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ITOBDIXJCTION 

At present, the design of compensation networks for linear feedback control 

systems is very often more of an art than a science« To those somewhat un- 

familiar with the field, there may seem to be a certain amount of sorcery 

and black magic involved. For years, various workers have pointed out the 

desirability of an exact, rigorous method of synthesis. Such a method would 

start fron the general specifications of what the system is to accomplish. 

It would proceed in a logical, step-by*step manner to a detailed description 

of each component in the system* Truxal points out the advantages such a 

method would have when he describes GuiUemin's design procedure. 

As outlined, Ouillanin's procedure involved three steps: 

1« übe closed-loop transfer function is determined from the specifications. 

2. The corresponding open-loop transfer function is found. 

3* The appropriate compensation networks are synthesized. 

Unfortunately, in practice this procedure is not always easily carried out. 

The first difficulty is that there is not complete freedom in setting an open- 

loop transfer function. Many times it is highly desirable to use certain com- 

ponents which happen to be on hand or are easily obtainable. Now, if it could 

ever oe 3hown rigorously that one must have complete freedom in setting the 

open-loop transfer function or else it is impossible to solve the problem, then 

this difficulty would be ended. Design engineers would merely tell those who 

control tue purse strings that a component with certain characteristics is 

needed, and never mind the fact that we have a warehouse full of black boxes 

which are almost the same. However, there are too many instances where an 

engineer had to make do with what he had, and succeeded brilliantly with a 

trlal-and-error technique, for sueh a story to be believed. Ibis points up 

the second big difficulty with the procedure outlined above. 

The fact that there is not complete freed« in setting the open-loop transfer 

function means that there is not complete freedom in setting the closed-loop 

transfer function. In turn, this may mean that a proposed closed-loop response 
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which is deteimined in step one above may be incompatible with the components 

which are already in the system. Since it is possible to succeed in spite of 

this incorpatibility by coming up with a system which fulfills the requirements 

of the general specifications on the system, this shows that the present methods 

of translating general system specifications into closed-loop transfer functions 

are not perfectly satisfactory» Often, any system out of a large class of 

possible systems would turn out to be capable of doing the Job which is required 

to be done, in a perfectly acceptable manner. What I am saying is that you have 

to know what you want before you start. Sometimes in an effort to pin things 

down precisely, on«; makes the mistake of pinning down the wrong thing too 

precisely. Much later, it is discovered that a certain specification can be 

relaxed with no detriment of system performance. 

This paper proposes a new approach to the philosophy of design of feedback 

systems. In the past, most techniques would attempt to start with open-loop 

characteristics and work towards closed-loop or visa versa. Usually some sort 

of step-by-step procedure was required, involving trial-and-error or one 

operation after another in some long sequence. Difficulties arose because the 

results of any one step might require backing up and modification of an earlier 

step. The new approach suggested here would avoid this by doing everything in 

one shot. Write down exactly what Job you want the system to do. Include 

everything which is essential, but don't put in any requirements which are 

arbitrary or unnecessary. Write down the characteristics of the components 

you have available to do the Job. Now translate everything you have written 

down into mathematical equations. You now have a set of simultaneous equa- 

tions describing the requirements on the system and the components available. 

Provide sufficient variables in the system parameters so that the number of 

variables equals the number of equations. Now solve the set of equations 

simultaneously and the Job is done. 

It is the purpose of this paper to attempt to survey the present state of 

the art of the synthesis of linear feedback control systems and to point out 

those areas in which a number of loose ends have been left dangling. Present 

procedures can be improved by achieving the ability to formulate general 
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desired results into exact analytical relationships. Once such relationships 

are obtained, a digital computer can take It from there* Although the vhole 

field still requires more study, one step in the procedure has been made much 

more exact by the development of a new tool« 

This new tool is the ability to specify the exact location of any desired 

number of dosed-loop poles. All of the closed-loop poles of the system may 

be specified, or only part of them, as desired. The necessary compensation 

is not determined by a trial-and-error or iterative method, but by an exact 

procedure involving the solution of simultaneous linear equations. The method 

does not require the cancellation or nullification of fixed poles and zeros 

already in the system. Instead, it makes use of them to aid in producing the 

desired closed-loop poles» 

The mathematical basis of this procedure will be presented first and the exact 

technique will be explained. This will be followed by an example which gives 

a clear indication of the present state of development of this approach to 

synthesis. Finally, a number of possibilities which the technique opens up 

will be surveyed and suggestions for future development will be made. 

MATHEMATICAL DEVELOPMENT 

It is assumed that we are given a feedback system of the form show:; in Figure 1. 

