIUN Ili Ti: LAMINAR
FLUW ALuLG A FLAT PLATE

By
H. Schuh, Vienna

I. Introduction
Hotion of incompressible and gaceous media is represented by
the Navier-Stoke differential equations. For two-dimensional flow and

constant properties, these are, in Cartesian coordinates:

du 3u du p du )
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In addition to these, we have the continuity eguation:
. du ov .
ax a9 (2)

where u and v are the velocities in x and y directions, X and Y
are the mass forces, p is the pressure, p the density, and p the
viscesity. To date, a solution of the non-linear differential equation (1)
has not been found; not even if, as a simplification, we restrict ourselves
to statlionary properties which, from a mathematical peint of view, will
exclude all cases of turbulent flow. More responsive to a mathematical

treatment are stationary flows at very small ani at large Reynolds numbers,®

0
%% , v 3?, etc.) in Eq. (1) can

be neglected; and in the second case, the effect of viscosity can be neglected

In the first case, the cunvection terms (u

as long as no flow separation takes piace (potential flow). This is true
except for a very thin layer directly on the suriace of the boundary (boundary
layer), in which the longitudinal velocity decreases with a very steep gradient
to zero on the boundary, and in which the visco.ity con:itions miy not bte
neglacted, The flow in this boundary layer can also te treated mathematically

as long as the layer remains laminar. 5uch toundary layers develo, on 4ll

* Reynolds number is understood to be Ud , where U lenotes a churacteristic

velocity, d a characteristic lengthfIAnd YV the kinematic ..iscosity.
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bodies subjected to a flowv ani are related to the flow resistance of the

body. This originates from the forces acting on the body, which can be broken
down into two components: Forces nurmal te the vody (pressure forces); and
those tangential to the body (shear stresses), due to the viscosity of ths
flowing medium. If no flow separation from the body takes place, the pressure
forces can t¢ calculated in a good approximation from the potential flow around
the body; and the shear stresses, from the boundary layer flow.

A bedy for which, to begin with, nothing but shear stresses can be
expected is a flat plate in longitudinal flow. For this, in 1904, Prandtl
was first to show that, even at high Reynolds numbers, the drag could be
calculated analytically from the Navier-Stoke equations. Here, the Reynolds
numbers are assumed to be high, yet not too high, so that the flow remains
laminar throughout (Re = %% < 300,000 , x= distance from the leading edge of
the plats). Then,the thickness of the boundary layer normal to the plite
(y - direction) is small as compared with its dimension in the direction of
the plate (x - direction), so that, as was proven by Prandtlsl),kwe nay

limit ourselves in Egs. (1) to the u-components; and further, §§%, is small

as to g;% 5 S0 that it may be neglected; and we may write %E = 0. Thus, for
constant properties we obtain (introducing kinematic viscosity » = % )s
du du *u
v TV oy Y ay+ (3)
and
Ju av
0x * oy 0 (3a)

with the boun:ary cun.iti.ns (U constant free-stream velocity in frontof the
plate)

y=0 u=¢_{ va=20 J% ' (4)

y=o0o u=1y
By introducing ‘he non-dimensional distance from the boundary_}'and the stream
function ¢,

-4, WE £ (s) (5)
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Equations (3) and (3a) can be reduced to common differential equations,
where the continuity condition (3a) is satisfied, by writing u = g—;}f
and v=-%-i-

« Thus, we obtain

f”'¢.ff”=0 ) (6)
A numerical solution of this Jifferential equation, (6), was given by
Blas.us. )[Cf Refs, 3, h_l Today, voluminous literature is available on
boundary layers, even for those at pressure dro,s and pressure rises (--E # 0).
If there is a temperature difference between the body and the
flowing medium, a heat exchange between the two takes place, for .hich the
heat conductlion equation holds:

ar | aT aT _, T, a1
"\cp ot pcpuax pcpvay A(ax‘- éy’-) ) (7)
whers T densctes temperature, A thermal conductivity, and cp specific heat
o at constant pressure. To begin with, the heat ; roduced by friction has not
f" been considered in the differential equation (7). This is justified as long

