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I. Introduction

Motion of incompressible and gaseous media is represented by

the Navier-Stoke differential equations. For two-dimensional flow and

constant properties, these are, in Cartesian coordinates:

au du au a f-u au)a u *pv -x- + t ax ay a

av av av + (ev (l)LV + Pv~ 8

In addition to these, we have the continuity equation:

au ava-x + y 0

where u and v are the velocities in x and y directions, X and Y

are the mass forces, p is the pressure, p the density, and p the

viscosity. To date, a solution of the non-linear differential equation (1)

p has not been found; not even if, as a simplification, we restrict ourselves

to stationary properties which, from a mathematical point of view, will

exclude all cases of turbulent flow. More responsive to a mathematical

treatment are stationary flows at very rmdll ani at large Reynolds numbers,
du u

In the first case, the cunvection terms (u v etc.) in Eq.(1) can

be neglected; and in the second case, the effect of viscosity can be neglected

as long as no flow separation takes place (potential flow). This is true

* . except for a very thin layer directly on the Lur-ace of the boundary (boundary

Q - layer), in which the longitudinal 'elocity decreases with a very steep gradient

to zero on the boundary, and in which the visco..ity conditions may not be

neglected. The flow in this boundary layer can also t.e tredted mathematically

as long as the layer remains laminar. Such Loundary ldyers Jevelo, on Zll

- Reynolds number is understood to be Ud , where U lenotes a characteristic

C velocity, d a characteristic length, ±nd V. the kinematic ,.scosity.
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0

CC:



-2-

bodies subjected to a flov and are related to the fiou resistance of the

body. This originateD from the forces acting on the body, uhich can be broken

down into two components: Forces nurmal to the uody (pressure forces); and

those tangential to the body (shear stresses), due to the viscosity of tha

flowing medium. If no flo,. separation from the body takes place, the pressure

forces can rt calculated in a good approximation from the potential flow around

the body; and the shear stresses, from the boundary layer flow.

A body for which, to begin with, nothing but shear stresses can be

expected is a flat plate in longitudinal flow. For this, in 1904, Prandtl

was first to show that, even at high Reynolds numbers, the drag could be

calculated analytically from the Navier-Stoke equations. Here, the Reynolds

numbers are assumed to be high, yet not too high, so that the flow remains
Ux

laminar throughout (Re - < 300,000 , x- distance from the leading edge of

the plate). Then,the thickness of the boundary layer normal to the plate

(y - direction) is small as compared with its dimension in the direction of

the plate (x - direction), so that; as was proven by Prandtll). we may

limit ourselves in Eqs. (1) to the u-components; and further, - is small

as to -, so that it may be neglected; and we may write - 0. Thus, for

constant properties we obtain (introducing kinematic viscosity v -V P
du au a lu .

ux+v y - ay (3)

and

- '- -0 (3a)
ax ay

with the boundary cniti.,ns (U constant free-stream velocity in frontof the CO

plate)

y 0 u C, v 0~ 4
y -oo u-=U "

By introducing the non-dimensional distance from the boundary j and the stream I
function #,

YV

2 v ' * " f  ( ) •(5) °

0,
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Equations (3) and (3a) can be reduced to common differential equations,

where the continuity condition (3a) is satisfied, by writing u - -
' dy

and v Thus, we obtainvax"

f Iff -0 (6)

A numerical solution of this differential equation, (6), was given by

Blasius2 J [Cf. Refs. 3, 4 Today, voluminous literature is available on

boundary layers, even for those at pressure drops and pressure rises (4 / 0).

If there is a temperature difference between the body and the

flowing medium, a heat exchange between the two takes place, for J.ich the

heat conduction equation holds:

aT auT + aT T (7
p a p c v- =x(y a-+p-y)(7)

Where T denotes temperature, X thermal conductivity, and c specific heat
p

at constant pressure. To begin with, the heat ; roduced by friction has not

f been considered in the differential equation (7). This is justified as long

b.5 the velocities encountered are not toc nigh and the temperature differences

are not too small. All conditione for the flow field are analogously valid

for this case also; in particular, near the surface of the body a " tnermal

boundary layer" develops, in which the entire temperature dro, between the

body and the surrounding medium takes place. If tt.e corresponding flow field
°is already known,$ien the solution** of (7) for the flat plate at zero angle

if attack can be reduced to a pure quadrature, as waL shown by E. Polhausen:( 5)

K - of d (8)

to
where Todenotes the temperature at tne wall, and T, that at the outer e.1e of

the boundary layer * *. Obviously, the boundiry conditions y 0 0, T T

-y oo , and T - are satisfied.