There is a single feedback path of unity gain. Although it may appear that 

this configuration is unduly restrictive, it will be shown later that this is 

not the case and other configurations will be considered. 

Let -=4-4 be the actual transfer function of the closed-loop system. Do not 

ppecify this function exactly but leave it adjustable« Fixed elements (the 
m(s 

so-called •plant1) are already present. Let —M> be the transfer function of 

the plant. The desired closed-loop transfer function is given as W(s). The 

problem is to determine the compensation and gain which will result in a 

closed-loop system having a transfer function which approximates V(s) as 

closely as possible. Let ^*|j be the transfer function of the compensation 

which is to be determined, including the gain. 
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First of all, we know that 

v(.) 
i + mm Eq. 1 

Multiplying out and solving for T-W- gives 

This says that if there are to be no compromises or restrictions on W(s), 

£*£+ must cancel out the poles and zeros of the plant and insert new ones to 

provide the exact specified response. In the usual case, such a procedure 

is undesirable. In compromise, one is usually willing to restrict or modify 

W(s) so as to be compatible with the system and still approximate the exact 

desired response closely. 

I 
As was already pointed out, usually the specification of an exact function 

of s for W(s) proves to be too stringent and unnecessarily strict. Actually, 

there are a whole class of response functions which will all meet the real 

requirements on the system equally well. The problem is in translating the 

real requirements into some sort of specification on V(s) which is sufficiently 

strict without being unnecessarily so. 

Repeating Equation 2, 

m ■ m A 
In order to satisfy this equation, either b(s) or W(s) must contain m(s) as 

a factor. That is, the open*loop fixed zeros [.factors of m(s)J must either 

be catcalled by compensation poles [factors of b(s) lor else must appear as 

closed»loop zeros I factors of the numerator of W(s) j. liiere is no other 

alternative. Since the use of cancellation is undesirable, and in fact un- 

I necessary in view of what was said about approximation techniques, we will 

allow the open-loop zeros to appear as closed-loop zeros. 
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In order to continue, replace W(s) In «auatlcn 2 by itfrf •    This gives N(a 

tif ■ 8» r?Sa • *J *ÄT *■» 

The factors of n(s) are the open-loop fixed poles. In order to satisfy 

Equation 3, either a(s) contains n(s) as a factor, which means that com- 

pensation zeros cancel plant poles, or else V(s) - D(s) contains n(s) as 

a factor. It is not necessary for H(s) awl D(s) separately to contain 

n(s) as a factor, but only that their difference contains it. 

9K fact that open-loop «eras appear as closed-loop zeros and the fact that 

l(s) - D(s) oust contain n(s) as a factor are the constraints placed upon 

the closed-loop response by the fixed open-loop poles and zeros. As it 

turne out, there is still pl.uty of freedas in setting the closed-loop 

response 

Since ve have just decided that it will be acceptable for open-loop zeros 

to appear as closed-loop zeros, ve may write 

I(s) -   a(a)a(s) Bq. k 

Substituting this into Bquation 3 yields 

et • m *Män 
flsunamni factors where possible leads to 

1 n(s) _     , 

or, finally, after rearranging, 

D(s) -  a(s)a(s) + b(s)n(s) Bq. 7 



ra-59-0000-0078l 
Page 6 

übe synthesis problem now becomes one of finding the compensation ^M- such 

that Equations t ami 7> plu* other equations derived from transient- or 

frequeacy-response requirements, are satisfied» Such a set of equations 

might be satisfied exactly in some cases, or in a mean-square-error sense 

in other oases* 

In order to see how this procedure may be carried out, let us assume that ve 

do not care where the closed-loop zeros of the system are, hut that ve wish 

to specify emctly all or part of the closed-loop poles. Notice that doing 

this does not speaify the resulting closed-loop response, because in the 

process of compensation additional open-loop zeros will be added to the 

system. These zeros will also become closed-loop zeros, and may have a 

significant effect on the resulting closed-loop response. There are no spec- 

if ieations upon the closed-loop response other than that the exact locations 

of the closed«loop poles are specified« Having seen how to obtain a solution 

for this case will give us insight into other cases where different specifications 

are placed on the closed-loop .response. 

First, provision must be made for the cases where only part of the closed-loop 

poles are specified, and part are left unspecified. Let 0(s) be closed-loop 

poles whose locations are to be specified. Let x(s) be the r&nalnlng closed- 

loop poles whose locations are undetermined at the outset. 

Rewrite Equation 7 with this notation. 