#8 the velocities encountered are not toc nigh ani the tempersture differences
: are not too amall, All conditione for the flow fielc are analogously valid
. for this case also; in particular, near the surface of the body a " tnermal
. _ boundary layer' develops, in which the entire temperature irc; between tla2
. bedy and the surrounding medium takes place.® If tre corresponiing flow field
es ® is already known,then the solution®* of (7) for the flat plate at zero angle

#f attack can be reduced to a pure quadrature, as was shown by E. Polhausen: (5)
_ 5 3
o T~ 'g -Fr f fd
-ﬁ:ﬁf’%} ; 0= —Eﬁ% of!! dS ) (8)
where Todenotes the temperature at tie wall, and T, that at tre outer vige of
the boundary layer#t#, Obviously, the boundary conditions y = 0, T = Ty»
Yy =cc, and T = Tl are satisfied.

]

AP VES B
foX-4
o
Coaelys

&
<

b .
3 A N . Py
¥ ° % Therefors g1 may again be neglected with respect Lo s ; furthermore
z NS . ox*> dy’- )
: - ) we limit ourselves to stationary temperature fields (g_i. = Q).
§ o *# With the simplifying assumptions mentioned above.
o - g
fg: -8 *% Pr is the Prandtl number’é , and { is defined by Eq. (5).
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If, in the flow field, there are media of different kinds, the
concentrations of which havs local differences, then Eq. (7) is replaced
by & similarly constructed diffusion equation in which the teamperature T
is rsplaced by the concentration c, and the thermal conductivity a -p%
by the diffusion coefficient k, P

In applications to practical p}oblems of heat transfer and
diffusion, difficulties arise due to the fact that the stipulation of con-
stant properties is frequently not satisfied, since most properties are
functions of temperature and then flow - and temperature fields are no
longer independent of each other. A similar difficulty arises in the
domain of heat transmission. On the basis of analogy considerations, we

can represent, for constant propertias, the results of heat transfer measure-

ments in the form:
YA

Nu = F(Re, Pr, ai s

»

cooo) ) (9)

£z £
where Nu is the non-dimensional Nusselt numberqf1 , 5£ s a& , etc., are the

proportions determining the geometric:al analogy conditions, and d is a
characteristic dimension of length. The question arises whether the vari-~

ability of the properties could nct be taken into account by substituting

Dalh

into (9) the properties for a suitably selected temperature, so that, again,

all measurements could be represented in a standard form.

In diffusior. problems, the density may depend upon the concentra-
tion if the problem involves high concentrations and media of different
densities. This corresponds to variable properties in temperature problems.
However, another phenomenon ruy appear: At high concentrations, the normal
velocity v(0) no longer vanishes at the boundary, a fact pointed out previously
by Nusselt. If a liquid covers a wall and is made to evaporate by a gas
flowing past this wali, then some liquid enters continously into the flow
field and we obtain, therefore, v(0) > O. If vapor condenses on a wall, or
if a gas is bound to it byachemical reaction, then v(0) < O.
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Presently there are t wo papers available on the laminer boundary
layer on a flat plate in parallel flow with variable properties - one by
L. Crocco(7) and the other by V. Kdrmén and Tsien.(s) In both papers, the
differential equations are changed, by means of a transformation to new vari-
ables, into a form that is different from the common boundary layer equations.
Crocco obtains two simultaneous, second degree, differential equations “hich
he solves for a gas with the Prandtl number 0.725 (Air). Kdrmén and Tsien
examine the special case of Pr = 1 and have to solve but one differential
equation, since, in this case, the temperature field has a simple relation
to ths velocity field.

This study begins with an application of a method of solution (to
which 1little reference is made in the literatures) for the flow with constant
properties over a flat plate. This method of solution was suggested origi-
nally by Plercy and Preston, employing Polhausen's formula (8). Futhermore,
it is shown how the boundary layer fiow with variable properties over the
flat plate can be calculated simply and clearly by means of this solution
method; and also, in diffusion problems, how the finite normal velocity at
the boundary can be taken into account.

