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I. Introduction

The algorithm of this paper besed on the dusl linesr programming
slgoritha ([(1), (6))snd the recently developed bound escalation msthod for
The hybrid-dual algoritha is divided

into two stages. In the first stage & linser program is solved to yisld
an optimel loluu?on in fractional-valued variables. The finsl tadbleau
given by the dusl linear programming method is then transformsd and expanded
into & new tadblesu of & ruadily specifisble canonicel form. In the second
stage of tho slgoritha s variant of the bound escalstion method is applised
to the new tableau--and to the tablesus lucco.uin).y derived thereafter--
until ons or more of a distinguished set of columns (and a corresponding
set of rows) attains a predetermined configuration. At this point the
indicated rows and columns sre discarded, never to be recovered, and the
mthod continuss recursively with the bound escslation slgorithm

until the problem is solwed. ‘___/

It mey be observed that the sec stage of the hybrid-dusl slgorithm
works almost exactly in reverse of Gomory's originsl integer programming
method [L)- um the hybrid-dual method, once the frasctional linesr
programming tableau is transformed and expsnded, no new constraints or
veriablss are added thereafter; instead certain variadles and constrsints
are deleted as the solution process evolves. In contrast, the original
Comory method begins with the final linsar prograsming tableau and
progressively incresses its dimension, though the tablsau may be kept froam
exceeding s certain size by weeding out nsv varisbles when they emsrges froa

the nonbesic set.
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The algorithm of this paper is based on the dual linear programming
algorithm ([1), [6]))and the recently developed bound eccalation method for
solving integer linear programs {3). The hybrid-dual algorithm is divided
into %wo stages. In the first stage a linear program is solved to yield
sn optimel solution in fractional -velued veriables The final tablecau
given by the dusl linear progreiming method 1s then trsnsformed and expa:ded
into a new tablsau of a readily specifiable caronicel form In tne seco.d
stage of thc slgorithm a variant of the bound escalatio: iethod is ipplied
to the new tableau--and to the tablesus successively derived ticreafter-
until one or more of a distinguished set of columns (and a corresponding
set of rows) attains a predetermined configuration At this point the
indicated rows and coiumns are discarded, never to be recovered, and the
method continues recursively with the bcund escalation slgorithm
until the problem is solwad

I\ may be observed that the second stage of the hybrid-dusl alygoritum
works almost exactly in reverse of Gomory 8 original integer proyrammin;
method /4] With the hybrid-dual method, once the fractional linear
programming tableau is transformed and expanded, no new constraints or
verisbles are added thereafter; instead certain veriablss end constraint:
are deleted as the solution process evolves In contras*, the original
Gomory method begins with the final linear programming tebleau and
progres3ively increases its dimension, though the tableau may be kept from

exceeding a certain size by weeding out new variables when they emerge from

the nonoesic set



Two additional features of the hybrid-dual algorithm deserve mention.
First, it is possible to work with a somewhat smaller tableau than the
standard bv following one of two modified procedures involving r stricted
rules of choice. Second, the hybrid-dual algorithm usually converges
before all of the problem constraints are completely satisfied When
the tableau reaches a prescribed form, one portion of the bottom row may
be added to another to yield the optimal solution immediately. In this way
it is frequently possible to reduce the number ol steps o.herwise requirad
to solve the problem.

The next section int:oduces the notational framework to be used in
this paper, along with a brief discussion of the principa. characteristics
of the dual linear programming algorithm and the bound escalation method 2
The hybrid-dual =lgorithm is outlined in Se.tion 1ll. Theorems concerning
the properties o the algorithm are stated «.ad proved, includirg the
fundamental resull thet convergence to &n optimal so'ution is assured in
a finite number of ste.s for any bounded problem with a nonempty sclution
set In Section IV an example problem is solved in two different ways to

applied to the
:::\:’\::au the workings of the hybrid-duasl slgorithm and computational

featurss tabl«su and alsc to a compressed tableau. In conclusion some

comouta . ional features of the method are discussed.