* Therefore may again be neglected with re3pect to - uTo @y ; furthermore,

we limit ourselves to stationary temperature fields (- 0).

*W With the simplifying assumptions mentioned above.

* Pr is the Prandtl number g  and f is defined by Eq. (5)
a
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If, in the flow field, there are media of different kinds, the

concentrations of which have local differences, then Eq. (7) is replaced

by a similarly constructed diffusion equation in which the temperature T

is replaced by the concentration c, and the thermal conductivity a - -

by the diffusion coefficient k. PCp

In applications to practical problems of heat transfer and

diffusion, difficulties arise due to the fact that the stipulation of con-

stant properties is frequently not satisfied, since most properties are

functions of temperature and then flow - and temperature fields are no

longer independent of each other. A similar difficulty arises in the

domain of heat transmission. On the basis of analogy considerations, we

can represent, for constant properties, the results of heat transfer measure-

ments in the form:

Nu - F(Re, Pr, , -' .) ) (9)

where Nu is the non-dimensional Nusselt number . i % etc., are the

proportions determining the geometri.al analogy conditions, and d isa C
characteristic dimension of length. The question arises whether the vari-

ability of the properties could not be taken into account by substituting

into (9) the properties for a suitably selected temperature, so that, again,

all measurements could be represented in a standard form.

In diffusior. problems, the density may depend upon the concentra-

tion if the problem involves high concentrations and media of different

densities. This corresponds to variable properties in temperature problems.

However, another phenomenon ray appear: At high concentrations, the normal

velocity v(O) no longer vanishes at the boundary, a fact pointed out previously

by Nusselt. (6 ) If a liquid covers a wall and is made to evaporate by a gas

flowing past this wal.l, then some liquid enters continously into the flow

field and we obtain, therefore, v(O) > 0. If vapor condenses on a wall, or

if a gas is bound to it byachemical reaction, ttan v(O) < 0.

C
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Presently there are two papers available on the laminar boundary

layer on a flat plate in parallel flow with variable properties - one by

(7) (8)
L. Crocco and the other by V. Karman and Tsiaen. In both papers, the

differential equations are changed, by means of a transformation to new vari-

ables, into a form that is different from the common boundary layer. equations.

Crocco obtains two simultaneous, second degree, differential equations itich

he solves for a gas with the Prandtl number 0.725 (Air). Karmaln and Te

examine the special case of Pr - 1 and have to solve but one differential

equation, since, in this case, the temperature field has a simple relation

to the velocity field.

This study begins with an application of a method of solution (to

which little reference is made in the literature) for the flow with constant

properties over a flat plate. This method of solution was suggested origi-

nally by Piercy and Preston, employing Polhausen's formula (8). Futhermore,

it is shown how the boundary layer flow with variable properties over the

Cflat plate can be calculated simply and clearly by means of this solution
method; and also, in diffusion problems, how the finite normal velocity at

the boundary can be taken into account.

Let us limit ourselves to laminar boundary layers, since analytic

treatment of the corresponding turbulent case is substantially more difficult

and complicated. Laminar boundary layers appear on bodies in the vicinity of

the stagnation point and extend from there over a distan -e that increases

with decreasing Reynolds number, it being stipulated, of course, that no

flow separation occurs. Such conditions present themselves particularly

(1) in the flow of viscous fluids; (2) in cases in wnich the body in the flow

is very small (e.g., particles in coal dust firing); and (3) in diffusion

problems where, frequently, only low velocities appear.

Primarily, this study aims at fundamental information, while

practical applications are possibly to be treated in a later report.