Let us limit ourselves to laminar boundary layers, since analytic
treatment of the corresponding turbulent case is sﬁhstantially mors difficult
and complicated. Laminar boundary layers appear on bodies in the vicinity of
the stagnation point and extend from there over a distance that increases
with decreasing Reynolds number, it being stipulated, of course, that no
flow separation occurs. Such conditions present themselves particularly
(1) in the flow of viscous fluids; (2) in cases in wnich the body in the flow
is very small (e.g., particles in coal dust riring); and (3) in diffusion
problems where, frequsntly, only iow velocities appear.

Primarily, this study aims at fundamental information, while
practical applications are possibly to be treated in a later report.




II. Solution of the Boundary Layer Equation for Variable Properties

Taking variable properties into account, the boundary layer
equations for the velocity and temperature fields on the flat plate

aress)
du du _ 9 du
pPuFZ* PV 5y "ay(“ay) (10)
a(pw) , 3(pv)
< * ay 0 (10a)
oT T _ d_,, 9T
pcpuax'*pcpva -a;(hay) (11)

The notations are the same as in (1), (2), and (7). Again,frictional
heat is &s yet neglscted.

For constant properties, (10) and (11) can be reduced to a
common differential equation (cf. introduction and Eqs. (3) through (6) )
by the assumption that u and T are & function of but one (non-dimen-
sional) coordinate, 5= %}/ fqu . Since the propsrties depend only upon
temperature, the conclusion is obvious that the same simplification is

possible for wvariable properties also. We write

Bew(y,loB we (g, -IYL (12)

where U is the velocity at the outside of the bcundary layer, and T; and

I

boundary layer, respectively. The magnitude pk in the non-dimensional §

are the wall temperature and th. teumperature at the outer limit of the

denotes the kinematic viscosity at the fixed temperature Tk, for which

the wall temperature (k = 0), or the temperature at the outer limit eof the
boundary layer (k = 1), is a suitable sslection. The boundary conditions
for the flow and temperature fields are

y=0, 520, w=0, 8=0
(13)

¥y =9 5'%5&)"1: 8 =1

\“‘

. <

§ Rt B e Y
W e ”




b R L P T ST
e . <
P

<
B

e
8

.
, -
(’\X”’

,,.n
” R
“

Te,

Furthermore, let

RCICHE-E CIE S U (18)
where the index k denotes the ‘property at the temperature Tk .
The specific heat cq is assumed to be constant, which is true
for most gases and fluids. To begin with, we obtain frem Eq. (10a)
—— 5
pv-‘\/%’;i (pul -oj(pum, (15)

which leads from (10) and, after (14) and (15) have been introduced, to a
form that is suitable fer further calculations:

]
S )--(¢d5>;,r=25mds. (16)

a3

From (16), the following expression can be derived for ) , if, temporarily,
(16) is considered as a differential equation for f a5 ; and, in addition,
if f is regarded as a known function of § :

t
J 1 -ds ﬁ dsds ,

AR J(S) - )3 (17

where the constant of integration is given by the boundary condition (13).
Similarly, we obtain for the non-dimensional temperature 8 the expression

: -Prkj;f( a}

S
8-%&%; K(g)'jie dS , (18)

¢
vhere Prk = %k - EEX;EK denotes the Prandtl number with the prope-~.ies
k

at the temperaturs Tk'




For constant properties ( § = g = X = 1), the velocity and tempera-
ture fields are independent of each other, aid we obtain from (18) the solu-
tion given by Polhausen(s) for the temperature field (cf. Eq. 8 ) which
represents an integral equation for the velocity fisld for Pr =1 (v = «),
as may be found by a comparison of (17) and (18). While, for a known velocity
field, solution for the temperature fieid according to (8) or (18) is possible
by means of simple quadrature, the ¢alculation of the velocity field involves
the difficulty that, in (17), the still unknown velocity appears on the right-
hand side in the expression for f. 1In the method of solution given by Piercy
and Preston, we proceed from an arbitrary approximation for ) which is then
employed to calculate f according to (16), upon which J(§) is calculated by
means of (17). In this process it should be borne in mind that constant proper-
{ies are stipulatead, and)thue, that g = g =Y = 1. In this manner an improved
value of o is obtained which represents the initial value for a new calculation,
etc. Figure 1 shows §raphically the individual steps of the approximation. As
initial solution w'°
the entire boundary layer has been selected; the assocliated first approximation
(1) is given by the error integral. After the third approximation, the shear

, the intentionally inaccurate approximation ) = 1 over

W
stress on the wall deviated but 4.5 percent from the- exact valus. Instead of
continuing this process mechanically, the expected final solution was estimated
from the course of the preceding approximations and then used as a basis for

the subsequent step in the approximation. In this manner the solution ¢) was
obtained with only 1/2-percent error in the shear stress.