1I. Notation and Constituent Algorithme

The integer programming problem may be written

Minimire wb * bc

subject to wA > ¢,

W >0, w integer

1 It is not strictly necessi:ry to use the dual linear programming algoritha
as opposed to the primal algorithm. lie have however selected the former in

order to facilitate subsecuent exposition.



where b is an mxl column vector, ¢ is a 1xn row vector, bo is a
scalar, A is an mxn metrix, and w is a lxm row vector whose componentis
we wish to find in order to satisfy the inequalities and optimize the
minimization criterion. We assume that the components of A, b, and ¢

ere all integer. Without further loss of generality we also apecify tha'
the augmented matrix (b A) is lexicographically negetive by row (aee

2) and [6]). The initial tableau for the dual linear programming algorithm

may then be represented as foliows.

bnvl Anom
. T—
bo Clxn

The first column of the tableau represents the objective function to
be optimized, and each subsequent column identi’ied a problem constraint
cbtained by rewriting the inequality wA > ¢ in the form wh Wi - c,

vhere w = (w .., ¥ ) is a lxn row vector of nonnegative "slack’

mel’ men

variebles. The dual linesar programming method recursively transforma the
given tableau intoc a new one by & sequence of pivo. reduction operations
At any step, the pivot element is determined by selocting a positive

entry in the current c¢ vector, then determining t.e unique positive entry

in the associated column which will leave the upper portions of the tableau
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lexicogrsphically negative after carrying out the pivot optl'lt.imn.l The
process is coupleted when there are no nore positive entries in the
‘transforzed) ¢ vector Lo choose frou. A positive component at the base
¢f a eclumn whose entries are all nepative or zero signals that the
feasible solution set of the problem e empty.

Gaua: lan climlration in the dual linear programming algoritim
reserves the ldentity of the original varlables, awd cach tableau defines
a prollem exactly equivalent Lo the origimal. llence (1) uay be used to
represent an arbitrary tableau otained with the dual algorithm after

relndexing. The values of the variables st the optisal solution are

I thon obtidned by setiing uhe variables assoelated with the final | matrix

coual O zero

fodr o the 2ome notation, the initial tableau for the bound escalation

Lo may be cepleted as follows,
A
A
b"Jd ! l'.un le;u
- . |
C
% l 1xn Ixm
|

here, as before, the first column represents the objeective function
Lhe o ecesnive colunns ldentify the problem constraints, This tlne,

Lraints are lefl as inequaliiies an. the nonnegativity

-

andiized explicitly in the last m eclumns.

T Te At eTEGent is alwaye -1, obtained by multiplying the pivot
luw, by L. appropriaste constait. The pivot operation then makes all
er en.ri o Lie same row as the pivot element equal to zero by

g2 & uultiple of Lhe pivot column to each of the other
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Because the bound escalation method works somewhat differently than
the linear programning algorithm, it is convenient to represent the
seneral form of the tableau by ignoring the partition between the A matrix

ani the identity matrix, ylelding a tableau of the form

b1 Aax (min)
(3) o
% C1x(m+n)

g

The solution to the integer progrem:ing problem is obtained with

the bound escalation method when all elements of Cyx (z+n) are nonpositive.

The optimal w veetor then appears as the negative of the vector originally
lying beneath the [ matrix.

To apply the bound escalation method it is desired to create a

tableau which upon suitable indexing may be partitioned as follows.

“Ou) Poocp
(&) ®
Q
(m-p)xp
% dup "

Here D is a pXp square matrix with positive entries along the
main (lagonal and nonpositive erntries everywhere else. Q is a matrix
composed entirely of nonpositive entries, and d is a p-component row
vector at least one of whose entries is positive. We are unconcerned with
the portions of the Lableau marked with a star,

The boun! escalation methol operates on such a structure to obtain
a veetor d° satisfying the followins two coniitions: (1) d - d%D ie

nonpositive integer, and (1i) each of the first p couponents of the



optimal solution vector is at least as large as the corresponding
elemant of cl**.l Once d¥* is cetermined, the bottom row of the tablesu
is changed by subtracting d*F from it, where P is the matrix consisting
ol the first p rows of the tableau, Dy incorporating this procedure
into a recursive process for creatirg the submatrices D, Q, and 4, the
bound escalacion method converges to the optimal integer solution in a
finite number of at.ep-.z

It will suffice here to consider only Lhe case in which D, Q, ard
d constitute a single column of the tableau, In this instance, d and D
each are composed of a single positive element, do and 41 recpectively,
and d* consists of the single element <d;)/d3> 3

If the vector °U (wtn) has &t least one positive component, it is
@asy to create a column of the desired form by the following rules.
First, select a positive entry from the bottom row of the tableau. All
but one of the remaining positive entries in its column may then be
elirdnaled by consecutively selecting any pair of them and subtracting a
positive integer .wultiple of the row in which onc appears from the row
containing the other. The only re-triction on this process is that the
upper portion of the tableau must be kept lexicogrephically negative,
Once a column of the desired form is obtained, it is permissible to add
an integer multiple of the unique row with the positive component to any
other row, provided no entries that were previously nonpositive (ir the
specified column) thereby become positive. More generally, row substrac-

tions arc permissible under any circumstances so long as the tableau is

1. The optimal solution vector is defined relative to the problem reprenent -
ed by the current tableau, ani changes when the tableau is transformed,

