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FOREWORD

This report is essentially a formal compilation of the results of a number of activi-
ties related to the propagation of light by scattering in the lower atmosphere. Some of
the resuits have appeared in bits and pieces elsewhere, and for completeness it was felt
desirable to present a somewhat more detailed exposition of the efforts. Although the
general subject is that of forward scattered light. it is difficult to make an integrated
entity of the separate topics, so that there may be an unavoidable air of discontinmity in
the subject matter.

ABSTRACT

This report deals in part with the exper:mental results from seven measurements
on the forward scattering of light by the atmospheric aerosol. The results of these ven-
tures are the following:

1. Light scattered forward from a 50,000-w omnidirectional light source, when
viewed from a point 45 km away below the horizon, was distributed on the horizon in a
field 5 degrees high and 10 degrees wide. A small area, 25 min by 25 min on the horizon
in the line-of -sight direction, contained 15 percent of the total horizon intensity.

2. Light scattered forward from a 10,000-w collimated carbon-arc light source
which had a 1/2-degree beamwidth, was directed tangentially, and was observed from a
point 45 km away below the horizon was distrilauted on the horizon in a field 5 degrees by
10 degrees. A small area 20 min wide and 17-1/2 min high on the borizon in the line-of-
sight direction contained 50 percent of the total horizon intensity.

3. Airborne observations of forward scattered light from a searchiight beam 1/2
degree wicde yielded on on-axis irradiance, at a range of 35 km from a horizontally
pointed source, 550 times the irradiance at a point 115 meters above the geometrical
¢dge of the beam.

4. Ground-based comparison of direct-line-of-sight irradiance and small-angle
forward-scattered-light irradiance showed that in the wavelength interval 7500A to 9500A
the direct light was 200 times the scattered light at a distance of 45 km when the meteor-
ological range was 40 km.

5. Signals as a function of distance have been measured with the help of 2 mobile
omnidirectional light source. The signal strength decreases inversely with the square of
range and with an exponential attenuation out to-the horizon, at which point there is a dis-
continuity which is a function of the meteorological conditions and 1s greatest when the
meteorological range is high. Beyond the horizon the signal decay is influenced mostly
by attenuation loss when the meteorological range is low (13 km) and primarily by inverse-
square loss when the meteorological range is high ( >60 km).

6. Ruby laser light was transmitted at night over the horizon to a distance of 45 km
when both receiver and projector were 6 ft above water and were pointed at one another
with 0-degree elevation. The laser output was 0.10 joule and the signal-to-noise ratio in
the system was 45. It is estimated that the surface transmission of the 45-km path at
6043A was about 10-%. Signals from a 1 to 2 joule laser have also been transmitted over

il




NAVAL RESEARCH LABORATORY

this path in daytime with a signal-to-noise ratio of 3 when the meteorclogical range was
20 km.

7. An over-ithe-horizon link was established on a continuous basis over a range of
45 km. Observation was for a period of 102 hours, during which the signal was received
62 percent of the time curing the night and 57 percent of the time during the day. Two
accidental interruptions of the measurements resulted in lost data during periods when
the signal would surely have been received.

In addition, considerations of the problem of detecting forward scattered light in the
daytime show that estimated results agree wilh the available experimental data. Consid-
erations of the feasibility of using over-the-horizon propagation as a communications
link ieads to the estimation that comnrunication between fixed points at Morse code rates
is currently feasible over ranges of the order of 50 km in the daytime for meteorological
raages of 16 km or more, using a marrow-beam projector as source. Ship-to-ship com-
munication would require sources of very high power or precise stabilization and pointing
of existing high-intensity searchlight sources.

PROBLEM STATUS

This is an interim report on one phase of the problem; work on this and other phases
is contiming,

AUTHORIZATION
NRL Proble.1 A02-17

Project RR 004-02-42-5152

Manuscript submitted July 20, 1964.
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EXPERIMENTAL OBSERVATION OF FORWARD SCATTERING
OF LIGHT IN THE LOWER ATMOSPHERE

INTRODUCTION

Light is scattered in the lower atmosphere primarily by suspended puriiculate mat-
ter which is generally present in varying councentration up to (housands of particles per -
ml with past : le diameters ranging from 10-2 to 10? .. This aerosol is composed of
industrial ¢mokes, combustion exhaust products, various soil dusts, and ses salt and
other hiygroscopic particles as well as haze and fog particles. The latter generally con
sist of a small nucleus of particulaie matter sorrounded by a liquid water shell of vary-
ing thickness.

An important characteristic of atmospheric scattering is the asymmetry of the polar
scattering fur.ction. This characteristic is shown in Fig. 1, which presents th: symme-
trical curve for molecular or Rayleigh scattering along with measured asymmet=i~al
scattering functions for several real atmospheres and with two asymmetrical curves
computed for two wavelengths (1-4). The computations were based on an asrosol model
which assumed spherical particies of index of refraction 1.5 and a size distribution

dn - |"3 (l)
d leg r

where dn is the number of particles in the particle size range d log r, with r being the
particle radius. Although scattering by the aerosol is a complex phenomenon which is a
function of particle size, the wavelength of light, and the refractive index of the scatter-
ing material, the basic theory is well understood and scattering calculations are straight-
forward though tedius (5).

- The scattering functions in Fig. 1 are seen {0 be greatest in the forward direction,
within a few degrees of the direction of the incident beam. This strong forward lobe is
one of the basic phenomena of importance in the transmission of scattered light signals
over the horizon. However the complete angular scattering function for the aerosol is of
importance in another application of light scattering in which atmospheric transmission
is evaluated by measuring the backscattering from the aerosol (6). For the latter evalu-
atiom the bhasic requirement is that the signal scattered in the backward direction be a
measure of the total scattering in all directions. It appears that this relationship holds
frequently enough to be useful.

In atmospheric transmission measurements which involve a light sourcé and a re-
ceiver, the flux collected by the receiving equipment is a function .ot only of the atmos-
pheric loases but also of the geometry of the system, in particular, the collimation of the
source and the field of view of the receiver. In all aystems the measured flux is made
up of both unscattered and scattered light, the relative magnitude of the scattered light
being a function of the field of view of the receiver. The earliest experimental work on
this problem was performed by Middleton (7) in dense fog and by Stewurt and Curcio (8)
in relatively clear air. In the clear air case it was found that the experimental data for
an uncollimated source could be approximated by the relationship

T(O) = T + 0.5 (1 - T) (1 - 9y (2
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Fig. 1 - Measured visible wavelength
scattering functions for several real
atmospheres (curves 2, 4, and 8) and
calculated scattering functions for a par-
ticular aeroscl mndel at wavelengths
0.55 micron (curve 1) and 2.2 microns
{curve 3)

where T(8) is the transmission as indicated by a receiver with a field of view & radians
in diameter and T i8 the beam transmission measured by a receiver having an infinitely
narrow field of view.

From these experimental results, it became apparent that any measurements of
transmission are of value only if the field of view of the detector system is known - a
conclusion which has significant implications for many problems including the thermal
damage caused by nuclear weapons (9). Since, in many situations, the scattered light
component is a relatively large fraction of the total flux transmitted through the atmos-
phere, the use of this scatterad light for over-the-horizon transmission of information
has also become an interesting possibility (10). A qualitative presentation of the behav-
ior of light scattered forward from a collimated source with a 1/2-degree beamwidth is
shown in Figs. 2 and 3 as observed on two nights of 50 km meteorolcgical range irom
sites below the horizon.

In Fig. 3 the beam discontinmity seen in some of the pictures made from a range of
85 krn eccurs at an elevation of 5000 ft, which coincides with the height of the inversion
which existed when these pictures were made. Of particular interest in the problem of

) transmitting light over the horizon is the relatively small and very bright illuminated

area seen in Figs. 2 and 3 for zero-degree elevation of the projector beam. This is
characteristic of the appearance of the horizen luminance when the source is coilimated
with small divergence. An uncollimated source also yields a spot but the isophot gradi-
ent away from the beam axis or spot center is less steep in this case.