D'(s)x(s) » a(s)m(s) + b(s)n(s) Eq. 8 

Let the number of fixed plant zeros * J « the degree of m(s) 

Let the number of fixed plant poles » k = the degree of n(s) 

Let the number of specified closed-loop poles » r * the degree of D'(s) 

Let the number of unspecified closed-loop poles * d = the degree of x(s) 

Let the number of compensation zeros » q * the degree of a(s) 

Let the number of compensation poles ■ p » the degree of b(s) 

The  quantities j, k, and r are known at the outset. The quantities d, p, and q 

are not yet known, although some relations concerning them will be derived 
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shortly.    All of the various factors may be multiplied out to obtain polynomials 

of the following form: 

m(s)      =      sJ + m^.s^**    + ....+ EL. 

k k-1 
n(s)      =      s   + ^.-j8        + ..«.+ n-S + n c 

r-1 
% ' r-1 1 c 

, \ d d-1 
x(s)      *      s   + x^is       + ••■• + x-s + x 

b(s)      =      b s^ -»■ b    .s^"    «f  .   .   .   . + b.s + b x ' p p-1 1 p p-1 1 o 

a(s)      =      a s^ + a   ,sq"    + ..,*+ a.s + a 
q q-1 1 o 

The coefficients of m(s), n(s), and D'(s) are all numerical, because the 

factors of these functions are all known at the outset. The coefficients of 

x(s), b(s). and a(s) are all unknown, and are left assumed in literal form. 

Note that a(s) and b(s) are the only polynomials which have leading terms 

whose coefficients may be different from unity. These coefficients provide 

for the Bode gain of the compensation. 

©lese polynomials may now be substituted into Equation 8, and the indicated 

multiplications actually performed. The coefficients of the various powers 

of s on either side of Equation 8 will now be combinations of literal and 

numerical terms. The coefficients of like powers of s on each side of the 

equation are then separately equated. Ulis will lead to (r + d) linear 

simultaneous equations, which may be solved for the coefficients of a(s), 

b(s), Sud x(s). The fact that these simultaneous equations will always be 

linear must be emphasized. Having obtained numerical values for these 

coefficients, the polonaomials a(s), b(s), and x(s) may now be reconstructed 

and factored. These factors will be the poles and zeros of the compensation, 

and the remaining closed-loop poles» ftius, in this case, an exact solution 

is obtained for the required locations of the poles and zeros of the com- 

pensation network. 
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Now, notice that the highest power of s on the left-hand side of Equation 8 

will be the (r + d) power. ttius, there will be (r + d + l) terms on the left- 

hand side. Since the highest power of s will always have a coefficient of 

unity, no equation nay be obtained fron this tern except in one special case. 

All of the rest of the terms will yttld useful equations. Therefore, there 

wiH be (r + d) simultaneous equations in all cases, with one exception. 

There are d unknown coefficients in x(s), p or (p + l) unknown coefficients 

in b(s), and q or (q + l) unknown coefficients in a(s). The total number 

of open-loop poles in the* final systam will be (p + k). The total number 

of open-loop zeros in the final system will be (q + j), The total number 

of closed-loop poles in the final system must equal (p + k) or (q + j), 

whichever is greater. 

If (p + k) is greater than (q + j), the complete term on the right-hand side 

of Equation 8 involving the highest power of s will be b s**s . The highest 

power of s on the left-hand side of the equation will have a coefficient of 

unity. Thus, whenever (p + k) is greater than (q + j), we must have b * 1. 

Since this can easily'be seen at the outset, there is no point in carrying 

along this extra equation, which is why it was stated that there are (r + d) 

equations instead of (r + d + l). Also, notice that in this case, the leading 

coefficient of a(s), a , is still an unknown. 

Similarly, if (q + j) is greater than (p + k), it is seen that a will be 

unity and b will be unknown. In this case, there, are still (r + d) equations. 

In the special case, when (p + k) * (q + j), both b and a will be unknowns. 

There will be an extra equation, namely, b + a ■ 1. However, in this case 

there is also an extra unknown. 

Therefore, in all cases but one, there will be (r + d) simultaneous equations 

and d i p 4 q + 1 unknowns. In the one special case when (p ♦ k) =» (q + j), 

there will be (r + d + l) simultaneous equations and d4p 4 q + 2 unknowns. 

In any event, in order to obtain an exact solution, it is clear that it is 

necessary to have 
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p + q = r - 1 Eq. 9 

This says that the total number of compensation poles plus zeros must be one 

less than the number of closed-loop poles which are to be specified. 