I,



-6-

II. Solution of the Boundary Layer Equation for Variable Properties

Taking variable properties into account, the boundary layer

equations for the velocity and temperature fields on the flat plate
(5)are:

aUa o-L ( ,L) (10)
ay ay a

a (Pu) + a (PV) *0 (10a)
ax 8Y

8 p T pvaT a a T
P C U-+ PC VT - % (-) (11)

p p 8y ay oy

The notations are the same as in (1), (2), and (7). Again~frictional

heat is as yet neglected.

For constant properties, (10) and (11) can be reduced to a

common differential equation (cf. introduction and Eqs. (3) through (6))

by the assumption that u and T are a function of but one (non-dimen-

sional) coordinate, - 1/U Since the properties depend only upon (
temperature, the conclusion is obvious that the same simplification is

possible for variable properties also. We write

u U (12)

where U is the velocity at the outside of the boundary layer, and To and

T1 are the wall temperature and th. teu~perature at the outer limit of the

boundary layer, respectively. The magnitude 2/k in the non-di'iensional

denotes the kinematic viscosity at the fixed temperature k, for which

the wall temperature (k = 0), or the temperature at the outer limit of the

boundary layer (k - 1), is a suitable selection. The boundary conditions

for the flow and temperature fields are

y,,oo, oo, (-l , (13)
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Furthermore, let

P -

where the index k denotes the property at the temperature Tk

The specific heat c p is assumed to be constant, which is true

for most gases and fluids. To begin with, we obtain frcm Eq. (lOa)

pvmVux (p u - udS) , (15)

which leads from (10) and, after (14) and (15) have been introduced, to a

form that is suitable for further calculations:

d (o 1=-( ) f; f- 2 ojd (16)

From (16), the following expression can be derived for C) I if, temporarily,Cd
(16) is considered as a differential equation for -d; and, in addition,

if f is regarded as a known function 
of d:

JdS , (17)

where the constant of integration is given by the boundary condition (13).

Similarly, we obtain for the non-dimensional temperature 6 the expression

K - z( ) jis

!k PkCp
where Prk - k C denotes the Prandtl number with the prope-,ies

at the temperature Tk.
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For constant properties ( j - % - 1), the velocity and tempera-

ture fields are independent of each other, alad we obtain from (18) the solu-

tion given by Polhausen (5) for the temperature field (cf. Eq. 8 ) which

represents an integral equation for the velocity field for Pr - 1 (L-- - a),

as may be found by a comparison of (17) and (18). While, for a known velocity

field, solution for the temperature field according to (8) or (18) is possible

by means of simple quadrature, the Calculation of the velocity field involves

the difficulty that, in (17), the still unknown velocity appears on the right-

hand side in the expression for f. In the method of solution given by Piercy

and Preston, we proceed from an arbitrary approximation for w which is then

employed to calculate f according to (16), upon which J(g) is calculated by

means of (17). In this process it should be borne in mind that constant proper-

ties are stipulated, andthus, that i - a -% - 1. In this ma-nner an. improved

value of w is obtained which represents the initial value for a new c'alculation,

etc. Figure 1 shows graphically the individual st,ps of the approximation. As
initial solution Wo , the intentionally inaccurate approximation A - 1 over

the e ntire boundary layer has been selected; the associated first approximation

QUI) is given by the error integral. After the third approximation, the shear

stress on the wall deviated but 4.5 percent from the-exact value. Instead of

continuing this process mechanically, the expected final solution was estimated

from the course of the preceding approximations and then used as a basis for

the subsequent step in the approximation. In this manner the solution c was

obtained with only 1/2-percent error in the shear stress.

For this metLod of solution, the improvement obtained by each approxi-

mation step can be estimated quantitatively: Eqs. (17) and (18) are identical

for constant properties and Pr - I. Let us assume that we dealt with an

approximate solution G(i) of such a nature that the associated 6 coordinate

differed by a constant factor y from the Scoordinate of the exact solutionti.

Then, obviously, we have also (f)(1) - .y f, and a comparison of (17) and (18)

yields that the influence of the factor V is equal to that of the quantity Pr
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an the temperature field. Polhausen (5)found, on the basis of his numerical

calculations, that the heat transfer coefficient is proportional to mr

consequently, using the metiod mentioned above, the shear stress at the wall

is subject to an error in every approximation step that is only about one-third

of the error of the preceding one.

