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SUMMARY

An equivalent formulstion for a standard linesr programming
problem 18 developed. FKFor the case where the number of varigbles
18 twice the number of equations m, the equivalent problem has the
same slze but has the inverses of the first snd second m columns

of the matrix of ccefficlients.
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AN EQUIVALENT LINEAR PROGRAMMING PROBLEM

George B. Dantzig and Selmer M. Johnson

Any linear program can be converted to an equivalent linear
~program by

(a) dualizing

(b) replacing e system of equations by an equivalent
system in the same veriables

(c) elimination of varisbles unrestricted in sign

(d) elimination of varisbles restricted in sizn by the
Fourier-Motzkin Elimin: tion Method.

Our purpose 1s to 8dd to the collection by proving an interest—
ing relation for the case of 2m nonnegative variables inm
equations which permits substituting another system of the
ssme sige by replacing the first m columns by its trsnspose
inverse sand the second m columns by the negative of its trans—
pose inverse. A generslization of this result for the case of m
equations in n nonnegative veriables will slso be developed.
The theorem was observed recently as part of the suthors!
investigations of partitioning methoda. It 1s not known at
this esrly date whether any significant applicastions can be
made of it but this may well prove to be the case since equiva-
lences have proved to be powerful tools in the past.

The standard L.P. problem 1s to find xJ > 0 and minimum

g satisfying
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(1) eyyXy + «ov + 8 X + 1 .me1*me1 Y " Y81 oo T P2

81X + -cc +8 X +8 + «-- 4+ 8

mm m m,m+1xm+l
X

X
m,2m 2m = °m

+1 m+1

where xJ > 0. We may write this in matrix form

(2) B;X, + B)X, = q X; 20, X, 20
71X) + 7%y = 2 (Min)

z
(3) X, = (xl, X, ,...,xm) (T = transpose)
T
Xo = (Xp4q10 XpypoeeesXop)

T
q = (bl’ b2 :°°°:bm)

(cl’ 02 n-o-:cm)

~
—
]

7o = (°m+l’ cm+2""’°2m)

’ -1 -1 .
THEOREM: EQ_BI and B2 exist, then the lineer programming

Eroblem

¢

(4) 7)) X - (BT K, = (7, -7,)
- 62 YE = v(Max)

e -1 _ = -1 _ =
(5) By” a =19y, By” a=a, 7nB" =7, 7By =7,

1s equivelent to the dusl of (1) or (2).
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Proof: Consider the system:
(6) BiX, = Y BX, +Y=a (X; >0, X, >0)

71X) + 7 %X, =2 (Min)

where Y = (yl,ye,...,ym) are an suxilliasry set of verisbles
unrestricted in sign.

We may rewrite this

-1 -1 ~1
(7) X, = B'Y, X, = B,7q = BJY X; 20, X, >0

7Y =7, =z - 7,0, (Mn)

or
(8) BI'Y > O
B5Y > - §
e T2~ %
(73 =7,)Y =2' (Min) 2! =2 - 7,3, .

Noting that Y 18 unrestricted in sign it 13 easy to see that
the dusl of (8) 1s (4). Hence elements of vector Y are the
simplex multipliers sssociated with the optimal solution of

(h) and their substitution into (7) ylelds the required optimal
solution to (2).

For example if

1 | 1111

1 3 T g |

[°1J] =l111 | 11
1111 | 1
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the problem equivalent to the dual would have coefficients

e

5 = |

-1 | 1 =1

-1 1 | 1 -1
-1 1] ,

_J

which has less non-zero entries and incidently shows thist the
original problem wes a camouflaged transportation problem
[which has been observed by Fulkerson and others in a somewhat
more genersl context.]

2. In the case n = km one can obtain snalogous results.
We 1llustrate this for an example where k = 4.

First it 13 sssumed that one can permute the variables
so 83 to form four groups of m varisbles each whose correspond-—
1ng column vectors form matrices B,, 1 = 1,...4 such that B;l

exist. Then using aneslogous notation to that of $§1, the

original problem cen be written as

(9) = q X, >0, 1=1,2,3,4

7, X, =z (Min).

Deflne .column vectors Y,, (1 = 1,2,3), whose elements
sare unrestricted In sign by the first three relations of (10),

then the last relation is implied by (9) and conversely.
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(10) ByX; = Yy, BX, + Yy =Y, BBXB + Y, = Yj, ByX) + 13 = q

-] -1 -1
Since Xl = Bl Yl’ X2 = 82 Y2 - 82 Yl’ 1'(3 = B} Y3 - B3 Y2

and X, = le q - le Y3 we can write (9) as

(11) B™ Y, > I ¢
-85 ¥, + B;) Y, R
—»Bgl Y, + Bgi Y5> O

Byt 2 - By 0= G

(-7-1 i ?e)yl + (72 - 7})Y2 + (7} - 7)4)Y} = 2' (Min)

and 8s before the dusl of (11), setting Ay = [BIJ]T, is

(12) X, >0
Ay Xy = AKX, =7 =7
A2X2 _'ABXB . Yy - 73

A% e I )
—'ﬁfxu = v(Max).

In (12) the redundent fourth vector equation equal to

the negative sum of the first three equstions is included to
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bring out the symmetry of the form of the problem snd to
facillitate generating the other equlivslent systems by adding
relatlons..

3. In c8se n 18 not 8 multiple of m, one can add dummy
column vectors to fill out an m by m matrix so that its inverse
exists, while adjusting the minimizing form with coefficients
sufficlently large to drive out the corresponding dummy variables
from consideration in the optimal solution.

To 1llustrate, if n = 2 m - ., add an extfa vector to fill

out B, with ¢ = M large enough so that X, venishes in an

2 2m m
optimum solution.

(13) B, X; + B, X, = q, X, 20
em=—1
PN cyX, + Mx, = z(Min)
1

which, as before, is equivslent to

(14) AXy = AX, =7 -7, XKy 20