For this metlod of solution, the improvement obtained by each approxi-
mation step can be estimated quantitatively: Eqs. (17) and (18) are identical
for constant propertie?1§nd Pr = 1. Let us assume that we dealt with an
differed by a constant factor 7Y from the jcoordinate of the exact solutionw.
Then, obviously, we have also (f)(l) = y £, and a comparison of (17) and (18)
yields that the influence of the factor » is equal to that of the quantity Pr

approximate solution w of such a nature that the associated § coordinate
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on the tesperature field. Polhausen(s)found, orn. trne basis of his mumerical
calculations, that the heat transfer coefficient is propertionzl teo ny;:;
consequently, using the metnod mentioned above, the shear stress at the wall
is subject to an error in every approximztion step that is only about one-third
of the error of the precediny one,

In the casc of variable properties, these solution steps of a
1t mathematical M nature can te coxtined with steps of a ' physical" nature:

Step 1

As the initiai point,.the «nown soiuticns for constant
properties are assumed.

(&) For the velocity profile, the solution by RBlasius.

(%) Por the temperature field, the ssclution by E. Poihausen.

Step 2

{a) Calculation of the velocity profile according to (17),in
which the teaperature profile from step 1 (b) acccunts
for the teaperature dependence of the properties.
(b) Calculation of the teaperature field accoriing to (18)
by means of the velocity profile of step 2 {a); dependence
of tne properties upon temperature is ta<en into account
in the same manner as in step < (aj.
This procedure ic repeated untit the final solution iz =sufficiently exact.
Generally, 3 to 4 repetitions wili yield satisfactory results,

First, let us elaborate on tre effect of the depenience of the
properties on temperature. Of special interest in the velocity or tempera-
ture field are, chiefly, single values, suc: as the velocity gradient at the
wall (for the calculation of the shear stress, or tne heat transfer coefficient.
The idea suggests itself to take into account tre temperature iependence of the
properties by substituting the properties at a suitably seiected te:, erature
into the ' isothermal!' formulas (i.e., the formulas for cunstznt properties).
I¢ we select as referencs teaperaturs that at one ol the two limits of the
boundary laysr, then, on the basis of physical aspects as ~ell 2c on the basis
of the formulas, it will be found that, within the boundury layer, an increase
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in viscosity or density as comparei ~ith the values at the li-its of the
boundary layer will resuit in a drag increase az cospared with the iso-
thermal flow., Similarly, an increase ir. trermal conductivity and density
results in increased thermal dissipation. However, the question, How
great is the effect of the unconstancy of the properties? depends ugon the
ratio of the boundary layer thickness, of the teaoperature, and of the velc
city field.*

Let us illustrate this by —eans of the following case,; whick has
also soxe gracticzl significance: The thermal boundary layer is assuzed to
be very szall as compared .ith the flow boundary layer, a cordition encountered
at large Prandtl nuabers (viscous fiuids). In ikis cas=, then, tke variaticn
of tre rrogerties within the therma: boundary layer obvicusly =ay be neglected
for the determination c¢f the shear stress, which will be founi tc be thne sace
ag if the tezperature at t he outer edge of the boundary laysr would extend to
the wall. The same holds alsc for the velocity profile, with the exception
of ine sza.i region witrin the thermal boundary layer in which the velocity
srofile is deformed in accordance with the viscosity variztion. For the
teaperature profils, however, exactly this region is decisive. Fer the
velocity grazient on the wall, we obtain, fr.= the eguality ¢f the shear

stress,

ou
ka‘;o' ( )] for Pr -» o= , (19)

where L.e index ., derotes tue " jsothermz1l" flow with the Lro.erties at

the terperature Tl: In tals case, variability of density hus no effect on

the flow field, This can also be derived mathematicaily from Egs. (17) and
\18). The counditions for the terperature field are discussed in the following

paragraph ty meazns of two examples,

¥ According to E. Polhausen, the r:tio of the tso is preportional to
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III. Flow =nd Texperature Fleids in Visccus Fiuids