Let us consider some of the implications of Equation 9* For simplicity, let 

us assume, as is always the case in any physical system, that the number of 

open-loop poles in the plant exceeds the number of plant open-loop zeros; 

i.e., k> J. Now, let us also assume, for the same reason, that the number 

of poles in the compensation is at least equal to or else greater than the 

number of compensation zeros. That is, p 2^q. Then, the total number of 

closed-loop poles will be (p + k) • We must have p + k = r + d. Suppose 

that we want to specify the locations of all of the closed-loop poles in the 

resulting system. Then, d = 0, and p + k = r. Substituting this into 

Equation 9 shows p+q*p+k-l, or 

q  ■  k - 1 Eq. 10 

The number of zeros in the compensation must be one less than the number 

of poles in the plant. Since it vas stated above that p > q, we also have 

p > k  - 1 Eq. 11 

Provided that Equations 10 and 11 are satisfied, we can always specify the 

exact location of every resulting closed-loop pole of the system. This is 

sort of a handy thing to be able to do. 

In the case presently under consideration, we have placed no other restrictions 

on the system than that the locations of the closed-loop poles b? specified. 

This means that the resulting compensation may turn out to be of unusual form. 

For instance, it may be required that compensation poles be placed in the 

right half of the s-plane. Of course, this can be accomplished by using 

active compensation networks which produce unstable poles. Since we have 

specified the locations of all the closed-loop poles of the over-all system, 

if these were all specified in the left-half of the s-plane, the over-all 
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closed-loop system will be stable. It is not the purpose of this paper to 

go into the old argument of whether or not such a situation is desirable* 

If only part of the closed-loqp poles are specified, the only relations we 

have to guide us are p + q ■ r - 1, and p + k * r + d (still assuming that 

k > J and pj£q). Remember, r is the number of specified closed-loop poles. 

Within these restrictions, p and q (the number of compensation poles and zeros 

respectively) may be chosen anything we want* This means that there exists a 

variety of compensation networks having different numbers of poles and zeros, 

at different locations, which will all produce specified closed-loqp poles 

in exactly the same locations. It can easily be seen that the total number 

of such networks is r. In all of these networks, the only thing which re- 

mains constant is the sum of the number of poles plus the number of zeros, 

which must equal r - 1. Of course, the things which change in the over-all 

closed-loop system are the locations of the unspecified closed-loqp poles. 

A digital computer routine has been set up at Space Technology Laboratories 

which obtains the exact solution for any problem in which the only require- 

ments on the closed-loop system are the locations of the closed-loop poles. 

This digital routine has proved to be very successful, and a number of 

problems has been solved through its use. 

PRACTICAL APPLICATION 

With the digital computer routine presently in existence at Space Technology 

Laboratories, the only specifications which may be put on the system are the 

desired locations of closed-loop poles, and the number of compensation poles 

to be used (note that specifying the number of compensation poles also 

specifies the number of compensation zeros). The routine then obtains the 

exact solution. At present, when it is desired to place other constraints 

on the system s'e.g., stability requirements, residues, etc.), an iterative 

or trial-and-error technique must be employed. 

i 
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The most successful technique so far along these lines has been found to be 

one in which more closed-loop pole locations are initially specified than 

are actually desired. After the solution to this is obtained, the compen- 

sation is gradually simplified until an acceptable result is obtained. In 

such cases, the only requirement on seme of the closed-loop poles is that 

they be stable. However, their exact locations must initially be specified 

in order to use the computer routine. It usually turns out that these closed- 

loop pole locations are somewhat critical in that they have a drastic effect 

on the compensation required. Sometimes it is necessary to make several 

computer runs for the same problem, varying slightly a few of the closed-loop 

pole locations from run to run. usually, additional information is available 

at the start which aids in making a wise choice for the closed-loop pole 

locations initially specified* In all cases, general trends are easily 

observed after one or two runs. Since a problem involving fifteen or twenty 

closed-loop poles only requires about eighty seconds of machine time, this 

procedure is considered to be quite practical. 

For example, look at the root-locus plot in Figure 2. Thle  is a root-locus 

plot of a typical autopilot for a ballistic missile. The locations of the 

open-loop poles and zeros and the closed-loop poles are tabulated below the 

figure. 

The  large number of poles and zeros results from all of the dynamic effects 

which must be considered for an accurate study. The missile in flight be- 

haves like a bending beam, and this gives rise to bending modes at various 

frequencies which lie within the pass band of the autopilot unless suitable 

filtering is used. The dynamics of the hydraulic actuators, the rate gyro, 

and various other effects must be included. A detailed description of these 

effects is not necessary for this example. 

Incidentally, it may be of interest to mention how the open-loop poles and 

zeros were determined. A set of differential equations was written which 

includes all of the dynamic effects of importance. These equations were 

linearized and written in Laplace-transform form. A digital computer was 
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uned to obtain the open-loop poles and zeros from the set of simultaneous 

equations. Another digital computer routine is used which makes root-locus 

plots automatically when given the opfcn-loop poles and zeros. A digital 

computer is necessary to handle the tremendous amount of computation which 

is involved in the analysis of such complex systems. Similarly, the methods 

which this paper describes are practical only when there is recourse to a 

digital computer. 