NAVAL RUSEARCH LABORATORY 3

Blev 8 - 4 euc llan-Gnc Bev € - 9 ouc

Lievs® - Smim Kov 12° - ’* Bev 20* .. ."!,LM,_,-

Fig. 2 - Searchlight beamn observed from a point below thehorizon and 45 km away.
Beam elevation angles and photographic exposure times are given. An aircraft
trail passes through the lower right photograph.

in general the problem of transmitting information over the horizon by forward scat-
tered light is one of detecting the available gignal which is distributed in some radiance
pattern on the horizon in the presence of some background radiance (Fig. 4). ldeally one
would like to [ind it feasible to detect significant light from an omnidirectionkl source in
the presence of a daylight sky background on days when the meteorological range is per-
haps 10 mi or less. There are some situations, however, where the omnidirectiomal re-
quirement might be dropped and point-to-point directional signaling would be useful. In
order to evaluate surh possibilities, it is necessary to acquire some knowledge concern-
ing the long-distance attenuation of light, the scattering properties of the atmosphere, the
distribution of light on the horizon, the detection of small ac signals in a high ambient
quasi-dc background, the nature of the background, etc. The paucity of available infor-
mation on any of these subjects led us to institute some general atmospheric optics
measuring programs and to conduct some field measurements designed to elucidate some
of the specific problems associated with over-the-horizon signaling. This report deals
with some of the specific concerns.
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Fig. 4 - Carbon-arc searchhight at 45 km against moonlit sky. The small bright
spots are extraneous horizon lights viewed directly,

FORWARD SCATTERED LIGHT FROM A DIRECTIONAL
LIGHT SOURCE IN DAYTIME

In order to evaluate in a simple manner the possibility of daytime operation, we ar-
ranged a measuremeat in which the horizor radiance {rom a searchlight below the hori-
zon was compared to the horizon illuminated by a [ull :noon. Figure 4 is a photograph
which shows water-~sky horizon radiance pattern produced by a 60-~in. carbon arc search-
Light below the horizon and pointed horizontally toward the camera which was 45 km
away: the camera and searchlight were each about 1.5 m above sea level. In this in-
stance the searchlight was pointed several minutes of arc to the left of the direction to
the camera. The photograph was made when the full moon was at 30 degrees elevation
to the east of the optical path, and the meteorological range® was estimated to be about
20 to 25 km. The photograph was made with a 4 x 5 Grafiex using Royal X Pan film at
/2.5 with an exposure lime of 5 sec. The horizon area which appears to be as bright as
the nearby lights is caused by searchlight {lux which was scattered through smail angles
of about 10 arc-minutes. The direct line of sight passed about 140 m cver the camera.

A sensitometric evaluztion of the film gave a relative intensity pattern {Fig. 5) of
the horizon radiance caused by the carbon arc. The area studied subtended « field about
9 degrees in azimuth on the horizon and about 5 degrees in evaluation. The number in an
individual block represents the average relative intensity value of the irradiance of the
particular elemental area of the horizon. The horizon radiance pattern is characterized
by an intensely bright area about 20 min wide and 5 min high which contains 25 percent
of all the radiation scattered from the beam toward the receiver. Fifty percent of the
scattered flux is in a field 20 min wide and 17.5 min high and 70 percent of the total flux
is in a {ield 60 min wide and 35 min high.

The photograph (Fig. 4) was made in full moonlight; hence it was possible to make a
direct comparison which showed the "hot spot,” 5 min by 20 min on the horizon, to be
about 200 {imes brighter than the moonlit sky at the horizon. If one assumes the solar
horizon illuinination to be 5 x 10 ° times the lunar horizon illumination, the bright spot
may be estimated as 2.5 x 10" as bright as the daylight horizon in the visible spectral

*Met ‘orolegical range is defined as the Jistance for which the transmigsion measured by
a recelver with a narrow field of view 13 2 percent.
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region. If the measurements were {0 be made at 1.0., a substantial improvement in spot
radiance to background radiance would be expected because of reduced sky background
(down 60 percent) and an improved scattered-signal beam transmission factor (up 20
times; see Fig. 12 in Ref. 10). The carbon arc has equal spectral radiance at 1.0, and
0.554; hence the bright spot is expected to be about 2 x 10-2 as bright as the daylight
horizon background at 1.0.. A similar analysis shows that the bright spot will be about
7 x 10-? as bright at the daylight horizon sky at 1.6, and at 2.2,.

The above calculations suggested that it was marginally feasible to detect scattered
light in the daytime, and an attempt was made to detect the scattered light from the car-
bon arc below the horizon under daytime conditions at a range of 45 km. The detector
system consisted of two photomultipliers mounted side by side at the focus of an {/5 mir-
ror, 60 c¢m in diameter. The photomultipliers were filtered to respond to wavelengths
around 1. and were stopped down to have equal fields of view 5 min high and 20 min wide.
The two fields had an angular separation of 2 degrees. The voltage outputs from the two
detectors were connected in opposition as a differential system with zero output for -
identical flux inputs. Previous laboratory work with this system had shown that under
certain stable atmospheric conditions a dc signal 10-? as intense as a daylight signal at
1u could be detected. However, in the actual daytime field test with tle carbon arc 45
km away and below the horizon the random diiferential fluctuation in the two background
signals were of the order of 10-? of the background, and the weaker scattered light sig-
nal from the carbon arc was not detected, It appears that fluctuations in the background
signal from adjacent fields in the horizon sky even on apparently clear and cloudless
days make this dc system unsuitable for detecting the weak scattered light signals. Some
other system which used space chopping techniques or a modulated light source would be
required for the daytime detection of the signal. However, a subsequent attempt to detect
a 1000-w, 120-cps modulated xenon lamp in a 36-in. projector was unsuccessful in day-
time because of overloading of the photomultiplier detector by the daytime horizon sky
background.

FORWARD SCATTERED LIGHT FROM AN
OMNIDIRECTIONAL LIGHT SOURCE

In some of the possible situations in which one can concelve of using scattered light
for communication It is of considerable importance to know the horizon illumination re-
sulting from omnidirectional as well as directional light sources. In the preceding sec-
tion the scattered light pattern, on the horizon, from a narrow-beam, high-intensity,
directional light source was examined and it was found to consist of a amall, 3 min by
20 min, relatively bright area on the horigon. The radiance of this spot was about 10
times more intense than that of the surrounding field. A similar measurement was made
with a hemispherical omnidirectional (''2n"') light source.

The 2n light source consisted of five 10,000-w tungsten lamps arranged in the array
shown in Fig. 6. This array was mounted on & roof about 25 ft above ground and was
clear of all near obstructions. The 50-ft trees in a wooded area 200 ft {from the light
array may have caused some obatruction in the easterly direction, but this was not ap-
parent in the horizon brightness pattern. Figure 7 shows the water-sky horizon radiance
pattern caused by the omnidirectional light source 4% km away below the horizon. The
photograph was made on a clear moonless night when the meteorological range was esti-
mated to be 20 to 25 km. It was made with a 4 x 53 Graflex on Royal X Pan fil.. at {/2.5,
with an exposure time of 10 min.

A sensitometric evaluation of the {{lm gave the relative horizon radiance from the
omnidirectional light source (Fig. 8) and shows that the radiation was contained in a field
of about 9 degrees azimuthal width on the horizon. The pattern was evaluated in eleva-
tion up to 4 degrees 3 min, at which point it could not be detected above the night sky
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Fag. ¢~ Tungsten light source of 50,000 w used for ommdirectional
Light transmission experiunments

background. The number in each rectangular area represents an average relative radi-
ance for that particular sector of the horizon sky. The pattern is characterized by a
bright area 25 min wide and 25 min high which contributes about 14 percent of the total
intensity and is located on the horizon symmetrically about the sighting direction from
receiver to the omnidirectional light source. The most intense region in this small
field is an area 10 min high und 25 min wide which contributes about 8 percent of the
total intensity.