In the case of variable properties, these solution steps of a

"mathematical" nature can be co=*ined -ith steps of a " physical" nature:

Step 1

As the initial point, the known solutions for constant

properties are assumed.

(a) For the velocity profile, the solution by Blasius.

(b) For the temperature field, the s:lution by E. ?olhausen.

Step 2

(a) Calculation of the velocity profile according to (17),in

which the temperature profile from step 1 (b) acccunts

for the temperature dependence of the properties.

(b) Calculztion of the tezperature field according to (18)

by mean:: of the velocity profile of step 2 (a); dependez~ce

of the properties upon temperature is ta-en into account

in the ame manner as in step 2 (a).

This procedure is repeated until tte final solution i3 eufficiently exact.

Generally, 3 to 4 repetitions will yield satisfactory results.

First, let us elaborate on t: e effect. of the depenience of the

properties on temperature. Of special interest in the velocity or tempera-

ture field are, chiefly, single values, suce. as the velocity gradient at the

wall (for the calculation of the shear stressl or tne heat transfer coefficient.

The idea suggests itself to take into account tne temperature iependence of the

properties by substituting the properties at a suitably selected te:, erature

into the " isothermal" formulas (i.e., the formulas for constant properties).

4 we select as reference temperature that at one o." the two limits of the

boundary layer, then, on the basis of physical aspects as oell az on the basis

of the formulas, it will be found that, within the boundary layer, an increase
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in viscosity or density az ccz .pared .ith the values at the l.ts of the

boundary layer --il result in a drag increase az compared with the iso-

thermal flow. Similarly, an increase in tner.al conductivity and density

results in increased thermal dissipation. However, the question, How

great is the effect of the unconstancy of the properties? depends upon the

ratio of the boundary layer thickness, of the temperature, and of the velc

city field.*

Let us illustrate this by :.eans of the following case, which ha.s

also some racticall significance: The ther=-aL boundary layer is ass=_ed to

be very small s compared ..ith the flow bounda-y layer, a condition encountered

at large Prandtl numbers (viscous fluids). In this case, then, the variation
of tz.e zro-erties within the thermal boundary l-yer obviously ay be neglected

for the determination of the shear stress, whizh will be fourn to be the sane

as if the te--perature at t he outer edge of the bouncary layer would extend to

the wall. The same holds also for the velocity profile, ith the exception

of tne sma-i region wtiin the ther-al boundary layer in which the velocity

profile is deformed in accordance with the viscosity variation. For the

temperature profilt, however, exactly this region is decisive. For the

velocity graaient on the wall, we obtain, fro= the eual'ty of the shear

stress,

I ~ ~ ~ ' )u = fo r Pr -.I) i>,11

,where t..e index - denotes t..e " isothermal" flow -with the % roferties at

the temperature TI . In tc-is case, variability of density has no effect on

the flow field, This can also be derived mathematically from Eos. (17) and 0

J8). The cotrdnitions for the temperature field are discussed in the following

paragraph ty means of two examples.

• According to E. Polhausen, the r~tio of the tno is proportional to
1 "o



-11-

III. flow and T-p~erature Fields in Visccus Fluids

In accordance wit. the nat.a_-e of the cpr erties of ;iscou.s fluids,

the velocity and termpersture fields were c icuLatei "ith the ass=rtion t-it

only viscosity varies with tecerature accordirng to the foliowing for--_da:

orT. + T b

where b an T are constants wtr.+ r.e to he selected i' s':cL a -anner
c

that the temperature dependence is as well. re;eseAted as ocs-itle. Let

the index k have the value 0 or 1, dep'eri cn tre selecZtir if the non-

dkzenslonal 5 . Here, b - 3 was selezted "e.g., is::us lhri ti:g oil,
' o I

and the two cases of a heated and z7cled plate were cuatei

and 8, respec tively, and Pro - L .5 and 1X . Thus. te two exeazplesLdeal

with the same fluid and inv !ve ezual t.e:erture lifferenzes, --nce, ;n

both cases, the respective ITr is fore - _e :rozerties of -e te -

erature. if T is selected as referenCe te=Nerature, we 7t-k "-C- *..4-,

The result of the calculatiuns acco-i - to "-e iterative :eth,: o.