In zccordance with the natire of the pro;eriies of viscous fliuids,
the wvelocity and temperzture fields were calsuiated with the assuzrtion that

onily viscosity varies with texzperziure z:zcording to the Zoliowing for—ula

f‘l‘, +T b
F-4

2 -t —————c- et
) W)
e \T * 1.c‘

wiaere b ard Tc are constants which are 10 ¢t salezted ir such a —anner

that the temperature dependence is as wei: regresented zs pozcitle. Let
the index x have tke value O or 1, decending c¢n tne seleszticr of the non-
dizensioral 5 . Here, b = 3 was selected (e.g., visctus . triczziirg oil,,
and the tws cases of 2 keated arnd cocled plate were Z.iculizter «ith ;q -1
‘-"le;lieal

ard 8, respectively, and Pr =1e.5and 130 . Thus, 17e nD ex:
with tke saze flpid ani inwvtlve ejual ieuierzture differerces, cince, in
th cases, tke respective Pr is jor—el it : .e zZrogerties of wze wail te—z-

erature., If To is gelected az reference texperature, we sotiinp

p -

;a; - : 33 : L
° e,’.?/f‘_g a,-2

¢ / /

The result of the calculations accorzi , to ine iterative =etho: o.

the preceding paragraph cay te recognized in rips. < ana 3. In ooth graihs

‘the non-dizensional distances frox the wall, 3, ard §, ,
are plotted on the abscissa at the scale 1: V8 (Fig. 2) and V8 : 1 (Fig. ),

s® that but one point on the apscissa zorre:z,snds ¢ every Zi:ttance frc= irne
wall y, whether this is determired t; the rotation Eo or ¥, . Tnus, ir
L

both graphs the locaticn oi the curves witn re-pect to eacrn other cor—e ; _..s
to the reel conditions. Besidez the solutien 0, for the -aicure* ... ol ~vdczn
three sieps were recuired, the isothermal veloc:ity ;-~“..es (-—J[o znd (u;‘,l for

constant properties at the temperciures To a~i ‘\l , respectively, were plotted

- 1 . 8
a2s 2 function of the non-dimencicnal _oordinctes 50 argd 51 . For the isotrner—ai

tesperature profiles (8)° and (3)1: the Pr numbers aisc were sutstituted at




v -

tre te-_eratures ? ard Tl. For exa=rle, in Figure 2 ?ro = 12.5 and
Pry = 130. 1In tke follicowing table ,'2" ard X eaoi.e tke shear stress
st the walli ana reat transfer coefficient I;(- )u\ ) ' (T;"d ard (::L)o
are t.e -orres;ordiny vaiues at 1soz.::ez':.al flow with the viscosity at the

tes;erature '1’ ard '1‘ respectively, The same holds for (T; )aaxsd {f&}l .

Tatle 1
P T gl w e W
! ©h W, &, 5

Heated wall 0.125 1z.5 0.831 2.38 ,1.20 1.70| 1.58 1.84

- o

: - i -
Josled wall 2,000 100.0 - 1.08  0.322 50.98 0.695) 0.255: 3.01

4
H

-

Altiough in the:ze cases ihe thickness of the thermal boundary layer is Ty no
zeans negligiktle as cozpared with the {low boundary layer, the shear stiress
can be caicuiated very well with the aid of the isothermal formulz with the
viscosity at the tezperature Tl % The stipulatioas of Zg. (19) for Pr > 1C
are trus given.