The horizon radiance patterns shown in Figs. 4 and 5 can be used in the estimation
of the effect of receiver fieid of view on the signal-to-noise ratio (8/N) in a photoelectric
system which is used to detect the scattered light signal against a uniform background
horizon radiance. The limiting noise in the system is assumed (o be shot noise caused
by the background flux. The relative 8/N has been computed for various [ields of view
for the directional and omnidirectional sources. The results shown in Table } indicate a
maximum 8,/N when the angular field of view is 20 min wide and 10 min high for the
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Fig. 7 - 50,000-w tungsten omnidirectional source at 45 km (center). The heavy
exposure on left is an overexposure of Cove Point Lighthouse located 5 miles away.

Table 1
Relative Signal-To-Noise Ratio as a Function of Field of View*
Field of View Relative Field of View Relative
(Width x Height) S/N (Width x Height) S/N
e
Directional Source
20' x 5' 2.26 20' x 1°27.%' 1.28
20' x 10' 2.85' 1° x 17.5* 1.73
20' x 17.5°' 2.50 1° x 38 1.42
20' x 35°' 1.81 1° x 52.8° 1.23
20" x 52.5°' 1.82 1°x1°10' 1.10
20'x 1°10' 1.42 I 1° x 1°21.8' 1.00¢
Omunidirectional Source
24'x 5' 0.69 76t x §' 0.54
24'x 10" 0.99 76' x 10' 0.83
24'x 18 1.11 76t x 18! 0.99
24' x 20! 1.13t 78' x 20' 1.06
24' x 35! 1.11 76' x 28' 1.09
24' x 30' 1.10 76' x 30' 1.10
24' x 35 1.07 76' x 35' 1.11
24' x 40' 1.08 76' x 40 1.10
24' x 48 1.03 76' x 458' 1.10
24' x 80' 1.01 76' x 50' 1.09
24' x 58 0.99 76" x 58 1.09
24'x 1° 0.87 7¢'x1° 1.07
24'x1°10" 0.93 76'x 1°10° 1.08
24'x 1°20" 0.89 76'x 1°20' 1.02
24' x 1°30' 0.87 76" % 1°30' 1.00%

*The background is assumed constant over the field. The limiting
noise is considered shot noise in the background current.

t Maximum value,

$ Values normalired to unity for the largest field,

g m o b
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Fig. B - Relative inteneity pattern of horizson radiance caused by a 50,000-w omni -
directional tungsten light source below the horizon and 45 kin away

directional light and 24 min wide and 20 min high for the omnidirectional source, where
the horizon radiance is more diffuse. However even when a viewing field an large as

1 degree by 1 degree is used, 8/N is degraded (in elther the directional or omnidirec-
tional case) by only a factor of 2, so that the limiting system factor will usually be other
parameters such aa detector overloading and fatigue.

In Fig. 9 the relative vertical intengity through the mast Intense horizon area is
compared for the omnidirectional source and the directional source. The two curves are
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Fig. 9 -~ Vertical cross section through
the region of maximum horizon radiance
for directional and omnidirectional light
sources below the horizon and 45 km away

normalized fox the region 0 min to 10 min elevation. Actually the peak intensity of the
directional ligit ia about 100 times that from the 3= source. If one considers the total
scattered light, the integrated scattered light from the collimated source is about 30
times that {rom the 2n source. Or on a power input basis, since 10,000 w in the colli-
mated beam gives 30 times more scattered light than 25,000 w (assuming 50 percent loss
ta ground absorption; {rom the #n source, 1 w in the collimated beam gives about 75
times more scatleres ligh! on the horizon than 1 w in a 2» tungsten source. Comparison
of the curves in Fig. B shows that the relative intenasity is greatest near the horizon for
both sources and that the ~adiance from the omnidirectional source decays more slowly
as a function of altitude. {ihe half-maximum intensity point was 3 min above the horizon
for the searchlight beam and 15 min above the horizon for the 2= source.) As seen in

Figs. 5 and B the extent of th scattered light area on the horizon is about the same for
both sources of illuminaiion,

AIRBORNE OBSERVATIONS OF LIGHT S8CATTERED
FORWARD FROM A SEARCHLIGHT BEAM

On January 20, 1062, an observational flight was made with the purpose of obtaining
pictures of a searchlight beam at several distances from the projector. The light source
was a 60-in. carbon-arc searchlight with a beam spread of 1 degree. It was situated on
the west side of the Chesapeake Bay at a point 40 m above mean high tide and pointed
with a 1/2-degree angle in elevation toward the eastern shore on a bearing of 45 degrees.
On the night of the experiment the atmosphere was clear and cloudless with a meteoro-
logical range of about 30 km, as monitored across the Bay by a transmissometer (11).

Aerial photographs were made at 38 km (800 m altitude) and at 112 km (2100 m aiti-
tude). From a knowledge of the geometry of the optical path and of atmospheric refrac-
tion and earth curvature, one can compute that the beam axis was 425 m above the ground
at 35 km and 1878 m above the ground at 112 km. The lower and upper edges of the beam
were 120 and 785 m above the ground at 35 km and were 925 and 2000 m above the ground
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at 112 km. Since the photograph at 35 km was made 2t 0.9 km altitude, the aircraft was
about 115 m above the geometrical edge of the beam. A photograph of the beam taken on
the ground at the same distance was from a point 120 m below the beam.

Figure 10 shows photographs made from the aircraft and the ground. Figure 13(a)
is of the searchlight as photographed from 900 m altitude, 115 m above the upper edge of
the beam, at a distance of 35 km from the projector with an exposure of 1/2 sec on
35-mm lsopan Record at {/2.5. In Fig. 10(c), the beam is shown as it appears on the
horizon from the ground 120 m below the beam and 35 km from the projector with an
exposure of 1 sec on 4 by 5 Royal X Pan at 1/4.5. Figure 10(b) is of the searchlight as
photographed nearly on axis at 112 km from the projector using an exposure of 1.0 sec
on 35-mm Isopan Record at {/2.5. Tke blurred appearance of Figs. 10(a) and 10(b) is
caused by a combination of aureole around the source, atmospheric seeing fluctuations,
and aircraft vibration.

{a) Searchlight at 35 {b) Searchlight at 112 km; {c) Searchlight at 35
km; 0.5-sec exposure l-sec exposure at 2.1 km km; l-sec exposure
at 0.9 km at ground level

Fig. 10 - Photographs of a searchlight beam made from an aircraft
and from the ground

The original negatives of Fig. 10 have been microphotometered and have been com-
pared to similar calibrated film. This analysis shows that the integrated light collected
in 1/2 sec at 900 m, Fig. 10(a), 35 km from the source slightly out of the beam, is about
equal to the integrated light collected in 1 sec at 2.1 xm altitude, Fig. 10(b), 112 km from
the source nearly on axis, which indicates that irradiance at a range of 35 km at a point
out of the beam is twice that at a range of 112 km at a point in the beam nearly on axis.

Further analysis shows the integrated light collected in 1 sec on the ground at 35 km
is about 80 percent of that collected in 1/2 sec at 900 m altitude slightly out of the beam.
From this it can be estimated that the irradiance on the ground, below the beam, was ap-
proximately 40 percent of the irradiance at a corresponding point above the beam.

A measurement was intended on the beam axis at the 35-km distance but was unsuc-
censful because of photographic difficulties. Accordingly, the axial beam irradiance can
only be estimated {rom the measurement made at 112 km and an estimation of the path
attenuation. It may be instructive to sketch the attenuation computation, and this is what
is done in the following paragrapn.
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In the computation it is assumed that the vertical density gradient of particulate
scatterers is proportional to <% 77t where h is the altitude in km. The molecular
vertical density gradient used was  9-138h In previous work (1G) equations have been
developed to calculate attenuation coefficients along slant paths for small elevation an-
gles. The attenuation coefficient for the total slant path length for scattering by particu-
late materials is

o DO
= 138 o, e(690)7 | 138 e’? dy (3)

69b

‘e

where
o, = attenuation coefficient at the projector in km-!
b = 0.77s8ins ( 6= path elevation angle)
D = distance of the total siant path in km

y aD + b/2a (a = 1/138).