the preceding paragraph nay Le recoCnized n ri:s . an 3. In both ga.rLs

the non-dimensional distances frc= the wall, a and r , -- ith 1, and.are plotted on the abscissa t the scale 1: 8 (.-ig. 2) an ' : iFig. :,,

so that but one point on the aDscissa zorreu.. andz to every :*t_.nce f:- tr-..e

wall y, whether this is deterair.ed b- the notation or r Inus,
00 -

both graphs the location oi the curves witr. rezpect to eacr. other :cr- .

to the real conditions. Beside. the solution -, for " ,

three steps were required, the isotherm.l veloc:ty fores o and f

constant properties at the tempertures T0 arl i 3 respectively, were plotted

as a function of the ron-dimensicnal .o>ordirntes o ar. I " For the isotnerall

temperature profiles (8)0 and (8)i, the Pr numbers also -ere subtituted at

-I



the t ez atures 0an T1 . For exaleinFigure2 ?r - 1-.5 and

?r - 130. In the following table, - and < denote the shear stress

at te wall am reat tzafer coefficient - x(q)j; (l - (4)

are t..e :correspondin- values aL isother--al flow wi-h the viscosity at the

tez;,erature TI an T respeztively, The sz.- hod for (T)a
0

Tatle i

Heated wall 0.125 12.5 0.841 2.38 , 1.40 1.70 1.58 1.84

:ooled wall 8,000 100.0 1.08 0.382 0.98 0.6941 0.255i 3.31

Altt c- in thee zasez the thickness of the ther--al boundary layer is by no
=eans neg' ~ i'le as cc-red with the flow boundary layer, the shear stress

can be calcu'ated very well with the aid of the isothermal for~ula with the

--iscosity at the te-perature TI.* Tne sti:p-ulations of Ec (19) for Pr > 10

are tius given.

The conditions for the heat transfer zoefficient are =oere

involved. Fro (8), it follows that the heat tran fer coefficient . is

r olo r- , e.e, accorainF to E. Folhausen, g - 0.664.

is true uitr. r.i-h accuracy. Considering that Pr - , it follows th- at the

heat trai.sfer coefficient is inversely pro;ortionai to the sixth root of the

viscosity. Tnus, the ratio of heat transfer coefficients( oQ0 to (D)l is

A second iniicatin for t'.e neat trdnsfer coefficient is octined from the

velocity jradient a. the wal. From Eq. (19), with consideration of (12),

it follows (if L,.e indices at the brackets, ic  and i. , denote isothermal

flow at the temperatre T0 and T1 , respectivel.y):

Refer to in Table 1 ani com, -re it with column , (
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_0yi)t (23)
I U

These relaticas also are cnfir-ed by Figures 2 an! 3.

Cbviously, by heans of these forzulas, limits can :- given for the

heat transfer coefficientX (also copare Figs. 2 an1 3), utich we shal

express in ter-s of -mltiples of the heat transfer coef ficient (x)c " .,n

S -e <)i 4/--. accordiin to Eq. z2), because the

velocity profile (l" yields higher velocities on all points -i-th a cooled

(p late and lower velocities with a heated plite. The other limit is given by

a velocity profile of isothermal form fcr wrdch the abscissa sceLe is changed

by a factor y in such a manncr that its graient at the wal coincies with

that of the actual velocity distributicn. Since the limit mentioned above

for the heat transfer coefficient is to be expressed by ()o multipliei by

a factor, y is to be calculated from the ratio Of the true velocity gradient

to that at the temperature T0 (second part of Eq. 43). From the r.ote: on the

convergence of the solution method in paragraph II, it then follows tnat the

heat transfer coefficient is proportional to T and we obtain as the limit

6 ((9o * Summarizing, we obtain for the limits of the heat tra'lftr

coefficient, if only viscosity varies,

to- W - 24

where the upper signs stand for the caje of the heted ;late and ti.e Io,.er signs,

for the cooled plate. Accordingly, in agreement with the special ex les in

( Table I, the heat transfer coefficient 0 approaches closest the true heat

transfer coefficient c-.
*\
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Thus, for visacus fluids (Pr > 10) for which variation of the

viscosity is of ;rar corzieration, the following approximate rule is

obtained: In the calculaticn of the drag, the properties are to be refer-

red to the temperature at the outer limit of the boundary layer; in the

calculation of the heat transfer, the properties are to be referred to the

wall terperature.