Tre conditions for the heat transfer coefficient are —ore
invecived. TFrom (8), it follows that the heat tram fer coefficient o« is
L% » heTe, accoraing to E. folhausen, g = 0.664 2[_

is true witnh nign accuracy. Considering that Pr = % s it follows that the
[ 3

ncrtionsl to g{Pr)

heat trarsfer coefficient is inversely proporticnal to the sixth root of the
visccsity. Tnus, the ratio of heat transfer coefficients (o&)o to @L)l is
g o /m 8 (22)
(’Ol B,
& second inciczation for tre neat transfer coefficient is ottiined from the
ve.ocity gradient a* the waul. From Eq. {19), with couns®deration of (12),
it follows (if t.e indices at the brackets, i and i, , denote isothermal

c 1
fiow at the temperature T and T, , respective.y):

# Refer to column(f"-) in Table 1 ani com, .re it with cSiumn ,(9)
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tayjﬁil (23)
[g)gg

These relaticns also are confirzed bty Figures < ani 3.

a
pO

-
& ¥

Chviously, by ceans of these formulas, 1imits can e given for ile
heat transfer coefficient X (also coapare Fige. 2 ana 2), which we shaii
express in ter=s of =ultiples of the Leat transfer coefficient {X)_ . (me

1iust is given by G()l = _é/fE;. Gx)o {according to Eq. «¢), because thne

1
velocity profile (le yields higher velocities on all points with a cooled
plate and lower velocities with a heated plate. The other limii is given by
a velocity profile of isothermal form for wrnich the abscissa sca.e is changed
by a factor y in such a manncr that its gradient at the wail coincizes with
that of the actual velocity distributicn. Since the 1imit zentioned above
for the heat transfer coefficient is to be expressed by €x)o multiplied by
a factor, y 1s to be calculated from the ratio of the true velocity gradient
to that at the tespersture To {second part of Eg. <3). From the rote: on the
convergence of the solution method in paragraph II, it then follows trnat the

heat transfer coefficient is proportional to «8r;- and we ot-.ain as the limit

-é’ f; Gx)o. Surmarizing, we obtain for the limits of tne heat tran:fer
B

o
coef{ficient, if only viscosity varies,

6/ uy
Vi s ws YR -

where the upper signs stand for t he case of the he.ted ;late and tie .o-.er signs,

fer the cooled plate. Accordingly, in agreement with the special exauples in
Table 1, the heat transfer coefficient Gx)o aprroaches closest the true heat
transfor coefficient oL,

* R L e
. -
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Thus, for visccus fluids {Pr > 10) for which variation of the
vigcosity is of grizary consileration, the following approximate rule is
obtained: In the calculaticn of the drag, the properties are to be refer-
red to the temperature at the outer limit of the boundary layer; in the
calculztion of the heat transfer, the properties are to be referred to the

wall tezperature.

IV. The Flow 4nd Tempsrature fields for tne Case Pr = G,7(4ir), rhere A1l
rroperties Are Punctions of Temperature

In tre tesperature range —50e to lLOOC, the prO§;rties of air can
be represented ty the following formulas:

; 0.720 : -1
'r"ilT H p"KzT ’

wnere T is tezperature in absolute degrees.

with

x«xB'ro'w;

To - Tl
8= —
!
we obtain
Ty 0.78
- = g = 1+0(1-8)
i}

and similar expre:zsions for o and .

The calculation according to the method given in paragraph II was
cerried out for a heated plate with the values of 6 = 1/4 and 1/2 and, in the
velocity and temperature fields, yielded only moderate deviations from the
form at isothermal flow (Table 2). In order to calculate the conditions at
greater temperature differences, the case of T, = 20°C and T, = 620°C (© = 2.05)
was calculated. According to Figure 4, the velocity and temperaturs fields
show a substantial variation of the form at cunstant properties. Again,§,°
and 51 are formed with tne properties at tne temperatures To and Tl’ respec-
tively. For both fields, a substantial increase in the boundary layer thick-
ness is obtained. Nevertheless, the values of the wall shear stress and of
the heat transfer coefficient show but little deviativn from the values at con-
stant properties, where it is unimportant whether they are referred to the temp-
erature at the wall or to that at the outer limit of the boundsry layer. 1In the
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case of air, this car be explained by tne fsct tnat,wit in tne boundary

layer, the increase in viscosity with increasin, te;perature acts as a
drag increase, tne decrease in density actz as a drag decrease, and both
affects practically eliminate each other at Pr = 0.7, where thermal and
flow boundary layers are approximately egral in size. The conuitions for
the temperature field are almost exactly alike becauss thermal conductivity

is related with temperature, as is visccsity.