Of the open-loop poles and zeros in Figure 2, the majority were placed not 

by choice but by fate. This system must now be compensated in order to 

provide suitable closed-loop response. The specifications on the closed- 

loop response are rather broad, and take somewhat the following form: 

First of all, the system must be stable. Next, the bandwidth must be 

high enough to provide sufficiently rapid response to guidance commands 

and to maintain tight control * 1 the presence of external upsetting torques, 

such as wind gusts. Finally, the bandwidth must be low enough so that high- 

frequency noise is no problem. 

In Figure 2, the dominant closed-loop poles are the conjugate complex pair 

at s» -1+62 + J5.837 and s = -1.62 - J5.837. These are termed the rigid- 

body poles of the system. Their location is chosen to yield acceptable 

transient response. The only requirement on the rest of the closed-loop 

poles is that they be stable, Essentially, the only compensation in the 

system is the zero at s = -2.M+6, resulting from the rate gyro, and the 

pole at B s -23.8, resulting from a first-order filter. These are the 

only critical frequencies of the system which are adjustable. Additional 

compensation elements must be added to obtain greater adjustment. 

It can be seen that, with the given compensation, there is an unstable 

closed-loop pole at s ■ +3*^7 ± J73»8l. This closed-loop pole comes from 

the first bending mode. It was determined by the method which this paper 

described that the rigid-body response could be improved and the first 

bending mode could be stabilized by using a filter containing a pair of 

conjugate complex poles instead of the simple single lag filter. One 

possible solution which appears quite acceptable is shown in Figure 3. 
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By moving the rate gyro zero to s « -2.21, removing the single lag filter, 

and placing filter poles at s « -4.7 £ J19, the rigid body poles are moved 

to -3.0 t J6.0 and the first bending mode pole is moved to e  * -1.0 t  J73-0. 

The compensation was determined by the digital computer program which requires 

as an input the desired location of the closed-loop poles. The location of 

these closed-loop poles vas found to be critical. If the bending mode closed- 

loop poles were placed at s » -1.0 t  J75»0, for example, the computer revealed 

that it is impossible to obtain a compensation network using only two poles in 

the left-hand plane. 

The difference in the missile response between having the first bending mode 

closed-loop poles at s » -1.0 J J73«0 and having them at s * -1.0 £ J75.0 is 

negligible. Yet, what a drastic difference it makes in an attempt to deter- 

mine an acceptable compensation network! This example shows the need for 

stating clearly at the outset what is acceptable and what is not, without 

over-constraining the problem. 

Let us think about this example some more, to see how the transition from 

the unstable system in Figure 2 to the stable system in Figure 3 would be 

accomplished by using common present day techniques. The requirement is to 

place the rigid-body poles at s » -3.0 + j6.0, keeping these the dominant 

pair of poles in the system, and simultaneously stabilize the first bending 

mode without causing anything else to go unstable. 

First, the design engineer would have to guess the form of the compensation. 

A little trial and error would reveal that the requirements can not be met 

with only one pole, no matter where it is placed. The next logical guess 

would be to use two poles, and the engineer would noV start making guesses 

about their location. After each trial, he would make a root-locus plot to 

see how close he hid cone. With luck, the plot would reveal information 

which would aid in making the next guess about the location of the compensation 

poles. Eventually, he would converge upon a solution similar to the one shown 

in Figure 3* Row, admittedly, these guesses are very educated guesses, and 

there is a fairly systematic procedure which one can follow to insure that a 

minimum amount of time will be wasted. Still, the whole approach lacks a 

certain rigor and is not perfectly satisfying. 
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The procedure which was actually u*ed in obtaining the compensation shown in 

Figure 3 will now be described. We may assume that Figure 2 is on hand when 

we start. It is seen that increased gain and phase lead is require! at low 

frequencies in order to re-locate the rigid body poles. On the other hand, 

attenuation and phase lag is required at the first bending mode frequency in 

order to stabilize this pole. Since the only other poles which are in danger 

of going unstable are at high frequencies also, we may assume that they will 

also experience attenuation and phase lag. From examination of Figure 2,  it 

appears that a reasonable amount of phase lag will not endanger these other 

poles, and attenuation can only improve the situation. Uhus, it should be 

sufficient to specify only the desired locations of the rigid body and first 

bending node closed-loop poles, and let the other closed-loop poles take care 

of themselves. 