2, D, Q, and d need not appear axplicitly in the tableau, but may be generated
by any nonnegative linear combination of the tablesu columns (except fer the

first).
3. We will use <x> to denote the smallest integer greater than or equal to x.
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maintained lexicographically negative, but row adaitions car be carried
out only relative to the D, Q, d configuration in the manner indicated,
except that the component do of d is allowed to be lero.3 These basic re-
sulte provide all that is necessary for the sectiouns to follow.

III. The !lybrid-Dual Algorithum.

We will let (1) represent the final tableau obtained by the dual
Jinear programming algorithm after reindexing. Let A;Xn be the matrix
each of whose entries 1s given by QL = .13 - [‘1.1]’ ana let A:m be
the watrix with entries ‘11 - [.1)]' where .1.1 denotes the element in
the ith rov andjth column of A.} Similarly, let ¢f be the 1Xn row vector

vhose {th entry is et

3 = c'1 - [cj], and ¢" the row vector with Jth entry

- .
s = !."j]‘ {le fo-i of the initial tableau for the hybrid-dual algorithm

is then given by

T 1 w
"bmxl Am Imxm Anom
(5)
Opx1 :Inxn Orem Imm
f W
bo clxn len clxn

We characterize the hybrid-dual algorithm ss follows.
The hybrid-dual algoriths. |
Stage 1. Solve the fractional linear programaing problem with the

2
dual linear programuwing methcd, 2#nd create the transformed tableau (5).

The notation is used to indicate the greatesc integer less thau or
equal to x.
Z. 1t is shown in Section IV how & somewhat smaller tableau may be used
by observing certein additional rules,

3. It may in fact be negative, so long as d, v d Z 0.

1

-

. )
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Stage 2, Apply the bound escalation method to the transformed
tableau, subject to the following modifications.

A. If at any stage an element of the cr portion of the tableusu
is less than zero, its column :ay he treated as the negative of itself
except in the determination of lexicographic ordering.

B. If an element of the cf portion of the tableau is equai v
ero, ﬁnQ if 21l but onu of the elexents of its column are also zero,
ticn the dndicated coluzn and Lhe 1uw conteining tiue wcnte™ elasent may

be removecd from the tableau.

C. If un ele.ent of cf is equal to sero, and if more than ore
component of its cclumn is Jifferent from rero, the column (and some
associated row) may be pat in the form for removal by the method of
Theoreran 3 (to follow). In Lhis fashion n rows and n coluans of tableau
(5) may be removed 1. & finite number of steps.

Do The problem is sclved when Lhe vector sum cf + c' is non-
positive intorer (with deleted entries of cf set equal to zero), amd
the le“ portion of the bottom row is nonpositive. The components of
thie optimal) solution vector; includiing the values of the slack varisbles.
are then read from the bottom row tc the right of cf, with c¥ replaced
by t:f + cw.,

To prove the valility of the algorithm we present the following
Theorems and proofs,
Theorem 1. The integer p:rogramming problem swunarized by tableau (1)
may be solved with the bound cscalation method applied to tableau (5),

subject to the qualification ol instruction A,
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Iroof: Each of the colwmis of the final dual tableau (1) representr
an equality of the form

=

a, . w
j=l i

vhen this is factored into an equivalent pair of inequalities

- '.‘f'J «’ CJ, for ’ - 19 ece »H ﬂ.

we obtain

7 (g, + "a+3>’ ~Cy

To represernt the problem in a tableau suitable for applying the

bound escalation method, we thus hlwe1
L_'!’nzzl L — -
o - I(nﬂn:x(nﬂ-n)
(6) wa pr— -
c
%o axl ‘Cnx; Obt‘nﬂ'n[ -

Ve asaume {irst that b> 0. For the final dual lirear programming
tableau, each component of ¢ is nonpositive, heace -¢ > 0. Relative
to the columns whose bottom row componenis lie in -c, it is therefore
possible Lo carry out the row additions and row sublrections indicated
in the previous section., Since b > 0, it is permissible to subtract
any positive integer multiple of a row in the I nXn partition of the

tablesu from any rcw in the-A partition. We first select only those

1. W%hile the bouna escalation method is guaranteed to converge for an al
integer tableau, the procfis in [ 3] 2lso obviously apply when A, b, &and ¢
are rational. Also, since the original problem was all integer, the slac

variesbles added for the dual linear orogramuing .lgorithm must be integer
as well,



eleuente of -A which are positive, and subtract a large enough multiple
of the appropriate I e matrix row to make each of them less then or
equal to zero, Thus for each element -a,, of -A such that -a

1) 1
is sufficient Lo subtract < -a“ > timesthe jth rowof I nXn’ leaving

>0, 1t

( a4 - 8, (== By m< Ay ) in place of the original 2y entry.

