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SUMMAHY 

An equivalent formulation for a standard linear programming 

problem Is developed.  For the case where the number of variables 

Is twice the number of equations m, the equivalent problem has the 

same size but has the Inverses of the first and second m columns 

of the matrix of coefficients. 

* 
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AN EQUIVALENT LINEAR PROOHAMMINO PROBLEM 

George B. Dontrlg and Seiner M. Johnson 

Any linear program can be converted to an equivalent linear 

program by 

(a) dualizing 

(b) replacing a system of equations by an equivalent 

system in the same variables 

(c) elimination of variables unrestricted in sign 

(d) elimination of variables  restricted In si^ by the 

Pourier-Motzkin Elimination Method. 

Our purpose is to add to the collection by proving an Interest- 

ing relation for the case of 2m nonnegative variables in m 

equations which permits substituting another system of the 

same alee by replacing the first m columns by its  transpose 

inverse and the second m columns  by the negative of its trans- 

pose inverse.   A generalization of this result for the case of m 

equations in n nonnegative variables will also be developed. 

The theorem was observed recently as part of the authors* 

investigations of partitioning methods.    It  is not known at 

this early date whether any significant applications can be 

made of it but thia may well prove to be the case since equiva— 

lenoea have proved to be powerful  tools in the past. 

The standard L.P.  problem la  to find x.  > 0 and minimum 

a satisfying 
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(1)      811x1 ♦ '•   * 8lmxm * 8l,ra-Hxm^l  +  '"   + al,2mx2m 

8mlXl  ^   ••'   + •„«a ♦ am,m+lVl  +   ' 
c1 x1 ♦  ...   ^ cm xrn 4 cm^    xm+1 ♦   • 

* am,2mX2m 

^ c2m    X2m 

m 

z  (Hin) . 

where x. > 0.  We may write this In matrix form 

(8) 

71X1 ♦ 72X2 z  (Mln) 

:1 > 0' X2 2 0 

where 

(?) 1 ■ (Xj, x2    .. ...xj^ 

2 ' (xm+l' Xm+2'- x     )T 

'•,x2m; 

q = i^. b2     .. ■■■bJv 

i = {cl, c2     .. ••••■) 

2 = (cm+l' cm+^'• •'c^m, ' ro ■ 

(T - transpose) 

THEOREM:   If B^" and BU exist, then the linear programming 

proLlem 

(M (B^
1
)
1
 Xj - (B;1)1 X2 = (71 - 72)

T 

- q^ X2 - v(M8x) 

where X1 > C, X2 > 0 and 

(5) B~ q = q1, B2  q = q^, 71B1  - y^,   yjfi*  = "2 

Is üqulvalent to the duel of (1) or (2). 
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(6) B1X1 " Y 

71X1 ♦ 72X2 

B2X2 + Y 

(Min) 

(x1 > 0, x2 > 0) 

where Y ■ (y^yp,.. . ,y ) are an suxilliary set of variables 

unrestricted in sign. 

We may rewrite this 

(7) 

or 

B^Y, X. ,-1 -4, B -q - D *Y 

71Y - 72Y = z - >2q2  (Mln) 

x1 > 0, x2 > 0 

(8) B^Y > 0 

-afn > - q2 
("l ~ "2)Y " Z,  (Mln) z - 7oQ 2M2 • 

Noting that Y is unrestricted in sign it is easy to see that 

the dual of (8) Is (4),  Hence elements of vector Y are the 

simplex multipliers associated with the optimal solution of 

(4) and their substitution Into (7) yields the required optimal 

solution to (?). 

For example If 

[3,,] - 

I | 1 1   1   1 

II | 111 
III | 11 

1   1   1 1   I 1 
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the problem equivalent to the dual would have coefflclenta 

I   1- 
•1 
-1 1        I 

-1    1 

-1 
1 -1 

1 

which has leas non-«ero entries and incldently shows that the 

original problem was a camouflaged transportation problem 

[which has been observed by Fulkerson and others in a somewhat 

more general context.] 

2. In the case n - km one can obtain analogous results. 

We illustrate this for an example where k « 4. 

First it is assumed that one can permute the variables 

so as to form four groups of m variables each whose correspond- 

ing column vectors form matrices B. , i ■ 1,...4 such that BT 

exist. Then usinj analogous notation to that of ^1, the 

original problem can be written as 

(9) xi > 0' 1 - 1*2,3,4 
4 

1 

2 71X1 = z (Min). 

1 

Define .column  vectors Y. ,   (l =»  1,2,3),   whose elements 

are unrestricted   In  3i£;n  by the first  three  relations  of   (10), 

then the  last relation is  implied by   (9)  and converacly. 
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(10)  B1X1 - Y1, B2X2 + Y1 « Y2, B5X3 + Y^ - Yy  B^ ♦ Yj - Q 

Since ^  - B^1 Y1, Xg » B^Y^ - B2
1 Yli X^ = Bj

1 Y^  - B^1 Y2 

and  X4 - B^
1 q - B^1 Y^ we can write (9) as 

(11)  B^1 Y1 >  0 

-Bj1 Y1 ♦ B;1 Y2        >  0 

- Bj1 Y2 4 B"
1 Y3 >  0 

— B4 Y33 i " B4 Q =» Q4 

(y1 - 72)Y1 + (r2 - 75)Y2 ♦ (73 - 74)Y3 = ■< (wm) 

and as before the dual of (11), setting A1 « [B^1]T, IS 

(12) ^1 > 0 

A1X1 ~  A2X2 " ^1 "" ^2 

• A272 - A3X3      " 72 " 73 

-^Z| + A4X4 » 74 - 71 

- Qjx^ - v(Max). 

In (1?) the redundant fourth vector equation equal to 

the negative sum of the first three equations Is Included to 
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brlng out the symmetry  of the form of the problem end  to 

facllltete generating the other equivalent systems by adding 

relations. 

3.     In case n is not a multiple of m,  one can add dummy 

column vectors  to fill out an m by m matrix so that its  Inverse 

exists,  while adjusting the minimizing form with coefficients 

sufficiently large to drive out  the corresponding (ftmy vaplablti 

from consideration in the optimal  solution. 

To illustrate^ if n = 2 m - -.,  add an extra vector to fill 

out Bp wit.h Cp    = M large enough so that Xp    vanishes in an 

optimum solution. 

(13) Bl X1  + B2 X2 = q, 

2m-l 
£    ClXi   + ^2*1 
1 

z(Min) 

which, as before. Is equivalent to 

(1^) A1X1 - A2X2 yl - 72, 

- q^ X2 = v(Max). 

x1 > 0 

A1 > 0 