IV. The Flo-: and Temperature Fields for tne Case Pr - 0.7(Air), r.here All

Properties Are Functions of Temperature

0
In ti.e temperature range -50- to 140 C, the properties of air can

be represented by the following formulas:

O'O -i 0821
-,T K2 T X X K3 T

where T is temperature in absolute degrees.

Iith T -T.
0 1
T I

we obtain

0.78
- - - 3+ (1- Q )

and similar exprezsions for a and -.

The calculation according to the method given in paragraph II was

carried out for a heated plate with the values of 0 - 1/4 and 1/2 and, in the

velocity and tempjerature fields, yielded only moderate deviations from the

form at isothermal flow (Table 2). In order to calculate the conditions at

greater temperature differences, the case of T 1 = 200C and T0 - 6200C (9 = 2.05)

was calculated. According to Figure 4, the velocity and temperature fields

show a substantial variation of the form at cnstant properties. Again, o

and are formed with tne properties at the temperatures T0 and TV respec-

tively. For both fields, a substantial increase in thne boundary layer thick-

ness is obtained. Nevertheless, the values of the wall shear stress and of

is, the heat transfer coefficient show but little deviatiun from the values at con-

stant properties, where it is unimportant whether they are referred to the temp-

erature at the wall or to that at the outer limit of the boundary layer. In the
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case of air, this car be explained by tne fact tnat )wit in tue boundary

layer, the increase in viscosity with increasin,- temperature acts as a

drag increase, tne decrease in density acts as a drag decrease, and both

effects practically eliminate each other at Pr - 0.7, where thermal and

flow boundary layers are approximately eqcal in size. The coniitions for

the temperature field are almost exactly alike because thermal conductivity

is related with temperature, as is viscosity.

Table 2

Heatizw, P (do)

- 1/4 1.00 1.02 1.00 i.01 0.480 0.56

O = 1/2 1.00 1.05 1.00 1.02 0.420 0.485

To 6260 C

20m 0.93 1.11 0.96 1.03 0.235 0.286

In similar manner, frictional heating ctn be taken into account,

in widch case a term 1 ( )must be added on the right side of Eq. (11),

and the solution becomes

81 A(s) - B(I)

A(Q) - R(S) d ,

0 1
": ~ ~~~Prk Te eed,

e lk - R( ) dSe - R(()B(S) -2 TI-ToTo e 5od e

R( )- Prk - d5
0

AT/ U-+a 1c

, T0
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Here, also, the iteration method can be carried out even though the

calculation work involved is somewhat greater. For constant properties,

Eq. (25) reduces to the solution given by E. Eckert.(l 0) By a suitable

selection of the constant of integration in (25), even the thermometer

proolem (vanishing temperature gradient at the wall) can be solved.

Considering Crocco's previous calculations for a gas with

Pr - 0.725, a numerical example worked out by this new method has been

omitted here.

V. Application to a Diffusion Problem

The concentration field in the diffusion problem for the flat

plate can be treated in the same manner as the temperature field. The

differential equation is

+ - k a (26)uax 7y ayl

where k is the diffusion coefficient and c is the concentration that

is defined as a quantity of gas or vapor in unit volume. Let us, in t.s

case, consider the properties to be constant, and, in particular, let us

assume that the densities of the two interdiffusing media are approximately

equal in the entire flow field. On the other hand, let us take into aczount

that, at higher concentrations, the velocity v at the wall no longer van-

ishes, a fact pointed out previously by Nusselt.(6)' Whlen fluid evaporates

from a wall, say, because of a gas (e.g., air) flowing past a wetted wall,

then somae substance enters continuously into the flow; therefore, we obtain

at the wall v(O) > 0. If, on the other hand, the vapor from a vapor gas

mixture condenses on the wall, or if, for example, ammonia containing air

flows past a blotting paper saturated with hydrochloric acid, then we

* E. Eckert reported on a solution of this problem at a meeting of the VDI-
Ausschuss fur Wimeforschung, 1943, in Bayreuth where an aoproximation
method wa3 applied similar to K. Polhausen's method for tne flow boundary
layer.