The effeet in other portions of the tableau will be to replace a, . in the

13
A metrix by 84 - [ ‘U] (for a5y < 0), and toc replace the O in row i

and coluan m + J of the matrix by [ a “hen this

I(lﬂ-n)l(m) 1,1] :
procese is carried Lo mapletion the only positive elements in the col-

umns above the -¢ vector will be those in the 1 matrix,

nXn
At this point, it my be poesible te add integer multiples of the

rows of 1 to some of the rows of (the new) -A, Since all elements of

nXn
~A muet remain nonpositive after the addition, the largest multiple of

the jth row of T that can be added to the ith row of -A (for -a,, < 0)

un 1)

is [au ]} . This quantity will be zero for all elements of -A that were

initially nonnegative, 30 that the nultiple may be defined entirely in

terus of the initial - A matrix (for -a,, <0). The adjustments throughout

1

the tableau can thus be specified in emctly the same way as for -a,, > 0

1)
If &ij = 0 the indicated adjustments apply trivially.
The changes in the ¢ vector prescribed by the bound escalation

nethod are readily deteramined by the remarks of the previous section.
For each column j assoclated with an element of -c, do = '°J and

d1 = 1, hence d% =< -¢ J> . Subtracting the approprizte multiples of
the rows of the I e matrix from the -c vector ylelds the value

[ °3] =9y (= -<, ~< -cJ>) for the jth entry of the original -ec.
Carrying out the subtraction for the entire bottom row of the tableau

replaces each ¢, of the ¢ vector with ¢

3 3 -[eJ],andrephcut.ho
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(& + J)=th component oi the 0y;(c4n) vector vy [cy 1, all other clements
remaining unchanged.

Since el components of t.ne.—c portion of the tableau are now non-
positive, we will not i:mediately be concerned with them in applying the
bound escalation metiiod. loreover, il is evicent tnat the colurns assoc~
iated with tiese comporents will always be the negetive of trose colurns
associated with tne original c vector, Hence we mey use the letter to
sumnarize the forver, provided we observe that each of these colunne nay
be treated as its negative (positioned suitably to the right.),,l Collap-
sing tre tableau as indicated, we obtain tableau (5).

Lote: To maintain strict lexicographic negativity, if the final tableau
obtained wiith the duval linear proéraming algoritim is degenerate--tnat

is, if sorme component of the firal b vector is ecual to gzero--t en the forn
of the starting tableau for t-e second stage of the hybrid-dual al ‘orithc
nay nave to be modified slightly. Perhaps the simplest way to accomplist
tne necessary changes is to begin with tableau (%) at a slightly zore
pricative stage. Thue, if b = 0, and if a is the first nonzero com-
porent in the kth row of A, we define a{J = a4 a‘; 0 (for 4 =1,.,.,:),
c§ =cy c§ = 0. All otner :niries of Af, a¥, of, c¥ are ;iven ar
vefore. In practice, when b ¥ O the minor departure from strict lexico-
grapnic negativity whic: may arise from using tableau (5) as criginally
defined ies not likely to hamper tne convergence process--and may in fact
speed it up.

Theoren 2: Hows and columne of the tableau deleted according to instruc-

tion o are irrelevant for obtaining tne optiral integer solution,

1. The "nejative" coiunns nay in fact be ignored in the determination c:
lexicozraphic orderirg since we nay consider tnem appended at the far righs
of tzbleau (5). The linear independence of the rows of (5) assures that
none of ihese rows will becoue all zero.



Proof: Tach column of the tableau associated with cf suscarizes an exact
aquality in nonnegative variables, hence a deleted cclumn represents an
expression of the rorm az = 0. The variavle z associlated with the
deleted row rust ve equal to zerc, and hence the row is superfluous.

