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SUMMARY 

It la shown how the functional equation technique of 

dynamic programming can be used to determine the optimal, 

second best, third best, etc., policies for various deter- 

ministic and stochastic multistage decision processes. 

This Is of Importance In various problems in combina- 

torial analysis, network and switching theory, feedoack 

control, and sensitivity analysis.  A routing problem Is 

discussed In some detail. 
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ON  k-TH BEST  POLICIES 

Richard  Bellman 
Robert  Kaiaba 

1.     Introduction 

In  recent  years,   a  ^ood deal  of effort  has oeen devoted 

to  the  study of the  theory of multistage  decision processes, 
r     1 

or dynamic programming, see 1 .  The emphasis has oeen upon 

analytic determination of optimal policies and upon the 

numerical determination of these policies and the associated 

return functions through the use of certain algorithms carried 

out by means of high speed computers. 

In a number of situations where only a finite numoer of 

posslüle decisions are possible, there is no question as to 

the existence of an optimal policy.  However, If the number 

of possibilities is large, then no straightforward enumerition 

of cases is feasible, and one Is forced to develop more eiegant, 

if less simple, techniques.  In the course of doing this, the 

question arises as to whether or not It is possible to determine 

not only the optimal policy, out the next test policy, and so 

on, i.e., the preferred suuoptlma^ policies. 

Not only is this a challenging mathematical question, but 

as we shall discuss below. It has slgnl: Icance In connection 

with "sensitivity analysis" and a variety of network proulems. 

Before considering the general problem, we shall discuss 

an Interesting particular problem, that o,' "optimal routing." 
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2.     An Optlrnai  Routing  Problem 

Consider a network,  plane or otherwise,   consisting of    N 

nodes and Interconnecting  links.    Associate with any two nodes, 

the  1-th and  J-th,  a quantity,    t..,    which we  can for 

intuitive  purpooes call  the  time  required to  travel   from    1 

to     J    along the connecting  link. 

It  Is  Important  to keep  In mind  that    t. .     need not  equal 

t..,    and that some of these quantities need not  be finite. 

The  topologlcal meaning of this  last comment  Is  that    1    and    J 

need not  be  connected.     Finally,    t. .,     the time of traverse, 

need not necessarily be proportional  to the actual  "physical 

distance"  between the nodes    1    and    J. 

If we  think of node     1     as  the  1-th  state of a system 

^hlch can only be  In one of    N    states,  and If    t..    Is taken 

to  be  the  energy  required  to  transform the  system  from state 

1     to state     J,     then we are  seeking the control  decisions  to 

be made  in order to brln£ the  system from an  initial  state    1 

to  a  desired  terminal  state     N    with minimal  expenditure of 

energy.     This  Is a  fundamental  problem of automatic control 

theory. 

The problem of tracing  a  path of shortest   "time"  between 

two  c^lven points of  the network,     1     and    N,     has  been  considered 

by a  numoer of authors.     Some  published  results  are contained  in 

Mlnty 9|, Ford [6], Dantzig [^J,  and Bellman [2 Bock, 
r    1 

Kantner and  Haynes   13   ,  have  discussed the determination of the 
r 

k-th shortest path, as have Hoffman and Pavley l 7 •  For a 

general discussion of this topic and related optimization 

problems, see Kalaba 8 . 



P-i4l7 
i 

Our aim here  Is  to   discuss  this  latter problem using  the 

functional  equation  technique of dynamic  programming. 

Although  the  original   question  Is  that  of tracing minimal 

paths   from    1     to     N,     we  Imbed  this problem within the   family 

of problems  requiring  the  determination  of minimal  paths   from 

a generic point     1     to   the   fixed point     N.     This  apparent  com- 

plication of the problem  enacles us  to  employ  functional 

equations.     First  we  determine  shortest  piths,  then second 

shortest. 

We  Introduce  the  sequence of quantities     |ui'»     where 

(2.1) ui   =  the  tlme   required to  go   '"ron    1    to    N    using 

an  optimal   policy,     1   =   1,2,...,N—  1, 

UN   =  0. 

Observe now  that   If  the  Initial  point   Is    1     and   li   the 

Initial   decision  Is  to  go  directly   from     1     to    J,     then  the 

remainder of  the  x^oute  must  certainly  oe   selected  to  minimize 

the   time   required  to go   from    J     to     N.     This  Is  an application 

of  the  principle  of optlmallty I . 

*/e are led oy this observation to the system of equations 

(^.2)    u. =mln(t..+u.),  1=1,2,...,N-1, 
1   J/1   1J    J 

uN - 0. 

Although these equations are Interlinked In such a fashion 

that they cannot be solved recursively, there are several jjulte 

efficient  ways  of obtaining  the   solution,   discussed  In   i^,b   . 
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Here we »nail merely ooserve that If we define the new sequence 

ju.   by means of the relations 

(2.3)    u^ » t,N,  1 = 1,2,...,N - 1, 

0 
UN '  0' 

and 

(2.4) u^41 = mln (t  4 u k),  1 = 1,2,..,,N- 1, 
i     j^   iJ   J 

k-fl 
uN   - 0, 

k 1 for    k = 0,1,2,...,     then the sequence     )u.    ^    will converge  In 

a monotonically decreasing  fashion to  the  sequence     iu.^     as 

k —► oo .     In actuality.   It  Is easy to  see  that    k    need never 

be determined  oeyong the value    N — 2. 

Since only  additions and comparisons are  required,   and 

since only a  small  memory  Is needed,   this  is a  feasible  com- 

puting scheme   for either hand or machine  techniques. 