So far, we have made a preliminary analysis along conventional lines. It 

is at this point that the new approach is taken. The desired locations of 

the rigid body and first bending mode closed-loop poles are fed into the 

digital computer routine which was developed from the methods described. 

Since only four closed-loop pole locations are being specified, it is known 

immediately that a total of only three compensation elements is required 

(i.e., three poles, two poles, and one zero; two zeros and one pole, or 

three zeros). The gain and phase lead required at low frequencies can 

probably be obtained by relocation of the rate gyro zero, so this will be 

included as part of the compensation. This leave two elements. Now, we 

require attenuation and phase lag at higher frequencies, and we know from 

Figure 2 that a single pole does not provide enough. Thus, one zero and 

two poles appear to be the best choice. 

In using the digital computer routine, one may specify all of the closed- 

loop poles of the system, or one may specify only part of them and let the 

computer find the rest. The  type of compensation to be used must also be 

specified, so the computer is told to use two poles and one zero. The 

routine then computes the locations in the s-plane of these compensation 

elements, the Bode gain required, and the locations of all the remaining 
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unspecified closed-loop poles. In this case, the rigid body and first 

bending mode closed-loop poles were specified at the locations shown in 

Figure 3, and the computer gave the result to relocate the rate gyro 

zero where it is shown in Figure 3, and to insert two complex conjugate 

compensation poles where they are shown in Figure 3« This result is 

exact. When it was checked by using conventional root-locu« techniques 

on the compensated system, the rigid body and first bending mode closed- 

loop poles turned out to lie at exactly the specified frequencies. As 

can be seen, all of the other closed-loop poles remained stable. 

Thus, instead of requiring an iterative trial-and- error technique, only 

one computation leading to an exact result was needed. Although only 

four closed-loop poles were specified in this case, there is no limit 

to the number which could have been specified except the data handling 

capabilities of the machine. Of course, the complexity of the resulting 

compensation would increase accordingly. 

Now, the question arises, how did we know where to specify the closed- 

loop polest The question of incompatibility of specifications mentioned 

earlier enters here. Fortunately, it turns out that a closed-loop pole 

whose location is critical as far as transient response aspects of the 

system are concerned, will generally not be critical in determining the 

compensation. On the other hand, a closed-loop pole whose location is 

critical in its effect in determining system compensation is generally 

unimportant in regard to its effect on transient response. This is because 

closed-loop poles which are important to transient response (so-called 

'dominant1 poles) are usually located relatively far away from any open- 

loop poles or zeros of the system, and thus small variations in their 

position will not greatly affect the gain and phase pattern required in 

the s-plane. However, small variations in their positions will have a 

considerable effect on the time response of the system. Conversely, 

closed-loop poles which are unimportant to transient response are usually 

located nearby to open-loop poles or zeros. This means that small variations 

in the location of such closed-loop poles will have a radical effect on the 
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gain and phase pattern in the s-plane which is required to produce closed- 

loop poles in the specified locations. At the same time, these variations 

in location will have a negligible effect on the time response of the 

system. 

Thus, we could specify that the rigid body poles occur at *  « -3.0 t  J6.0 

with a reasonable amount of confidence that this would c*  e no more dif- 

ficult a compensation problem than if the poles had been specified at, say, 

s a -2.75 t  j6.25• On the other hand, as mentioned previously, it makes a 

tremendous difference as far as the resulting compensation is concerned 

exactly where we specify the first bending mode closed-loop poles. It is 

exceedingly desirable that the two compensation poles be located in the 

left half of the s-plane. It is also desirable that the closed-loop poles 

which result from the addition of these open-loop compensation poles have 

no detrimental effect on the transient response of the system. These 

constraints must be kept in mind as the procedure is arried out. All 

too often, such constraints are considered only subconsciously instead of 

being analytically formulated when one attempts to carry out a solution. 

Being aware of this situation at the outset, the closed-loop first bending 

mode pole was specified to lie in a region where the closed-loop pole would 

occur if approximately 90 phase lag and 10 db of attenuation were added at 

this frequency. Admittedly, this step involves an element of judgment, or 

trial-and-error, or even guesswork, and implies a certain anticipation of 

the compensation at the beginning of the problem. In a sense, one difficulty 

has been traded for another.  Instead of guessing at the form of the com- 

pensation and solving for the closed-loop pole locations, we nov guess at 

the closed-loop pole locations and solve for the compensation. However, the 

ability to do this proves to be a tool of major importance in the design of 

feedback control systems, as apparently until now there has been no way to 

accomplish this exactly without resorting to cancellation methods when a 

large number of poles and zeros are involved. 