For the tangential path, where b - 0:

D
138 2
oy 7 138 COJ’ e’ Y dy. @
0

The attenuation coefficient for atmospheric molecular scattering along a small-angle
slant path is

D
Tas t113b

o - 32 ¥, e“”b)zf.ns o-y? dy {5)
113b

where M, is the atienuation coefficient (km"') by molecular scattering at the projector.
For the tangential path, where b - 0:

D
o © 326 M, I‘"“ ev dy. ©
0

The total attenuation coefficient (o) along the slant path is the sum of Eqc. (3) and (5).
From the estimated 30-km surface meteorological range, attenuation coefficients and
transmission values have been calculated for the visible region at 0.55, for paths be-
tween the projector and points in and out of the beam as shown in Table 2.

From the experimental data and the calculations listed on Table 2 the irradiance on
the beam axis at 35 km is camputed to have been about 225 times the irradiance at a
point 115 m above the geometric edge of the beam and about 550 times the irradiance on
. the ground.

GROUND-BASED COMPARISON OF DIRECT-LINE-OF-SIGHT IRRADIANCE
AND SMALL-ANGLE FORWARD SCATTERED LIGHT

Recently a condition of abaormal atmospheric refraction enabled us to make ground-
based observations of irradiarce from a 45-km-distant light source which was directly
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Table 2
Effective Attenuation Coefficient and Transmission
for Airborne Measurements

[ Y| Distance from Attenuation ! Path
Location Pm&;c)tor Co;:xt;iﬁi‘c;m : Transmission
Above beam 35 | 3.8 2.1x10°?
On beam axis 35 4.34 13x10°2
On ground* 35 5.12 6.0x 103
On beam axis 112 8.10 3o0x10*

*This is computed for the slant paths from the center of the common
scattering volume to the projector and to the ground-based camera.

visible above the horizon for a while and later was jusi below the horizon. The changing
abnormal atmospheric refraction caused the light to appear about 5 min of arc above the
nnrmal horizon at sunset and then gradually to go below the horizon about 3 hr later. The
apparent elevation o1 a hight source which is below the normal horizon is called looming
and cccurs when a strong temperature inversion exists at the water surface, i.e., when
the air temperature increases rapidly with height near the water surface so that the den-
sity gradient is more negative than normal. A calculation shows that in order for the
source to appear 5 min above the horizon the light path would have to have a radius of
about 1/4 the earth radius ora curvature 4 times that of the earth's surface.

Figure 11 illustrates the experimental conditions under which the observations were
made. The light source was a 1000-w, 120-cps xenon lamp in a 36-in. projector which
gave a 1/2-degree beam ad which was pointed horizontally down the Chesapeake Bay
toward the receiver 45 km away. Irradiance measurements were made with an RCA 925
phototube, spectrally iiltered to have a 2000A optical passband peaked at 8500A. The
photocell preamplifie.- had an elecironic passband of 500 kc. The detector was placed at
the focus of a 60-cm diameter, 153-cm-focal-length collector mirror which produced a
receiver field of view 35 min of arc in width and 45 min in height. It was estimated that
a meteorological rar.;: of 40 km existed during the observations. When the projector
appeared above the horiz.n the irradiance at the receiver was 8.2 x 10°* w/cm? in the
spectral band of the receive:s. The scatternd light irradiance from the projector just
below the horizon was 4.1 x 10 * ..w/cm 2, giving an irradiance ratio of 200 for the two
conditions. This ratio is somewh.: lower than the value of 550 for visible light derived
from airborne and ground photogra;é . tzken at a distance of 35 km and meteorological
range of 35 km described in the previias section and may well have been influenced by
some residual abnormal refraction wh.ch persisted after the source had sunk below the
horizon.

TRANSMISSION OF RUBY LASER LIGHT OVER THE HORIZON

The invention of the ruby laser has aroused much speculation on the use of this
powerful light source as a possible means of communication. High peak power output in
the range of megawatts and extremely narrow spectral bandwidth would appear to make
this source extremely promising for this application.
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Fig. 11 - Dlustration of abnermal atmospheric refraction
where S, which is normally well below the horizon, ap-
peared at S', about 5 min above the normal horizon

Ome of the first possible applications investigaled, and reported in NRL Report 5941
(12), was the transmission of ruby laser emission through water. The experiment with
ruby light was made at the David Taylor Model Basin in filtered Potomac River water,
and this experiment confirmed a previous conclusion that the ruby laser light has ex-
tremely limited application for direct underwater communication because of severe at-
tenuation.

When ruby light is considered in the air medium, however, the possibilities are
.ach more favorable than they are in water because of the lower air attenuation factor.
« an “ordinary" aay with an "average" meteorological range of 25 km, the scattering
attenuation oefficient (which depends on meteorological range) for air at 6943A is
1.3x10°% cm"! or about 2.5 x 10 "* that of clear water at the same wavelength.

Another factor to be considered in the transmission of ruby laser light is the effect
of atmospheric absorption (13). Ag seen in Fig. 12 the spectral region of ruby laser
emission is rich in atmospher : water va.por absorption lines, and any one of the lines
may of course decrease the effective atmosnheric transmission if it coincides with the
wavelength of the ruby emission. Since the . by laser emission (14) has been shown to
be a function of temperature, it is apparent that if ruby laser light is to be transmitted
through the atmosphere, some temperature control nwust be instituted to insure that the
laser emission is at a wavelength free of water vapor absorption. From Figs. 12 and 13
it is clear that the ruby laser emission at room temperature (20°C) is at 6943A and is
clear of water vapor absorption. However the emisasion at liquid nitrogen temperature
(-195.8°C) is at 6934A and would be partially absorbed by the broad water vapor absorp-
tion line at 6933.8A. In the real situation where the ruby is cooled by liquid nitrogen, but
not in intimate contact with the liquid nitrogen, the effective crystal temperature is a few
degrees above that of liguid nitrogen and the ruby emiasion will occur at a region clear
of the water vapor absorption line at 6933.8A.

The above remarks apply of course to any mode of propagation of ruby laser light
through the atmosphere and are also pertinent to our present concern with forward scat-
ter propagation. We were quite interested in using a laser as a narrow-beam source for
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Fig. |13 - Wavelength of ruby laser light emission
as a function of temperature (Ref. 14)

over-the-horizon propagatior, and arranged a nighttine experiment in which we suc-
ceeded in propagating light from a pulsed ruby laser over the horizon down the Chesa-
peake Bay to a receiver 45 km from the laser with a resuitant signal-to-noise ratio of
about 35. The laser produced pulses of 0.10 joule in a beam which had an angular diver-
gence of about 45 min and was elevated 1 degree toward the receiver. A detector system
consisting of a Dumont 6912 photomultiplier plus a 3020 Corning filter at the focus of a
2-ft-focal-length /1 collector mirror had a receiving field of 2 degrees and was elevated
1 degree toward the light source. The laser and receiver were about 6 ft above average
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tide level. A low haze which blanketed the Chesapeake Bay during the test iimited the
meteorclogical range to 8 to 10 km, from which it is estimated that the surface trans-
mission of the 45-kin path was about 10-5.

During 1963 the ruby experiment was repeated several times witih scme modifica-
tions in the receiver system and with a more powerfil laser. The more powerful liquid-
nitrogen-cooled ruby laser source had the following characteristics: output. 1 to 2
joules polarized; pulse length, 0.5 ms, integrated; beamwidth, 0.5 degree; pointing accu-
racy, within 10 arc-min in azimuth and elevation; wavelergih, 8935.2A. The recciver
system consisted of an RCA 925 photodiode at the focus of a 50-cm-diameter, 153-in. -
focal-length mirror which gave a field of view 1/2 degrec wide and 3/4 degree high. A
Corning 2403 broadband cutoff filter limited the dicde sensitivity to the spectral region
from 6300A to 12,600A. A selected amplifier with a passband of from 8 cs to 40 kc
helped reduce background noise.

