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Summagz

The current interest in rockets and space travel has
aroused a corresponding interest in the determination of
maximum range, minimwn time, and so on, for various types of
trajectories.

A variety of questions of this type have been treated
vy means of the theory cf dynamic programuing. Here we wish
to show how to use functional equations to determine the
range, the maximum elevation, and similar quantities, as

functions of initial position and veloclitles,
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FUNCTIONAL EQUATIONS AND MAXIMUM RANGE
Richard Bellman

l. Introduction

The current interest in rockets and space travel has
aroused a corresponding interest in the determination of
maximum range, minimum time, and so on, for various types of
trajectories.

A variety of questions of this type have been treated
by means of the theory of dynamic programming, see [1,2,#].
Here we wish to show how to use functional equations to
dstermine the range, the maximum elevation, and similar
quantities, as functions of initial position and velocities.

2. Vertical Motion--I

Consider an object, subject only to the force of gravity
and the resistance of the air, which is propelled straight
up. In order to illustrate the technique we shall employ,
let us treat the problem of determining the maximum altitude.

Let the defining equation be

(1) u" = — g — h(u'),

with the initial conditions u(0) = O, u'(0) = v. Here
v>0, and h(u') > 0 for all u'.

Since the maximum altitude is a function of v, 1let us
introduce the function




P-1494
9-24-58
-P=

(2) f(v) = the maximum altitude attained starting
with initial veloeity v.

From the definition of the function it follows that
(3) f(v) = va + (v — [g + h(v)]A) + o(a),

for A an infinitesimal. Verbally, this states that the
maximum altitude is the altitude gained over an initial
time A, plus the maximum altitude attained starting with a
velocity v — [g + h(v)]A, the velocity of the object at
the end of time A, to within o(a).

Expanding both sides and letting A —> 0O, we see that
(4) £1(v) = ——o .

g + h(v)

Since f(0) = 0, this ylelds

v,dv
(5) £(v) =¥ 22— .
0O g+ h(vl)
In the particular case where h(v) = O, we obtain the

standard result v2/2g .

3. Vertical Motion--II

Consider the more general case where motion is through

an inhomogeneous medium. Let the defining equation be

(1) u" = h(u,u'), u(0) = cys u'(0) = cye
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Assume that h(u,u’') < 0 for all u and u', so that
¢y = 0 1implies no motion.

The maximum altitude i3 now a function o both ) and

°2' Introduce

(2) r(cl.oa) = the maximum altitude attained starting
' with the initial position ¢, and
initial velocity C e
Then, as above,
(3) r(cl,cz) =c,A + r(cl +c A0, + h(cl,ce)A) + o(a),

which yields in the limit the partial differential equation

f f
(%) ¢, + C, 53: + h(cl,ce) 33; = 0.

By virtue of our assumptions, r(cl,O) =0, for ¢, > 0.

4, Computational Aspects

One can, of course, use the method of characteristics,
or standard difference methods, to solve (3.4). Let us
present another method which reduces the solution to the
tabulation of a sequence of functions of one variable.

In place of (3.4), let us use the discrete approxi-
mation of (3.3),

(1) r(ol,c2) = C 8 + t‘(c1 + e 8,0, + h(cl’ce)A)'




P-1494

9-24-58

Since 5 is monotone decreasing, it can be used to play
the role of time. Let us write c, = NO,

where © 18 a positive quantity, and f(°1'°2) = f'(ol).
We consider then only values of ¢, which are multiples of
®. To overcome the fact that cy + h(cl,cz)A in general
will not be a multiple of , we can either replace it by
[(c2 + h(cl,ca)A)/b], or use interpolation. Although use
of an interpolation formula slows up the computation, it
greatly improves the accuracy. For an application of the
foregoing techniques to a more complicated partial

differential equation, see [3].

5. Maximum Altitude

Consider now the case where motion takes place in a

plane. Let the equations be
(1) x" = g(x',y'), X(O) =0, X'(O) = °1'
y" = n(x',y'), y(0) =0, y'(0) = c,.

Introducing, as before, the function f(cl.oa) equal to the
maximum altitude, we see that

2 2 1/2
(2) r(ol,cz) = (e] + ¢3) / A
+ r(cl + g(cl,ca)A,o2 + h(°1'°2)A) + o(a).
Hence,

(3) (cf + 02)1/2 + 8(°1’°2) gé; + h(°1’°2) g%z = 0.
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Once again, let us assume that ey = O 1implies no vertical
motion. Then t(cl,o) = 0 for ¢, 2 0. It follows that we
can again compute the solution by means of a sequence of

functions of one variable.

6. Maximum Range

To tackle the problem of maximum range directly requires
the introduction of another state variable, the initial
altitude. It can also be broken up into two problems,

corresponding to the ascent to maximum altitude, and the

descent.
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