1 
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EXTENSION OF PRESENT RESULTS 

A number of possibilities for future development are now suggested by our 

present knowledge. First of all, in setting up the set of simultaneous 

equations, some freedom may be obtained by not requiring Equation 9 to 

be satisfied. 

If (p + q) is less than (r - l), i* is impossible to obtain any solution, 

because there are more equations than there are unknowns. On the other 

hand, when (p + q) is greater than (r - l), there are more unknowns than 

equations, and an infinite number of solutions is obtained. In this 

case, there is a whole locus of points which are acceptable locations for 

the compensation poles and zeros. 

The possibilities of this last ca6e seem most intriguing. Other external 

equations which express additional constraints may now be added, and a 

solution can still be obtained. Essentially, this says that if you use 

enough compensation, you can do almost anything. For instance, the 

residues in some of the closed-loop poles could be specified, or the 

position, velocity, and accelerations could be specified. 

Suppose that we have specified that there be a closed-loop pole at 

s = -s , and we also want to require that the residue in this pole be 

R . The expjression for the residue in this pole is (s + s ) *H?/?\?/,| 
o * x    o' D'lsjxfs) 

8 « -S 
O 

In any serv system with an open-loop pole at the origin, the velocity con- 

stant K is obtained from the following expression^: 

Kv 

id  [,  a(s)m(s) 

Ve may set the expressions for the residues in some of the poles equal to 

the desired values, or set the expression for the velocity constant equal 

to the desired value, and by including these relations with our set of 

simultaneous equations above, additional constraints are imposed by means 
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of which ve can force the system to do what we want it to do. Un- 

fortunately, as can be seen, many of these additional constraint relations 

turn out to be non-linear, so that solution of the resulting set of sim- 

ultaneous equations becomes more difficult. 

It may be noticed from Equations 10 and 11 that the number of compensation 

poles and zeros which must be used in order to specify the location of 

every closed-loop pole of the system is uncomfortably large. Many times, 

the exact locations of only a few of the closed-loop poles of a system are 

of critical importance. The requirements on the rest of the closed-loop 

poles will be only that they be located in some general region, or it may 

even be that the only requirement on some of the closed-loop poles is that 

they be stable. In such cases, it seems that it should be possible to 

reduce considerably the complexity of the compensation network required 

from what is indicated by Equations 10 and 11. 

The problem here is one of deciding at the outset exactly what is desired, 

and then writing equations which will constrain the system to do what is 

wanted without over-constraining it. This is not always easy to do; and 

work is presently underway on finding suitable techniques for accomplishing 

this. One approach to the problem which appears premising could be based 

on the following principles. Suppose that the exact locations of a few of 

the closed-loop poles are to be specified, and the only requirement on the 

rest of the closed-loop poles is that they be stable. It will also be 

required that the poles of the compensation all be stable. The unspecified 

closed-loop poles are the factors of the polynomial x(s) = s + s, s " + . 

. . . + s s + x . Split this polynomial into even and odd parts. For the 

sake of illustration, let us assume that d is an even number. Then, the 

even part of x(s) * x  n(s; = s + x ?s "+....+ x^s ♦ x . The odd even    « -   Q— C   « — c, o 
part of x(s) » x0<i(i(

s) * xd-ls " + Xd-^S   ♦••••+ xos ♦ x-,8- xt is 

well known that if all of the factors of x(s) are to have negative real parts, 

then the factors of x   (s) and x ,,(s) must lie on the Jo> axis and must r       even      odd w   , ^ 
alternate.  An equivalent statement is that if the ratio *odd^ is expanded 

evenv ' 
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in a continued fraction expansion, #11 of the terms of the continued 
L 

fraction must have the same sign.  These facts may provide the basis 

for writing constraint equations which could be included among the other 

simultaneous equations in setting up the problem. One interesting point 

is the following: If the ratio xodd^s' is treated as an open-loop transfer 
x   (s) even* ' 

function, and it is assumed that a unity-gain feedback loop is closed around 

this function, the restating closed-loop poles will be exactly the fiactors 

of x(s). To see this, write 

*odd<"> 

1 + 

evenv°' , ?** «   odd 
x ..(s) x   (s) + x ,,(s) x(e) oddx ' even* '   odd* ' * ' 
x  Ts7 even* ' 

All of these same statements, or course, also apply to b(s), or to any 

other polynomial whose factors we wish to lie in the left half of the s- 

plane. These ideas are presently being investigated, and it is expected 

that the fully developed techniques will be presented in a later paper. 