Table 2
— .
fo To oL (de /dy
Heating > 3 = ) -
(@‘1 (ﬁo (;(—51 (ﬁo dSl o dslj o
0 =1/L 1.00 | 1.02 1.00 1.01 0.486 556
9 =1/2 1.00 | 1.05 1.00 1.02 0.420 0.485
T = 620°C
° 0.93 | 1.11 0.96 1.03 0.235 0.286
Tl= 20°¢

In similar marner, frictional heating can be taken into account,
S
in wuich case a term (%?) must be added on the right side of Eq. (11),

and the solution becomes

0 - 1786 43 - n(y),

5. - R(§)
,y %ﬁ s <i§,

ACY) =
3 )
5 (5 ]
Pr, o T v ! 2 z
Pl Sl 10V 5 m BB 1, - R(D) :
B(5) 2@;:—.1.;) :,/(XLQ pu e d§,.e a§, (<5)
§ -t
R - (0,
)
UJ.
ATe = 5;; .
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Here, also, the iteration method can be carried out even though the
calculation work involved is somewhat greater. For constant properties,
Eq. (25) reduces to the solution given by E. Eckert.(lo) By a suitable
selection of the constant of integration in (25), even the thermometer
provlen (vanishing temperature gradient at the wall) can be solved.
Considering Croceco's previous calculations for a gas with
Pr = 0.725, a numerical examplie worked out by this new method has been
omitted here.

V. Application toc a Diffusion Problem

The concentration field in the diffusion roblex for the flat
&
plate can be treated in the same manner as the temperature field. f The
differential equation is

ac dc BLc -
ustv 3y k ay* ) ) (26)

where k 1is the diffusion coefficient and ¢ 1is the concentration that
is defined as a quantity of gas or vapor in unit volume. Let us, in tais
case, consider the properties to be constant, and, in particular, let us
agssume that the densities of the two interdiffusing media are approximately
egual in the entire flow field. On the other hand, let us take into account
that, at higher concentrations, the velocity v at the wall no longer van-

(6)

from a wall, say, because of a gas (e.g., air) flowing past z wetted wall,

ishes, a fact pointed out previously by Nusselt. when fluid evaporates
then socae substance enters continuously intc the flow; therefore, we obtain
at the wall v(0) > 0. If, on the other hand, the vapor from a vapor gas
mixture condenses on the wall, or if, for example, ammonia containing air
flows past a blotting paper saturated with hydrochloric acid, then ws

% E. Eckert reported on a solution of this problem at a meeting of the VDI-
Ausschuss flir Warmeforschung, 1943, in Bayreuth,where an adcproximation
method was applied similar to K. Polhausen's method for the flow boundary
layer.

t An estimate for the problem at hand has been given by G. Damkohler,
Z. Elektrochem, 178 (1942).
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obtain v(0) < 0. According to Eqs. (100) and (101) by Russelt,(é) the
boundary condition for v 1is
/ t
- -f- b_c.’ ——-———l = v(0), (27)

27

ALl

o

where c denotes the concentration of the gas or vapor for which the ~all is
pesmeable; Cyo the corresponding concentration at the wall; P, > the asso-
ciated partial pressure; and p,the total pressure.

For the velocity prefile, tre solution of Blasius(z) is rnow no
longer obtained, because v{(C) £ Q (see Fig. 1), but is a famiiy of profiles,
depending on the value of v(C). By intrcducing the free-strean velocity U
and the non-dimsnsional § , we obtain

({7}0 .-% §o (CI - l)ou ( } \/—' ¢ -c, (<8)
¢, - co

where °o and cl denote the concentrations at the wall and at the outer
1imit of the voundsry layer. Hence, similar to (15),

7 §

- A2 N
-\//Ux {mx - }dg + 2} R
o

cl " % (g_(_:_ ;
co(g _ ) dg A

Po
First, let us state the solution for the c.ncentration field wrich is,
analogously to (18),

~~
~ -

M - X
v

3 A - L )(g(f(s)-H)dS

c-Loo ’ L(g)')e
5
£(3) -zj

o

(3v)