Cnce the row is removed, the remainder of the column is obviously super-
fluous as well,

Theorem 3. Ii an elerent of f is equal to zero, then the following
vethod will bring the assiciated .column into the required form for removal
enabling tue deletion of n rows and n columns of (5) in a finite nurber o

steps, i

by the procedure outlined in Section II, put the indicated column in

the form D, 3, d¢ Perform any necessary row additions with the row conta: .-
ing d; (cf D) until, for each elv.l.entq‘oIQ, dy + 9> 0, If all element
of U are equal to zero, the process is completcd. Otherwise, consider the
negative of t.e colurn just derived, and repeat.

Proof: e will use a superscript to denote tne step on which a given D, C,

» structure is obilcined in the above procedure. Wwe note that df (the valu

o

ks

f ¢ on the second step)must bc lorived ircm the conponents of —Ql o Sin

1
rone o) the positive eleinents of -] can be increased by the row subtractions

specified in Section 1I for creating the D, Q, d form, it follows that d§

740

3%, where -ql is the raximum corponsnt of -Ql, But the method specifies
that d% + ql > 0, hence d% > di.
iz = fixed positive quantity. Thus the elements of -Q (Which are non-

Siudlarly, ¢f > d¥*1 + h, where h

regative and strictly less than ¢_) nust eventually all be driven to zeic

i
If it is possible for wotlen tc be ocolved -~ in which caso the element: of

‘r ven te foreed to zoro - all a of the corresponuing columns (and some n Tows)

may therefore eventuully be el .minated.

1. If all nonzero components -f the colurn have the same sisn, then by the
reasoning in the proof of Theorem 2, al)l rows of tlc tilleau containing the
nonzero elements ray be eliminated simultaneously. We note also thati the
optinal solution may te obtained before the indicated n rows and columnse zre
.elsted




Theorem L. The optimal solution vector to the problem is obtained as in
instruction D.
Proof: By the nature of the bound escalation method, the vector to the

right of of (initially the O vector of (6)) gives integar values

1X(m*n)
for the originsl problem varisbles which will produce an objective functicn
value egual to the current bo’ and undersatisfy (or oversatisfy) each of
the original constraints by the positive (or negative) amount of the
corresponding component of the current cr vector. At any stage we may
increment or decrement the values of the variables associated with the

original -1 matrix of (6) without changing the objective function

nXn
value. Suppose that it is possible to adjust the -1 . varisblec in such
e Jay chat ta) 211 of the problen constraints are satisfied, and (b) al) cf
the problem variables are nonnegative integer. Since bo is monotone non
decreasing from one tableau to the next, it follows that the solution so
obtained is optimal. BPBut to satisfy the first n constraints as strict
equalities (if no other varirbles are to be changed), each of the Ian
variables must be set equal to the corresponding component of cf- This
may Le represented by adding ct to ¢". The conditions of instruction D
then correspond to the conditions for achieving optimality, and the theorun
is proved.

We may note parentheticslly that, since the components of ¥ are
always integer, the components cf ¢:f at the optimal solution must be
integer also Moreover, if lexicographic ordering of the tabiesu is
rigidly masintained, tha first nonzerc component of cf must be negative,6 cincs
with the bound escalation metnod the bottom row of the tableau must be

strictly increasing ! ‘exicographicelly) each time it is changed.
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Theorem 5  The hybrid dual elgerithm will converge in @ finite number
of steps for any problem containing a nomepty integer solution set
bounded for optimality

Proof: The theorem follows immediately from Theorems 1 through L and

the convergence properties of the dual linear programming algorithm and

the bounc escalation method-

IV. Example Problem snd Computational Experience.

To jllustrate the hybrid-dual algorithm we will now solve the follow

ing problcom
Minimize 2"1 - 6\:2 » hvs
subject to '1u1 ¢ ai2 © 1\45 > 1
¢ lw, v Mg > B
W, - lw, ¢+ w, > B
v, '2, '3 > 0
Stage 1 (the dual linear programming algorithm):
(o) ? 1 2 1 (1) -7/2 /2 S/z  1/2
3 2 1 -1 0 ~1 0 0
L 1L 2 3 5/2 | Ve 3/2 1/2
2la o o 32 | w2 vz an
0 0o -1 0 0 0 -1 0
0ol o o a_ 0 0 0__ -1
0 1 8 8 2/2 /e 9/2 22{2
(i1) -22/7 u/_;z 16/7 V7
e P
0 0 0 -1

-15/17 87 /1 /1

s/11 -7 3/7 2/7
'151/1 18/ -8/17 23/7




The optimal solution read from the final tableau is thus w, = 0, w, = 13/7,

1 2
we = 23/17, W, = 0, wg /7, wg = 0, yielding an objective function value
of 131/7.