Another possibility which arises is that of changing the configuration 

shown in Figure 1. For instance, the compensation may be placed in the 

feedback path instead of the forward path. When this is done, the re- 

sulting closed-loop poles of the system will be the same, but the closed- 

loop zeros will be different. With the compensation in the feedback path, 

the plant zeros will still be closed-loop zeros, but now the compensation 

zeros /ill not. Instead, the closed-loop zeros occur at the location of 

the compensation poles. By placing part of the compensation in the 

forward path and part of it in the feedback path, one may obtain a variety 

of closed-loop transfer functions, all having the same poles. 

Still another possibility regarding modifying the configuration involves 

the placement of smaller feedback loops inside of the over-all feedback 

loop. In this case, the compensation poles of the over-all system are 

identified with the closed-loop poles of one of the inner loops. The 
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present synthesis procedure may now be used to determine the components 

required inside the inner loop so that the closed-loop poles of the 

inner loop occur at the locations required for compensation poles of 

the over-all system. 

Thus, the configuration assumed in Figure 1 is not unduly restrictive 

after all, because almost any configuration may be obtained by suc- 

cessive applications of the present method. 

CONCLUSIONS 

It has been shown how the locations of the closed-loop poles of a 

feedback control system may be specified and the necessary compen- 

sation may be found. This compensation does not require the U6e of 

cancellation or nullification of open-loop poles and zeros. The method 

is exact and involves nothing more difficult than the solution of a 

set of simultaneous equations. The next problem to be faced has been 

made quite clear by the present discussion. This next problem is how 

to specify the locations of the closed-loop poles so that the system 

meets the requirements without over-constraining anything. A method of 

getting from general specifications to mathematical constraints is needed, 

'The results achieved so far represent a step forward in the development 

of a new general approach to feedback system synthesis. The philosophy 

is to write down everything one knows about the system and the require- 

ments on the system in the form of mathematical equations of constraint. 

These equations must be carefully formulated in order to insure that they 

will require the system to dc what you want it tc do without placing any 

unnecessary or impossible constraints on the system. This procedure 

yields a set of simultaneous equations concerning the poles and zeros 
N(s) 

of n) (. Some of these poles and zeros may be known at the outset and 
D\ S ) 

some of them will not. Then variables are1 added to the system in the 

form cf poles and zeros of the compensation network until the number of 

variables equals the number of equations. When the equations are solved 

simultaneously, a solution is obtained which provides the poles and zeros 

of the resulting closed-loop system and the poles and zeros of the com- 

pensation. 



TR-59-0Q00-OO781 
Page 21 

Let us see what might be done about translating general system 

requirements into mathematical simultaneous equations. At present, 

very often the job the system is to do is stated by specifying the 

transfer function of the system in the form of a Bode plot of the 

frequency response, or a pole-zero plot, or else the time response 

to some transient input. Such a specification is almost always far 

too restrictive. It forces the system to do more than you really 

want. However, as a point of departure, one might assume that 

W(s) is the ideal desired transfer function of the closed-loop 
N(s) 

system from its input to its output. ->* I  is the actual closed- 
U\3 J 

loop transfer function of the system. 

One way of stating the requirements on the time response would be 

to specify an envelope rather than a specific function of time. 

Then, as long as the inverse Laplace transform of p) I  is a 

function which falls inside the envelope, the requirements are met. 

Or, by Fourier transform methods, the envelope in the time domain 

could be converted into envelopes of magnitude and phase measured 

along the jco axis. Then, so long as W ( falls inside these en- 

velopes, the requirements will be met. There are also various means 

of approximating a given function with a polynomial, or a ratio of 

two polynomials, or a ratio of two polynomials subject to certain 

constraints. The goodness of fit may be prescribed subject to various 

weighting functions, mean-square error criteria, etc. 

Of course, this part of the procedure still needs further study and 

at present it is necessary to work from both ends and try to patch 

things up in the middle. However, so much can be said about the form 
N(s) 

of =?» ( that this process is more systematic than the usual trial-and- J)\B) N(s) 
error procedure. The point is that the exact expression for p) < is 

not assumed at the outset. Some adjustability is left so that com- 

patibility with the fixed components in the syBtem can be assured. 

Even though this compatibility requirement may place strong constraints 
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l(s) 
upon Jf i,  there are approximation techniques available which allow 

■ *-'^   fite) 
one to make n> < approach the ideal desired W(s) quite closely. For 

example, even if N(s) were completely specified by the fixed components 

of the system, one could still obtain an acceptable D(s) by such 

techniques so that W(s) is well approximated. 

Various methods along these lines have been developed in connection 

with the synthesis of passive networks, which might be applicable here. 

Any approach in which the problem is defined by a set of simultaneous 

equations and, in which there is room for additional equations of 

external constraint, should be quite applicable to the present problem. 
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