t An estimate for tne problem at hand has been given by G. Damk6hler,
Z. Elektrochem., 178 (1942).
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obtain v(O) < 0. According to Eqs. (100) and (101) by Nusselt, (6) the

boundary condition for v is

k 1C 1 - v(O), (27)-~ -a; 1

0p PO

where c denotes the concentration of the gas or vapor for ".#ich the wall is

pezmeable; co, the corresponding concentration at the wall; p0 , the asso-

ciated partial pressure; and pthe total pressure.

For the velocity profile, the solution of Blasius ( ' ) is now no

longer obtained, because v(O) j 0 (see Fig. 1), but is a family of profiles,

depending on the value of v(C). By introducing the free-stream velocity U

and the non-dimnnsional , we obtain

2 0

C-

where ao  and cI  denote the concentratiom at the wall and at the outer

limit of the boundary layer. Hence, similar to (15),

0

M"_k Cl Co0 dC

M W- k SCo/E _1c o d5

First, let us state the solution for the c-ncentration field wnich is,

analogously to (18),

- j f(S) -M) dS

4 d

0

where k is a value analogous to the Pr number. In order to obtain the

velocity 0 - , we simply write in Eq. (3D), 1. Calculation of

"0
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the velocity and concentration fields is accomplished by an iteration

method similar to that in paragraph II.

K incorporates the concentration gradient at the wall; how-

ever, (30) can be solved for any M values and we can then evaluate

N c1 0 by means of the value for fC obtained from the
k C P - 1)

solution. The velocity and concentration fields for the evaluated H and

N values may be recognized in Figs. 5 and 6, and the concentration gradient

at the wall in Fig. 7. M > 0 denotes evaporation from the wall; H < 0,

condensation or abscrption on the plate. For the ratio 12 , the value 0.6

was selected, which holds, as a good approximation, for the diffusion of

water vapor and amonia in air. (11) From a rigorous point of view, at the

higher concentrations stipulated, density anJ viscosity of the mixture of

the twu substances are dependent upon the concentration, and the diffusion

coefficient, upon the temperature. With the aid of the method described,

such cases can also be calculated. If, besides the diffusion, some heat

transfer takes place, then the solution for the concentration field can

also be applied to the temperature field, as a good approximation. Similarly,

the solution for the concentration field presents information on the heat

transfer if air at the plate is blown out or sucked off through, for example,

a porous wall, uith normal velocities at the wall corresponding with Eq. (28).

VI. Summary

Following closely E. Polhausen's solution for the laminar temper-

ature field at the flat plate in longitudinal flow, forinulas are derived

which permit calculation of the velocity anj temperature field for variable

properties by means of ai integral equation and an iteration method based

on this equation. Accordingly, the following cases were solved: By assuming

that only viscoaity varies with temperature and that the remaining properties

are constant, the velocity and temperature fields were calculated for the

Pr numbers l.5 and 100 (viscuus fluids) at heated and cooled plate conditions.
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(

A more rigorous investig4tion of these two cases yielded an expression of

general validity. For a gas with the Pr number O.7(air), calculations were

carried out based on the assumption that all properties vary ith temperature

and that velocities are not too great, so that frictional heat may be neg-

lected. An increase of the thickness of the boundary layers was obtained

without a substantial change, however, of the shear stress or the heat trans-

fer coefficient as compared '.ith those values that were calculated with 4he

formulas for constant properties. In the course of this investigation, it was

found that the influences of density and viscosityand of density and thermal

conductivity in the velocity and temperatxe field ;on the wall shear stress

and heat transfer coefficient are opposed t, eac-. other and that they practi-

cally eliminate one another. Formulas which also take into account frictional

heating were given, but elaboration of the associated calculations was omitted

in consideration of the previous results of the studies by Crocco. Finlly,

the solution methods developed here were applied also to the case of diffusion

of additional substances, where, at higher concentrations, finite normal

velocities appear at the wall, wricn results in a substantial change of the

velocity and temperature field.

o

1L'0

K;