Two experiments were performed. One was at night when the metecrelogical range
was 40 km, and the other was in the daytime when the meteorclugical range was 20 km.
In the nighttime experiment the signal-to-noise ratio was 125, the priroary noise source
being the amplifier in the receiver system. The daytime measurements, made 2 hours
aiter sunrise, gave a S/N of about 38, where in this case the poise was primarily from the
background illumination. It is estimated that with optimum narrow-bard spectral and
electronic filtering, a S/N of about 500 would be possible under similar daytime cosdi-
tions with this lager source.

VARIATIONS OF SCATTERED LIGHT SIGNALS WITH RANGE

In addition to concerns about the behavior of forward scattered light from collimated
or directional sources, there is also an interest in the light from uncollimated ("'2~")
sources. The latter were of particular concern in some measurements designed to study
the variation of the over-the-horizon signal as a function of separation of source and re-
ceiver. Some crude studies of this nature, on directional sources, had been made earlier
(10), and an attempt to predict the variation of signal with range had been made.

The variation nf relative forward scattered flux with distance involves many factors,
of which the most important are aerosol concentration as a function of altitude, scatter-
ing volume, cloud cover, and atmospheric slant path transmission. Of secondary im-
portance are such factors as Rayleigh scattering and attenuation, and variation of scat-
tering as a function of scattering angle. However where the separation distance does not
exceed 90 km, the important factors which affect the relative signal strength are attenu-
ation and the inverse-square loss, because variations in the other factors are relatively
small for these short distances.

Recent measurements have used as a light source a high-intensity xenon flash lamp
mounted about 10 ft above water level on the cabin of a emall boat as shown in Fig. 14.
This lamp was operated at 6000 jo.les input, which gave a 1-ms light pulse into 2~ stera-
dians. During the nighttime measurements the boat traveled a course across the Chesa-
peake Bay from CBA (the Chesapeake Bay Annex of NRL) and up the Choptank River for
a total straight-line separation of 41 km. The receiving system, which had a 3-degree
field of view, consisted of an S-1 surface photomultiplier at the focus of a 61-cm, {/1
collector mirror and was situated on shore about 3 m above mean water level. The me-
teorological range was monitored by a transmissometer operated over a 17-km path
across the Bay.

Figure 15 is representative of data collected to date. The circled points represent
data for "'visible light" in the wavelength range 3500A to 6500A and the dotted points are
for light between 7000A and 11,000A (near infrared). In the figure the data have been
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Fig. 14 - Boat-mounted flashlamp used in making
measurements of scattered light as a function
of distance

normalized at 5 km and the meteorological range was 13 km for both runs. Initial data
points are at 4 km, at which distance the light was well above-the-horizon. The discon-
tinuity at 11 km indicates the point where the light went below the horizon, Examination
of the data shows that the near-infrared signal decayed at a slower rute than the visible
signal up to the horizon discontinuity, underwent a greater loss dt the horizon, and then
became relatively stronger than the visible signal as the light source moved further ve-
yond the horizan. The solid curve in Fig. 15 represents computed relative signals for
visible light, normalized at 5 km, for direct-line-of-sight obaervation of the lamp ex-
cluding aureole (scattered light) and considering inverse-square and attenuation lossea
when the meteorological range was 13 km. Up to 11 km, the visible signals, which are
direct plus aureole light, follow the curve fairly well up to the horizon break. Immedi-
ately beyond the horizon the signals are [rom aureole only nd are relatively lower than
the predicted values for direct-line-of-sight observation. However beyond 20 km the
observed visible scattered light signals are stronger than the computed diroect-line-of-
sight signals for the experimental meteorological range of 13 km. At 41 km there wua
an observed S/N of 10 for visible light.

In Fig. 16 the data are for visible light observations made when the meteorological
ranges were 13 km and 65 km. All data are again normailzed to 5 km by multiplying the
13-km data by 3.7. The dashed curve, similar to the solid curve in Fig. 15, 18 a curve
computed for line-oi-sight signal with the assumption of a meteorological range of 66 km.
The 65-km data follow the curve out to the horizon, while beyond the horizon the ob-
served signal is relatively much weaker, which indicates a small ratio of scattered to
direct light when the meteorological range is high. The data indicate that at the horizon
the aureole signal is 20 percent and 5 percent of the total signal when the meteosrological
range is 13 km and 85 km respectively. An interesting feature of these data is the un-
explained identical ratio of thé normalized signals from 5 km to 11 km that existe for the
two widely separated meteorological ranges.
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Figurea 17 and 18 show data from a run made on SBeptember 30, 1963, where stmul-
taneous measurements were made in the wavelength intervals 4700A to 7000A and T400A
to 10,000A by the 3-degree-field-of-view dual-channel detection system illustrated in
Fig. 19, During the run, which extended over 80 km in a northerly direction up the Ches-
apeake Bay, the meoteorological range changed from 32 km at the beginning of the run at
7:00 p.m. to 13 km at 10:00 p.m., when the light source was 55 ki {rom the receiver.
Range was determined by radar out to 40 km and by navigation markers beyond this
point. The meteorological range changed within a period of about 18 min at 10:00 p.m.
and then held steady at about 13 km to the end of the run at 4:00 a.m. Examination of
Figs. 17 and 18 shows a discontinuity in the relative signals beginning at about 88 km,
the range at the time the meteorological range began to drop. This alsd indicates that
the change in meteorological range was general throughout the Northern Bay Area, since
the moteorological runge was actually monitored only across the Bay at a point near the
receiver where the Bay is 17 km wide,
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Fig. |7 » Behavior of visible radiation (4700A
to 7000A) as A function of distance out to
He ki

An shown in Figs. 17 and 18 the visible signal was detected out o 83 km, whers 8/N
was unily, while the infrured signal was detecied out to 80 km where 8/N was 1. Com-
parison of the data for the two spectral regiona shows that the signal attenuation tactgr
between 4 km and 83 km wna 1.4 x 10° for visible (4TO0A to 7000A) light and 1.8 x 10
for infrared (T400A to 10,000A) radiation The straight line through the data {rom below
the hortson for visible light in Fig. 17 indicates an effective attenustion coefficient of
about 0.12 km !, which is lower than the value vbtained from the monitor transmigsom-
eler. In Fig. 18, which in for the infrared channel, the effective attenuation coeflicient is
0.09 km '}, which is 38 percent lower than for the visible channel, Meusurements which
were made on the outbound run, whon the meteorclogical range was 32 km, indicste that
ul the horizon, the visible and infrared aureole contributions to the signal ware abaul 33
porcent and 0 percent respectively. On the inbound run, when the meleorological range
was 13 km, the vigible horizon discantinuity appears to be washed oul, o that at the
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horizon, there is almost 100 percent aureole. In the infrared channel, there is an aure-
ole of about 10 percent at the horizon; the signal discontinuity occurs at about 8 km, in-~ -
dicating a refraction change between the outgoing and incoming runs. .

The experiments with the infrared channel have also been carried out in daytime to )
ranges of 32 km when the meteorological range was 1% km (Fig. 20). The runs were
made in midday with the receiver poinied horizontally toward the eastern horizon. These
daytime data show much irregularity, presumably because of refractive efiocts near the
water surface. The variation in the distance to the horizon for the two runs is also a e
refractive effect. Detector noise cauvsed by the high background illumination limited the -=

detection range to 22 km, whereas at night the signal could be detected out to & range of
89 km when the meteorological range was 13 km.
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Fig. ¢0 - Behavior of near infrared radiation
{7500A to 9500A) as a function of distance from
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CONTINUQUS MONITORING OF AN OVER-THE-HORIZON LINK

Racently we have attempted to measure signals over-the-horizon on a night-and-day,
around-the-clock basis along the overwater 43-km path between Tilghman Island and
Cedar Point. The light source was a 120-cps ac mercury-xenon 1000-w compact are
source in a 38-in. {/0.33 projector which gave n beam 45 min wide and 70 min high which
was pointed horizontally toward the receiver. The receiver consisted of a 925 phototube
at the focus of a 183-cm-focal-length, {/8 collector; it was optically filtered to recelve
radiation in the spectral region 7800A to 9500A. Electronic filtering limited the frequency
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response of the receiver system to a narrow band around 120 cps. A calculation based
on the lamp manufacturer's data sheet (15) shows that the mercury-xenon lamp emits
about 35 w in the spectral interval 7500A to 9500A.