The simple form of the bound escalation method outlined in Section I
will suffice for the second stage. We will indicate by an srrow the colu:n
relative %o whichthe row additicns and subtractions are to be made TFor
definiteness, all such operatiors will be carried out with the lexico
gr=aphically least negative row, chosen from among those in which the
indicated column .has & positive em.ry«,1
We obtain the initial tableau for Stage 2 oy putting the components

of the w vector in the order (w,, ¥ , ., W,, Vg, W)

Stage 2
(o) 22/7 L/7 2/7 6/7 1 0 0 0 2 1
13/7 | 8/1 S/7 Y7970 1 0o o0 o 0
S/t \ 6/ 8/1 2110 o0 1 -1 9
0 1 0 0 c 0 o 1 o0 o0
0 0 -1 0 o 0o o0 o0 11 o
R ST 3. 18 Rl B B R R
131/7 /1 b/T 5/7 0O 0 0 -2 1 U
(1) -2 1 04 1 o0 -5 8§ 2 4
8/1 S &1 A1 ' 1 1 o 0O
S/1 & & 21 1o o 1 0o o0
0 1 0 0 g 6 o 1 o0 0
0 0o - 0 B R
-15/7 18/t 9/ -v/1rjJo o 5 -8 o0 1
1L6/7 A11/7 S/1 /110 o0 5 1 A 4

I" This rule is not slways the most efficient for either the simple or tie
more general form of the bound escalation method With a slight embellish-
ment the ruls provides the besis for Comory's all integer algorithm (5],
which can be showh to be a varistion of the bound escalation method under
restricted alternatives of choice (see (3] )
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In obtaining the next tableau, the fourth column becomes all sero axcept
in the sscond row, hence the indicated row and column are deleted.
(14)

-1 | -2 i!1 0 -3 3 2 -
310 i1l]o 2 -1 1 0 0O
0{-1 ¢clo 0o 0 1 0 O
olo -AJ0 o o0 0 1 o0
213 110 -1 & -4 0 3
22 *: A] 0 =1 2 0 -1 -4

The problem is now solved. ‘s add the final ef (=2 ~1 0) to the finsl
¢’ (0 -i -4), ylelding the optimal solution vector (0 -1 2 =2 -2 «4).
We will not stop, however, but will caontinue with Stage 2 of the algorithm

Lo 1llustrate the urocese of aliminating rows and columns from the tableau.

(i1d) : (1v)

1l=1]1 0 ~3 1 2 -1 <111 0 =3 1 1 =1
-3 110 2 «1 1 0 O -310 2 =1 1 1 0
C -| e SO B B e =110 -1 -
AAl1l0 2 410 2 2|0 -1 2 2 -2 -4
22 ' 0 =1 =2 = =1 =&

Fa

At the optimal integer solution the vector (0 <1 «2 2 -2 =)
in the final tableau corresponds to the negative of the reordered vector
("1' s Ygr Yo Ve ¥y ), &nd the objective function takes on the value 22.
We have here deleted all n rows and columns (n = 3) epecified according to
Theorem 3.
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It ie generally possible to operate with n fewer rows from the start.

We may in fact use only the tableau

(7 b At 1 \d
b " cf 0 c'

In order to apply the hybrid-dual method to (7), the algorithm mist be
modified 28 follows.
Stage 1: (As before. )

Stage 2: A If °§ < 0, ve may replace cf, with cg - [°§ 1, c‘; with
Ul } 4 i g by - 4 w w L 4
cg ¢ [egl ag vdth ag,; - [ay,), and a ; vith a;; + (2,1

fori=1,. .,m). Ye do not consider the negetive of the column in which

.o
o appesrs,

Ir c.: > 0, replace ci with c§ . c: ’ c-:', with O,

b 4 - w w : -
agg with &, , + &, and a,, with O (for 4 = 1,...,m)-

B. #C. X cg ~ 0, the row of tableau (5) containing the Jth row of

I . umay be annexed to (7), and the method of Theorem 3 used to bring

nXn
the indicated column ani some row into the required formm for removal,

D. The solution is obtainad in the same fashion as for the regular
ngbrid-dual elgoritim,

We may Justify the modified method applied to tablesu (7) by observing
that it 1s never necessary to alter the -I , portion of (5) Af we slect
not to add a multiple of any of the other rows to it, The adjustments of the
tablesu when a component of cf is negative then become the same as thoss
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specified by Theorem 1 in creating (5). The adjustments when a component of