IC
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GRAPHICAL REPRESENTATION Of THE INDIVIDUAL APPROXIMATIONS IN THE CALCULATION
OF THE VELOCITY DISTRIBUTION ON THE FLAT PLATE ACCORDING TO THE

METHOD PRESTON AND PIERCY (CONSTANT PROPERTIES)

FIG. I

t 
(4-

0Z~. , 3_

0 i 2 $ 4

VELOCITY AND TEMPERATURE DISTRIBUTION ON A HEATEO PLATE AT VARIABLE VISCOSITY.
VISCOSITY EXPONENT b-3. |QI, (1o0 AND (w),, (1% ARE THE *ISOTHERMAL. VELOCITY

AND TEMPERATURE DISTRIBU1",ON; Yo AND a, DENOTE KINEMATIC VISCOSITY
AT THE WALL TEMPERATURE TO AND AT THE TEMPERATURE T, AT

THE OUTER LIMIT OF THE BOUNDARY LAYER

FIG. I
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VELOCITY AND TEMPERATURE DISTRIBUTIONS ON THE COOLED PLATE
NOTATIONS ARE THE SAME AS IN FIG. 2

FIG. 3

to

06 6

y W

VELOCITY AND TEMPERATURE DISTRIBUTION ON A HEATED PLATE FOR
Pr@O.7(AIR)t ALL PROPERTIES ARE VARIABLE WITH TEMPERATURE

FIG. 4 TI-
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VELOCITY F-EL-- FOR OIFFUSION AT HIGHER CONCENTRATIONS IN WHICH FINITE NORMAL.
VELO'CITIES APPEAR ON THiE WALL (COMPARE TEXT TO EQS. 26 TO 28)

FIG. 5
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CONCENTRATION DISTRIBUTION FOR FIG. 5

FIG. 6
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CONCENTRATION GRADIEN4T AT THE WALL AND THE VALUE M AS A
FUNCTION OF N (SUPPLEMENT TO FIG. 6)

FIG. 7 TI-



Bibliography

(1) ?-randti, L., "Uber Flussigkeitsbewegung bei sehr kleiner Reibungw,

Verh. d. III. Intern. Math. Kongr., Heidelberg, 1904, p. 484.

(2) Blasius, H., " Grenzschichten in 7lussigxeiten mit kleiner heibunrg",

L. Math. Physik, Vol. I. (1908), p. 56.

(3) Toilmien, W., in ,'Wien-Harrs, Handbuch der Experimrntalphysik, Vol. IV,

Part I, 1931.

(4) Xoldstein, S., Modern Developments in Fluid Dynaics, 2 volumes, txford,

1938.

(5) ?olhausen, E., " Der Warmeaustausch z-wischen festen Korperr, und

Flussigkeiten mit kleiner Reibung und kleiner drmeleitung,'. Z.A.MHM. 1

115 (192?1).

(6) Nusselt, W., " Warm ubergang, Diffusion und Verdunstung," Z.A.M.M.

10,O5 (1930).

(7) Crocco, L.," S lo strato imite laminare nei gas lungo una pareta piana i

Rend. Circ. Math., Palermo, Vol. 63 (140/l).

( ) von Karman, Th., .ind Tsien, H. S., "Boundary Layer in Compressible

Fluids,' J. Aero Sci., Vol. 5, No. 6 (1938), p. 227.

(9) Piercy, ?,.A.V., and Preston, J. h., " A Sinple Solution of the Flat Plate

Problem of Skin Friction and Heat Transfer," Philos. Mag. J. Sci. (7),

Vol. 21 (1936), p. 995.

(E)) Ekert, E., and Drewitz, 0., U Der .arwabergang an eine mit grosser

Geschwindigkeit langs angestromte Platte," Forsch. Gebiete Ingenieurwes,

Vol. 11 (1940, p. 116.

(11) Ten Bosch, Die armebertragung, Berlin, 1936, pp. 189-257.



Z-o
- -- -

C4 'o C)

4 r- 14.4

(L)

od bl 4w41

0 0

04 U) 2 I

r-4 c)

-4 '.4

0 0

4) b,0:5

o *O,.4 0)-lc

oko

u I- :

E_ c0 ,,

Q) -u