Table 3 gives the available statistics, which were acquired with some difficulty. One
unforegeen difficulty was the accidental closing of the trailer door on two occasions dur-
ing periods of good meteorological range! An estimate of these lost data is included in
the summary of Table 3. The metecrological range during the experiment was 20 km or
betiter when the signal was received and 8 km or less during the periods of no signal re-
ception. The accidental shutdowns occurred during periods of good meteorological range
and have been includec as times of probable receptions. The percentage time of signal
reception compares favorably with Coast Guard nighttime visibility data (16) on the
Chesapeake Bay which indicates that visibilities of 16 km or greater will prevail for 85
percent of the time (Table 4). (We assume lhat the Coast Guard definition of visibility
corresponds to our definition of meteorological range.)

Table 2
Summary of Continuous Over-the-Horizon Monitoring
During a 168-Hour Run

Monitor Signal Rgcgeived
Time Received (percent
(br) (hr) of time)
Values for Time Trailer Door was Open
Night ....... 42 26 62%
Day ........ 80 34 571%

Probable Values After Estimating for Periods Door
was Accidently Closed

Night ....... 70 56 80%
Day ........ 98 70 719
Total Time . . . 168 126 75%

The records also reveal an unexpected fluctuation in the strength of the recorded
signal. The appearance is of low-frequency scintillation which at times became quite
intense. The fluctuation showed some indication of decreasing in intensity around sun-
rise and sunset - periods of relative thermal stability. It is possible that these fluctua-
tions were in fact vertical wanderings of the narrow searchlight beam.

DETECTION OF FORWARD SCATTERED SIGNALS
IN THE DAYTIME

The Theoretical Problem

In the concept of signaling over the horizon in daylight by means of scattered light,
the problem is fJundamentally one of detecting a small modulated signal in the presence of
a large, relatively steady, dc background. The noise limit in this type of arrangement
will ideally be shot noise in the background, and the system designer has the problem of
maximizing his signal-to-noise ratio.




TEREE Tt TR oS Da el s A mae S

NAVAL RESEARCH LABORATORY

Table 4
Nighttime Visibilities at Various Coanstal Points in the United States
{From Ref. 18)
Percent of Time j
a Given Visibility
Location Will Prevail
16 km 8km
Coast of Maine {(except Penobscot Bay) 2% 8¢% ]
Penobscot Bay, Maine 65% 80%
Massachusetts Bay 3% 8%
Nantucket and Vineyard Sounds 52% 78%
Long Island and Block Island Sounds 3% 6%
Lower New York Bay 80% 88%
Atlantic Coast: New Jersey to Cape %% %
Charles, Virginia
Delaware Bay and Entrance 85% 92%
Chesapeake Bay Entrance 80% 9%
Chesapeake Bay 85% 94%
Atlantic Coast: Cape Henry, Va., to 92% 93%
Charleston, South Carolina
Atlantic Coast: Charleston, S.C., to 95% 96%
Key West, Fla. (includes Greater
Antilles)
West Coast of Florida: Key West to 95% 96%
Tampa Bay |
Gulf of Mexico 89% 94%
Southern California Coast: Eleventh 78% 88%
C. G, District
California Coast: Twelfth C.G. District 68% 82%
except San Francisco Bay Entrance
San Francisco Bay and Entrance 0% 868%
Coasts of Oregon and Washington except 90% 5%
Columbia River Entrance
Columbia River Entrance 89% 92%
Straits of Juan De Fuca and Georgia of 819, 90%
Washington
Puget Sound, Waahington 8% 95%
Admiralty Inlet, Washington 82% 95%
Hawaiian Islands 25% 26%
Southeastern Alaska, Inside Passages 939, 95%
Lake Ontario 82% 949,
Lake Erie 5% 88%
Detroit River, Lake St. Clair, and 3% 96%
St. Clair River
West Shore of Lake Huron and Straits 6%, 90%
of Mackinac
Lake Superior 91% 23%
Lake Michigan 0% 89%
Green Bay and Entrance, Wisconsin 8% 93%
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Ttare is of course another requirement - that there be enough signal to measure.
Signal-to-noise calculations can sometimes be misleading unless the signal level is also
considered.

H we consider a photoemissive detector with a cathode spectral responsivity S .
(amperes per watt), viewing a background of spectral radiance N, (watts per steradian
per unit area per unit wavelength interval) through a filter of spectral transmittance T,
and assume that the receiver field of view is 0 steradians, then the cathode current }
due to the background is

-
1= 108 I AS N, 0T, dy .emperes (7
0

where A is the area of the flux-collecting objective. This current will give rise to a
shot-noise fluctuation current I, whose rms value is

I, 7 5.7 x 1077 { I(.amp) Afl™ amp (8)

where Af is the electronic communication bandwidth. The actual noise level in the sys-
tem may exceed this if there are fluctuating components in the background. The magni-
tude of background fluctuations for sky background is presently the subject of some un-
certainty. There are some indications that, at least for clear skies, the inherent
fluctuations are very small. There are, however, some experimental groups which
insist that daylight photoelectric systems are always limited by fluctuations in ambient
light. This problem obviously needs clarification. For the present effort we assume
that the limiting system noise will be that given by Eq. (8).

The signal will have some spectral radiance distribution n, (a,.x) on the horizon,
where s and 3 are altitude and elevation angles measured from some appropriate ref-
erence position. The signal in the system will be given by

lO“ffAnxT.\S\d’zd\pmp (9
o D

where the angular integral is taken over the field of view . The signal-to-noise ratio is
thus given by the expression:

@«

A*ffnk'r,\ S, & dv
0 0
5.7« 1077 [(I S, N, T, 2 d\):\f]"
0

which is a peak-to-peak, rms ratio and automatically implies that the system bandwidth
is adequate to handle the peak-to-peak signals without distortion. If this is not so, one
must take the signal Fourier components which fall within the communication passband.

(10

Collector Area

Equation (10) shows that the signal-to-noise ratio improves with an increase in the
dimensions of the receiver objective but that it improves only linearly, i.e., as the

square root of the area. Accordingly one always wishes to use the largest feasible
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collector. Probably, any "practical” system will use collectors smaller than 1 m in
diameter. 1t will certainly not use a collector larger than 2 m in diameter.

Field of View

It seems axiomatic that one should reduce the angular field of view of the receiving
system to include only those portions of the background which include signal components,
but this can be formally shown to follow from Eq. (10). The argument is simply that a
reduction of the acceptance solid angle from O, to 0, causes a decrease in noise pro-
portional to (2,/0,)% for a field of uniform background radiance. However if all of the
signal is contained in the smaller field ,, then no loss of signal is incurred in passing
from Q, to 1,. The net result is of course an increase in the signal-to-noise ratio. If
the signal is distributed in some arbitrary fashion through the observed background field,
then an elaborate calculation may be required to determine the optimum field of view. If
the signal is well localized, then the field of view can always be narrowed if the problem
is fixed-point-to-fixed-point communication, but reduction of the field may not be possi-
ble if either or both points are movable. In the latter case it may be necessary, for
operational reasons, to open the field of view to well beyond the optimum. We shall,
however, assume the fixed-point-to-fixed-point situation for scattered light communica-
tion. Earlier in this report (see Fig. 5) it was shown that the effective signal field, on
the horizon, will be relatively amall in angular subtense, but Table 1 indicates that there
is a considerable latitude in the choice of field and that for fields up to 1 square degree
the S/N variation is only of the order of a factor of 2. This conclusion may require mod-
ification if the conditions are other than those which prevailed at the time of the taking of
the data in Table 1. However a decrease in meteorological range should effectively re-
sult in a broadening of the signal field; hence, one will not find it necessary to go to
smaller fields as the weather worsens. The choice of a moderate field — 1/2 to 1 degree
wide and 1/2 degree high — should be adequate.