¢ is rositive similarly result by acknowledging the implicit existence of
the T nXn matrix,

As with Theorem 1, the analysis is strictly correct only if b> O,
If some compcnent of b becomss zero it may then be necessary to deviate
from the preceding to maintain lexicographic negativity. The conditions
for deviation follow the ordinary rules for applying the bound escalation
method, and hence do not require additional specification. The result is
that one or more of the n rows assoclated with the 'xnh patrix may have
to be expidcitly represented in case of degeneracy. However, we suggest
as in Section III that the departure from strict lexicographic negativity
brought about by ignoring degeneracy in the b vector relatiwe to the
rows of -1 will not normally interfere with convergence. :

To illustrate the preceding ideas more thoroughly, we will rework
the axanple problem sol.ved mli.u"_a Using the condensed representation,

we begin with the first tabiscau for Stage 2.

(o) -22/71 &7 2,7 6M|1 0 O
3/7 37 /1 Y70 1 0O

=5l1 .67 37  2f1l0 0 1 -1 0
Y7 |7 &/7 S5/710 o0 o :

(1) 1] =2 -1 O

~8/7| =3/7 2/7 - 1-11 0 0 2/7 c

Wo/71-11/1  =5/1 <A/7 0 =3 1 =1 -4 2/7 <2

1. If lexicographic negativity is lost in thie fashion it may always be
regained by inserting a oolumn consisting of all negative coefficients

5 593 3 4 0 1

)

b §
0

=43 62 _2A41 2f110 o0 1 0 0 34 2 _o.
o-

immediztely to the right of the b vector, with a sufficiently large negative

number in the bottoa row to make the constraint compatible with any optimal

solution.
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“he two colwiis at the end of the tableau indicate the columna to roplice
colum 3 end column 9 aceording to the rule of the modified instructien A.
Selecting the now column 3 28 the next column to put in the D, 0, d form,

we obtalrn the following tableau.

Col. 3 Col. ¢
(44) 1 =2 0 o1 o0 -3 3 1 = 0 1
3/7 9/7-V71-3/1 {0 1 2 2 0 O 6/7 -1
=57 _6/7 3/72/7 Lo o 1 -1 o o 31 . O
By 1237 V131 10 0 -4 2 -2 -4 6/7 -3

AR R T et O Tl RN S G T
/-9 &M 3Mjo 1 2 2 -1 O

_-2/112 s 18 = 3 45 1 0
S i< 5 oo 4 & 0 @ «4

The problem s now solwved, and the final solution vestor is obtained by
sdding (-2 0 0) to the(0 -2 &) vactor on the bottam row, yieliding
(0 -1 -2 -2 -2 -4) as bafore.

Two pointe of contrast may be noted betwsen tho regular hybrid dual
elgorithm and the modified method relative to the jreceding example protlem
First, the modified mathod did not do so well as the regular method in
prepering columns of the tableau for elmination (though the smaller dimension
of (7) served adequately vo compensate for this in the present instonce).
Secoid, the modified wothod required an additiona) step to obtain the optim: L
solution, It mey be observed that with the regular method the solution wes
obtained 5y focusing only on column L. Following this grategy with the modified
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rethod requires yet another step heyond the number needed above, The reasc

why this might be so is suggested in [3), where it is shown that it is generally
desirable tc make row x additlions with the bound escalation method whenever
possible. Suppressing the ~I e matrix in effect rules out the chance

for some of these additions. Thus, it may be in general that the modified
method requires more steps to obt.a‘in an optimal solution than the regular
method, perhrnps partially offsetting the savings deriwed from using a

smaller Lebleau. Moreover, the initial difference in tableau size may be a
transitory one due tc the superior ability of the regular hybrid-dual

algorithm to elimirate rows and columns.