(=1 J ]

d§ ,

where % is a value analogous to the Pr number. In order to obtain the
valocity ¢ = % , we simply write in Eq. (32}, -:f = 1. Calculation of
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the velocity and concentration fields is accomplished by an iteration
method similar to that in paragraph II.
h incorporates the concentration gradient at the wall; how-

ever, (30) can be solved for any ¥ values and we can then evaluata

k _G°° dc
H= - = —— 2 by means of the value for obtained from the
v e B _ 7 dt
P

solution. The velocity and concentration fields for the evaluated M and

N values may be recognized in Figs. 5 and 6, and the concentration gradient
at the wall,in Fig. 7. M > O denotes evaporation from the wall; H < O,
condensation or abscrption on the plate. For the ratio sz , the value 0,6
was selected, which holds, as a good approximation, for the diffusion of
water vapor and ammonia in air.(ll) From a rigorous point of view, at the
higher concentrations stipulated, density and viscosity of the mixture of
the twu substances are dependent upon the concentration, and the diffusien
coefficient, upon the temperature. ¥ith the aid of the method described,
such czses can also be calculated. If, besides the diffusion, some heat
transfer takes place, then the solution for the concentration field can

also be applied to the temperature field,as a good approximation. Similarly,
the solution for the concentration field presents information on the heat
transfer if air at the plate is blown out or sucked off through, for example,
a porous wall, with normal velocities at the wall corresponding with Eq. (28).

VI. Sumsary

Following closely E. Polhausen's soluticn for the laminar tenper-
ature field at the flat plate in longitudinal flow, formulas are derived
which permit calculation of the velocity and temperature field for variable
propefties by means of an integral equation and an iteration method basad
on this equation. Accordingly, the following cases were solved: By assuming
that only visco,ity varies with temperature and that the renaining propesrties
are constant, the velocity and temperature fields were calculated for the

Pr numbers 1<.5 and 100 (viscous fluids) at heated and cooled plate conditions.
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. A more rigorous invastigution of these two cases yielded an expression of
general validity. For a gas with the Pr number 0.7(air), calculations were
carried out btased on the assumption that all propertiss vary w~ith temperature
and that velocities are not too great, so that frictional heat may be neg-
lected. An increase of the thickness of the boundéry layers was obtained
without a substantial change, however, of the shear stress or the heat trans-
fer coefficient as compared i.ith those values that were calculated with *‘he
formulas for constant properties. 1In the course of this investigation, it was
found that the influences of density and viscosity,and of density and thermal
conductivity in the velocity and temperatuie field}on the wall shear stress
and heat transfer coefficient are opposed t. eac. other and that they practi-
cally eliminate one another. Formulas which also take into account frictional
heating wers given, but elaboration of the associated calculations was omitted
in consideration of the previous results of the studies by Crocco. Finully,
the solution methods developed here were a.plied «lso to the case of diffusion

: {T~ of additional substances, where, at higher concentrations, finite normal
T velocities appsar at the wall, wnicn resulis in a substantial change of the
velocity and temperature field.
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GRAPHICAL REPRESENTATION CF THE INDIVIDUAL APPROXIMATIONS IN THE CALCULATION
OF THE VELOGITY DiSTRIBUTION ON THE FLAT PLATE ACCORDING TO TKE
METHOD PRESTON AND PIERCY (CONSTANT PROPERTIES)
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VELOCITY AND TEMPERATURE DISTRIBUTION ON A HEATED PLATE AT VARIABLE VISCOSITY.
VISCOSITY EXPONENT b=3. (&L, (8], AND (), (B), ARE THE “ISOTHERMAL® VELOCITY
AND TEMPERATURE DISTRIBUTION; 3 AND » DENOTE KINEMATIC VISCOSITY
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VELOCITY AND TEMPERATURE DISTRISUTIONS ON THE COOLED PLATE
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VELOCITY FIELZ FOR RIFFUSION AT HIGHER CONCENTRATIONS IN WHICH FINITE NORMAL
VELCCITIES APPEAR ON THE WALL (COMPARE TEXT TD EQS. 25 TO 28}
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