Ontical Filtering

The optical bandwidth may also be modified to maximize the signal and minimize the
noise. If the background is relatively continuous spectrally, as in the sky, then an ideal
situation would involve a relatively monochromatic signal. The product 1,5, (Eq. (9))
may then be adjusted to be significant only in a narrow region A\ around the signal
wavelength, and signal-to-background discrimination is thus improved. Note, however,
that if A is relatively broad {approximately 1000A) and the background is a continuous
source like the sky, then crudely speaking the S/N difference for a wide-band source and
a narrow-band source, each of the same total power, is about inversely equal to the
square root of the optical passband. Going to a 10A-wide filter would probably decrease
the noise by a factor of 10.

It should also be noted however that the current state of the art will not allow a sig-
nificantly greater reduction in any gsimple manner. In principle, one couid go to dispers-
ing systems for spectral resolution, and it is probable that this is the ocnly presently
available technique which might approach the advantages to be expected from the very
narrow line widths associated with lasers. It is quite reasonable to ask for a dispersing
system with a spectral resolution of 0.1A. It appears to be unreasonable however to ask
for this spectral resolution and a relatively wide field of view plus an adequate flux col-
lection efficiency; these elements simply are not compatible. Hence, it is difficult to do
very-narrow-band optical filtering in many flux collecting systems. Thia cannot be
elaborated on here, but it is & practical problem which is frequently lost sight of in cas-
ual theoretical estimates. For example, if the spectral filter is a flat, narrow-band, in-
terference filter, its passband is dependent cn the angular divergence of the light which
passes through it, and the bandwidth specification places a restriction on the allowable
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divergence. For a fixed size of filter, thi= in turn puls interconnecting limitations on
the angular field of view and the size of the collector, which are in turn related to detec~
tor size and system {/number,

The above digressions led us away {rom the fact that, all other things being equal,
the concept of optical ''marrow-panding'' combined with adequate monochromatic sources
can be expected to provide about one-order-of-magnitude improvement in S/N in the
daylight case. It has frequently been suggested that for daylight signaling one might use
a very narrow spectral line centered in a black Fraunhofer solar line. Because the
Fraunhofer lines are not ""black,” there is a theoretical limit to this concept. and it is
roughly about another ten-fold improvement in S/N, with all other things being equal and
the analysis being made on the above terms. There remain however severe practical
difficulties of the nature of those described above in the narrow-filter discussion.

Atmospheric Attenuation

There is the remaining problem of atmospheric attenuation, which i3 undoubtedly the
controlling factor, because it is an exponential function and small changes in attenuation
coefficient are equivalent to very large changes in S/N. To determine the feasibility of
daytime operation over the horizon, one needs to know how signal depends on atmos-
pheric transmission. Table 5 presents transmission values computed for four wave-
lengths over a 45-km path as a function of meteorological range. These computations
are based on apectral attenuation coefficients which are typical of a 45-km (meteorologi-
cal range) day and which were adjusted to other meteorological ranges by adding or sub-
tracting, for each coefficient, the differential at 0.55.. In addition, the effect of scatter-
ing or transmission has been approximated by including a contribution which varies
linearly with the scattering coefficient '; i.e., T= ¢ !, The choice of the words "typi-
cal day" must be qualified somewhat, because there is no simple relationghip between
meteorological range and the spectral attenuation curve, Studies (17) made in the Ches-
apeake Bay area have shown wide variations in the - vs : curves. The data in Table 5
are, however, better than qualitative and at least show a correct wavelength trend and
the magnitude of the attenuation handicap which must be overcome.

It will be noted that there is a general improvement as one moves to longer wave-
lengths, and this is a result of the general behavior of the atmospheric spectral attenua-
tion coefficients, which tend to decrease with increasing wavelength for hazy days (18).

Table §
Over-the-Horizon Transmission Factors to be Expected for Various
Meteorological Ranges and Wavelengths

Meteorological
L Range (km) 10.55.‘ To.6ou Ty ns. Ty os..
45 2x10°? 53x10°7 | 1.7x10°? 1.7 x 10!
27 2.5x10 ° 1.2x10? 2.3 x10°? 8.9 x10°?
20 3.3x10 ¢ 2.9x 10 7.1x10? 43 x 102
10 9.7x10"* 8.1x10°° 4.5x10°8 1.6 x 10-°
5 4.2x10 ' 29x10 ! 8.5 x10°'° 1.2x 108
2 1.1x10 Y 4.1x10 % 2.2x 10" 1.3x 10°1®

§
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This does nol imply that infrared “penetrates fog'' better than visible light - fog is rela-
tively nonselective - but it acknowledges that ordinary atmospheres do tend to be some-
what selective in transmission and favor the red-to-near-infrared region. In general,
then, if there is a choice of wavelength allowed. one should move into the near infrared
to maximize the available signal.

There are really no other things that can be conveniently done to improve S/N. It is
taken for granted that the source power is as great as it is possible to obtain. It shouid
be emphasized that power, not intensity, is the key requ.rement. For line-of-sight prob-
lems, intensity (power per solid angle) is the governing quantity, but this is not so in the
scattered light case. Thus low-power cw gas lasers would seem to be of little practical
value in over-the-horizon problems.

Estimate of Noise and Signal

It is of interest to estimate the characteristics of a typiral detection system in day-
light. We assume the following system parameters:

Collector area (A) = 3 x 10? ¢m? (2-ft diameter)
Field of view (..) = 1.5 x 10" * steradian (3/4 degree by 1/2 degree

Detector (s) = 1.4 x 10°? amp/w (S-4 diode)

Sky spectral radiance N, 10 % w/cm?-steradian-angstrom (agrees with measured

values)

System transmission (T) = 0.5

Optical filter passband (') = 3 x 10° angstrom
Electronic passhand (\f) = 50 cps.

The background dc current 1 is given by

1=A0SN ‘. T amperes

(3x10% (15x10°% (1.4x10°%) (10°% (3x10%) (0.5

9.5x 10" amp

0.95 ..amp. (11)

The rms shot noise cathode current 1 is

Y 5.7 x 10 *7 (0.95 x 50)"

n

H

57x10 7x6.9 = 3.9 x10°° .amp. 12)

We might pause here to note that the technical problem is to detect a fluctuation of
the above order of magnitude (10°® ,amp) in a current of about 1 ..amp. With current of
I microamperes into a load resistance of r ohms, it is necessary to have (independent
of the passband)

M (D - 2.25 x 10 (13)




30 NAVAL RESEARCH LABORATORY

in order to have the shot noise exceed the thermal ncise in the load. In the present case
I =1.amp. Therefore

r 1x 104, (14)

The system should be quite capable of haudl:ng 50 cps with a load impedance consider-
ably larger than the 51,000 ohms that Eq. (14) states is necessary. I, in a system of
this sort, it becomes necessary for some reason such as the preservation of high-
frequency response to keep r below the value given in Eq. (14), then it will be necessary
to resort to some amplification of the cathode current by secondary multiplication before
it is delivered to the load resistance and the amplifier.*

The peak-to-peak noise will be taken to be about 4 times the rma value!t; hence the
peak-to-peak signal must be of the order of 1.C x 10°%,.amp to be equal to noise and 3
times this to be readily detectable, or the peak-to-peak signal must be about § x 10°?
wamp. This corresponds to an input power of

5x10° % amp
1.4x 10-3. amp/, W

= 36x10"w

to the detector. This in turn corresponds to 7.2 x 10" w in the collector (T« 0.5) and a
collector irradiance of

n2x10"

——

TR 2.4x 10" w/em?

at the collector aperture,

If we assume that the source is a directed one and that the scattered light is dis-
tributed on the horizon inh a ?attern such us indicated by Figs. 4 and 8, then 28 percent of
the flux (or 6 x 10°!? w/em?) is contained in an area 20 min by 8 minor 5.5 x 10°° ate-
radian. This requires

Nx85x10°%.6x101'?
which yields

6x10'?

T 1.1 x 10°* w/em®-steradian

as the required apparent peak radiance of the horizon in the bright central core due to
the source.