‘here is another way of \nrﬁn; with a substantially smaller tableau
then (5), while still retaining the ability to perform row additions
relative Lo the vrIan matrix. The key is to consider the columns assoclated
with c" mo at & time, applying the method of Theorem 3 to each in successin
It is ovident that the element do of d does not have to begin sero, but may
bs driven to gero exactly as the elaments of . Thus each colum (and an associated
row) is eliminated befcre moving Lo the next (unless the solution is obtaird
first). In thds way only a single row associzted with the “I xn B8trix necds
to be included in the tablesu at any stage. Such a procedure corresponds
to the steps actually taken in solving the example problea in this paper, «nd
seans to be aboul as olluclive ap any other mesthod for solving the simple
problems on which we have tested the algorithm to date. If this method
were used consistently a fusther savines in tehlem eise coulid be efforted
by lotting the initial A matrix be scual to the A matrix of the final

linear programming tableau, exceut for the single column to which the methcd



of Theoreu 3 was to be applied. Since none of the operstions would
affect cclumn m + j of I(n-rn)x(_m) of (6) until column j of A was itself
operated on directly by Theorem 3, not all of the columns of I(mn)x(m)
would need to be given explicit representation. This would in effect
produce a constant tableau size n - 1 rows and n - 1 ocolumns smaller than
(5) until the last column of AI was eliminated, for an old row and column
would be dropped each time 2 new row and column required explicit
represeriiation. A possibility that might be worth considering would be

to segregate the vector to which Theorem 3 was to be applied (along with
the objective function vector), until it was reduced to the indicated

form for removal. Thereupon the transformation which caused the reduction
could be applied to update the remainder of the tableau.

Though we have not exemplified this second method of tableau
reduction, since it is relatively straightforward, we would expect it to
be ;referable to the modified method based on tableau (7) in meny
cirmastances. As a general rule, however, the price of using either of
the szaller tableaus is a reduction in the number of altemutives of
choice, -nd we have yet Lo discover in which c ases this price is greater
or less.

Sone comments on the form of the Af matrix are in order. It wae

shown in Theorea 1 that this matrix results simply from applying the bound
escalation method to each of the =olumns associated with the A matrix of

tableau (6). It ie interesting to note that the resulting constraints are
in fact "Comory cuts" of the type used in his first integer algorithm. By

cderiving these constraints with the basic transformations prescribed by
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the bound escalation method, we have shown how each one may not only

be appended to the tableau as in Gomory‘s first algorithm (in addition

to the esnsiraint from which it was derived), but may in fact "replace”

its parent constraint, provided our rules for operating on (5) are
observed.* Moreover, instead of using the linear programming pivot
process, which may require the generation of other derivative cuts, we
proceed directly with the bound escalation method in conjunction with
Theorem 3, chaving off portious cf the tablean acs they a Llain the specified

form

Te g2t 2 rough idea of th- eomputational performance of the :jouric-
dusl &lgorithm we have solved ohv_on additional problems with the method

For corparison, these problems wsre also sclved with the two integer

prograoming algorithns developed by Ralph Gomory. The seope of the testig

wa3 extremely limited: none of the problems was larger than three variacles

and three inequalities. lo recl conclusions, of course, can be drewn. lovever,
for t - problore mrawined, the hybrid-dual method required fewer stepe 1. :lmost

every case than the nusbor of pivots required by the all-integer algoritiu

1. For edaditional (non-Gomory) cute which may be obtained with the
transformations specified in [3), and which alternately may be used as a
basis for the initial tableau of Stage 2 of the hybrid-duisl algorithm,
see (7] An interesting feature of these latter cuts is thut both
positive &nd negative coefficients muy attach to the variubles associated
with the A matrix of (6), as contrasted with the all nonnegative
coefficients of Af
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On the other hand, no marked difference was observable betwcen the hyb:rid-
du=) algorithm an. Goeoo.y'sc original integer progren.ing wellicd, the hybris
dual algorithm doing elightly better on some of the problems and slightly
worse on others. Both methods solved 8 of the 1l problems in from one to
three steps aftor the lingar pmp\-hg salution was oLtalned, and cclvsd
vae 1w lning three problems within six stepe after the linear programming
solut An edge should be given Lo Gomory's first integer programming
elgori thum for the problems testec, however, because of a smaller average

tableau size .l

Further investigation is needed to determine relative
performsnces for problems of higher dimension and ccaplexity.

It might be noted that, because of the simplicity of the problems
examined, computational advantages of the general bound escalation method
(in contrast to the simpler version presented in this paper) were not
exploitedi. For problems in which the D, Q, d structure may be manufecturec
to exhibit certain characteristics (see, e.g., exsmple problem 2 of [3],
the general bound escalation method by iteelf is appreciably superior tc tio
algorithms discussed here. It would be interesting to know whether ite
incorporation into the hybrid-dual algorithm might prove similarly effective
in solving still other classes of problems which have not readily yielded
to either of Lomory's algorithms or to the bound escalation method in its

independent form.

1. The second procedure outlinec in this paper for reducing the cimension
of (5) would have substantially elimineted this difference. We did not
apply the modifed method based on tableau (7).
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