Earlier in this report i was estimated from Fig. 4 that under the meusured condi-
tions the bright central spot was about 2 x 10°? times us radiant as the aylight horigon,
and {f the daylight horizon is taken to be about 3 x 10 ! w/cm?-steradian in the region
from 4500A to 7T000A, one estiinates that the spot radiance corresponded to ubout 8 x 10 ®
w/cm?-steradian. The above estimate indicates that a peak-to-peak signal which cor-
responded to a central radiance of about 10 “® w/cm?-steradian could be detected in the
daytime under the assumed conditions. This would correaspond therefore to a source
with a peak power about 1/5 that of tne dc power of the carbon arc.

*It is assurmned that the output from the load resistance is always amplified by a device

whose intrinsic noise limit is lower than the thermal noise in the input luad resistance,
t For Gaussian noise and average observing periods one expects a factor of between 1.5
and 4.0, we chose 4 to be pessimistic,
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If the source were a pulsed ruby laser source, it would be necessary to open the

“ electronic pasaband about 800 times to 40 ke with a conseguent increase in noise of 38

iy

bR

times This would require an irradiance of 8.1 x 10°'° w/cm? at the collector, or a
luser ponk power about six times tiaat of the de power from a carbon arc,

These estimates are not ton lar from the avallable measurements described earlier.
That is, a carbon=are has about 8600 w in the beam, and under sssentially the conditions
assumed about a modulated xenon arc with about 50U w in the beam was detected in day-
light with a 30~-cpn pasaband, ant a ruby laser of about 10,000 w peak power was delected
in daylight with a 40-kc pussband. The ratio of peak«to-peak signal to peak-to-poak
noise was about 3 in each case,

An rradiance of 4 x 10-® w/em? for a meteorological range of 40 kim was moasured
for the modulated xenon arc. The computiation above suggesta that an (rradiance of about
Ix10 ' w/em? would be dotected; hence un attenuation incrense of about 10" could be
tolerated. That is, the meteorological range could have decreased to about 8 ki (Table
8. 0.85.) and the signal would have beer detected., For a ruby lassr, one requires about
8x10 ' w/em 4 which would require ubout a factor of 30 less in attenuation wnd &
moeteorological range between 18 and 20 km,

It appears therefore that daylight, pointeto=point, seattered light signaling (s feasis
ble over runges of about 48 km for metearologicul rangen of the order of 18 km or more.
The signaling could be at Morse code rutes, using avallable sources, and could be at
audio raten if adequately modulatable wources are available. The beat reglon of the
spoctrum would be the near infrared. Source nowers of the order of kilowatts would be
required for brondbund aources and mogawalts for short=pulse wources. The reguire-
ment that the feld of view be relatively small and that the sov ~ve be colllinated would
probably preciude using this type of scattered light communic. »n from ship to ship. It
iu of interest to note that (n the Chesapeake Bay region, as indicated earlier, it wouid be
expected that u point-to=point scattered lght communication nystém would be operable
88 percent of the time, on the average. The acintillution obaerved in the scattered beam
might be expected to degrade the signaling possibility, but our opinion Ia that this degra-
dation will not be severe and that the above estimates ure reanonable,

SUMMARY

This has boen un mcecount of various experiments concernod with forward scattered
light in the lower utmosphere, Several measurements of irradiunce when a Hght source
was above und below the horison indicute u ratio of 300 between the signaln received (in
the wavelength iniervul T800A to 9800A when the light wource was ubiove the horison and
when the light source wan below the horizon at u distance of 45 km with & niwlsorological
ruhge of 40 km. On another occasion the ratio was 800 for visible light atl u distance of
3% km und 4 meteorological runge of 38 km,

Over-the-horizon exporiments concerned with the spatial distribution of forward
scattered light on the horizon show thut with an omnidirectional source below the horl-
ron 48 km from the recelver B percent of the total horizun flux wan concentruted in u
small uren 28 min by 28 min on the hniison. When the light soures was a 1/2-degree
collimated boam, a small areuw 30 min by 17-1/2 mitn on the horigon contained 80 percvent
of the total flux,

Over-the-horizon wignuls amw & function of distance have been investigated using an
omnidirectional light source. The wignal strength decrodses inversely with the square of
the runge and with an exponential attenuation out ta the harigon point, where therv in u
dincontinuity which s a function of the meteorological conditions und is greatost when
the meteorologleul range (s high, Beyond the horizon the signal decay (4 influenced
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mostly by attenuation loss when the meteorological range is low (13 km) and primarily
by inverde squale loss when the meteorological range is high ( 60 km).

Several experiments have been performod using & low-power ruby liser source (n
duytime transminsion along a 45-km over-the<harizon puth. A signal-lo-noise ratio of
3 was obtained (n daytime with a 1 to 2 joule laser when the meteorological runge wan 20
kav A nighttime measurement guve a nignal=to=noise ratio of 43 using a 0.10-joule laser
when the surface trunsmission at the ruby laser wavelength was abwut 10 °

From the renulls of these various measurements it uppears probuble that & limited
duy-and-night over-the-horigon communications systen in possible from point (o point,
with the light being propugated over the horizon by forwurd scattering by the naturally
existing seroso! in the lower utmoaphere. Preliminury tusts on 4 continuous duy=und-
night bunie nlong the 48-km overwater path with a collimuted nource have ylelded en
couraging results in which the signal was detected 78 percent of the thine when the
meteorological runge wus 20 Jan or greater. The signal was not detected when the me-
teorologicn) range wias 5 km or lesa.

A theoretical discussion of the problem of detecting forwurd scattered light in day-
time shows thut estimated resulta agree with the available oxperimontal data. Consid-
sratione ol the fennibility of uaing over-the=horigon propagation as a communivation link
loxdn to the conelusion that point-towpoint communication at Morae Code rates is curs
rontly pospible over rangea of the order of 48 km In daytime for meteorological runges
of 18 km or more. '
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3. Airborne observations of forward scattered light from a searchlight beam
1/2 degree wide yielded an on-axis irradiance, at a range of 35 km from a hori-
zontally pointed source, 550 times the irradiance at a point 115 meters above the
geometrical edge of the beam.

4. Ground-based comparison of direct-line-of-sight irradiance and small-
angle forward-scattered-light irradiance showed that in the wavelength interval
T500A to 9500A the direct light was 200 times the scattered light at a distance of
45 km when the meteorological range was 40 km.

5. Signals as a function of distance have been measured with the helpof a
mobile omnidirectional light source. The signal strength decreases inversely
with the square of range and with an exponential attenuation out to the horizon,
at which point there is a discontimuity which is a function of the meteorological
conditions and is greatest when the meteorological range is high. Beyond the
horizon the signal decay is influenced mostly by attenuation loss when the mete-
orological range is low (13 km) and primarily by inverse-square loss when the
meteorological range is high (> 60 km).

6. Ruby laser light was transmitted at night over the horizon to a distance
of 45 km when both receiver and projector were 6 ft above water and were
pointed at one another with 0-degree elevation. The laser output was 0.10 joule
and the signal-to-noise ratio in the system was 45. It ia estimated that the sur-
face transmission of the 45-km path at 6943A was about 10 "5, Signals from a
1 to 2 joule laser have also been transmitted over this path in daytime with a
signal-to-noise ratio of 3 when the meteorological range was 20 km.

7. An over-the-horizon link was established on a continuous basis over a
range of 45 km. Observation was for a peried of 102 hours, during which the
signal was received 62 percent of the time during the night and 57 percent of the
time during the day. Two accidentzl imterruptions of the measurements resulted
in lost data during periods when the signal would surely have been received.

In addition, considerations of the problem of detecting forward scattered
light in the daytime show that estimated results agree with the available experi-
mental data. Considerations of the feasibility of using over-the-horizon propa-
gation as a communications link leads to the estimation that communication be-
tween fixed points at Morse code rates is currently feasible over ranges of the
order of 50 km in the daytime for meteorological ranges of 16 km or more, using
a narrow-beam projector as source. Ship-to-ship communication would require
sources of very high power or precise stabilization and pointing existing high-
intensity searchlight sources.
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