With this  background,   let us treat   the problem of deter- 

mining a second  shortest path  from    1     to    N.     Let  us  introduce 

the new notation 

(2.5) mln.(xi,x  , ...,Xj.)  » \ he k-th  smallest  value of the 

quantities    x. . 

This   function  is not  defined  for all     k:     for example.   If all 

the    x.     are equal,   there is no  second  smallest  value. 

Let us  Introduce   the quantities     v       defined as   follows: 
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(2.6) v.   -  the second  shortest  path length  from    1     to    N, 

1   =  I,^#.-..,N - i.     If It exists    (v1  < u.); 

'N 0. 

In order to obtain equations connecting the  various members 

of the sequence     W< ; *     we argue as   follows.     If a path  from    1 

to    N    Is  to  be  second shortest,   then whatever the  Initial choice, 

the continuation must De either a shortest path or a second 

shortest path.     It  follows that     v.     must  be equal  to one of the 

expressions 

(2.7) mln  (i,   ,  + u.) 
J/1^     1J J 

ml n  (t 
J/I i

x   U J vj. 

Since   It  must  equal   the  smaller o:'  these,   we ootaln   finally   the 

desired relation 

(2.6) v.   =  mln mln  (t +  u   ) 
J/l2     lj J 

mln  (t   , +  v   ) 
J/l1     1J J- 

1 

nee  the   sequence     iu.;     has  oeen computed,   the  sequence 

can  L>e determined using successive approximations  in the 

fashion outlined  above. 

j.     General   Discrete  Deterministic   Processes 

Let  us generalize  the   foregoing considerations  by  con- 

sidering dynamic  programming processes of the   following special 

type: 
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(3.1) (a) The  state of the system Is specified  oy a  finite 

dimensional  vector,   the components of which can 

assume only a  finite  set of values, 

(b) At each stage,  we have a choice of only a finite 

set of decisions. 

The problem of determining an N-stage policy which maxi- 

mizes a prescribed  function of the   final  state is then of 

completely  finite nature,  and  it  is  sensible to ask not only for 

an optimal policy,  but also a next  best policy,  and so on.     We 

consider all policies  leading to a maximum retu^Ti as optimal or 

first best,  all policies leading to a return that Is  less then 

optimal but at  least  as great as all others as  second  best,  and 

so on.    Why we are  Interested in ordering policies will  De 

discussed oelow !n Section 6. 

Let    g(x)    denote the criterion  function measuring the 

value of the  final  state,  and  let     ^(x)]     denote the  set of 

allowable decisions,   resulting in  transformations of the state 

_r the system at each stage.    Then,   1f we  introduce  the  function 

(3.2) ^N^
X

^   ^  the  return  from an N-stage process obtained 

using an optimal  policy,  starting with a 

system in state     x,     N  »  1,2,..., 

we obtain in the usual   fashion the  relations 

(3.3) VAx)   =  max g(T  (x)), 
1 1 1 

fN(x)   =  max   f^CT^x)},     N  =  2,3,  



P-1417 
7 

Next,   let  us Introduce   the   functions 

(3.4) fN       (x)  =  the return  from an N-stage process with the 

system Initially in state x, using a k-th 

best policy. A k-th best policy produces a 

return which Is smaller than all l-8t,2-nd, 

...,{)<. — i)-8t best policies, out which Is 

at least as sreat as the return produced by 

all other policies. 

In particular,  we have 

(3.5) rN(x) = rN
(1)(x). 

Another application of the principle of optlmallty  leads to the 

relations 

(3.6) rN
(k)(x) -maxk[r^](Ti(x)),r^|(T1(x)),...,r^(T1(x))j, 

N = ?,3,..., 

(3.7) fi
k(x)   - maxk gd^x)). 

It   follows  that   the  terms  In  the  sequence     fy     '(x)^^^     (x),..., 

may then  be  determined  recursively,   for suitable   ranges of    N 

and    x.     At   the  same  time,   the  appropriate decision  In a k-th 

best policy   Is  determined  in  terms of the  state  of the  system and 

the  time  remaining oefore  temlnatlon of the process. 

As    k     Increases,   the dimensionality of the  problem 

Increases.     The  memory  requirements are directly  proportional 

to    k. 
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U. Patha Most Likely to be Available in a Network 

Once again, let us consider a network of N nodes numbered 

from 1 to N.  The link from 1  to  J  Is assumed to be 

available for service with probability p..,  and the availa- 

bilities for the various links are assumed to be Independent. 

Consequently, we are Involved In a stochastic situation. 

We first show how to determine which patha from  1  to N 

have greatest probability of being available for service, and 

then Indicate how the second, third, and other greatest paths 

can be calculated.  This problem Is an Important one In tele- 

phony where one point In a switching network can be connected to 

another via several different paths; If the most likely paths 

are unavailable, then the second most likely may be scanned, etc. 

Let 

(4.1) u. « the probability that a path from 1  to  N  Is 

available for service, the path being an optimal 

one. 

Once again, upon employing the principle of optlmallty |i , we 

have 

(4.2) u. » max P.,u,  I = 1,?,.,.,N- 1. 
1  J/1  lJ J 

These  equations can be  resoived usln^  successive approximations, 

and,   as before,  the method Is a method of exhaustion;   i.e.,   It 

converges after a   finite number of stops  bounded In advance. 

Next,   let  us  Introduce 
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(4.3)    v  = the probability that a second oeat path Is 

available for service. 

Then we have 

max P, .v 
J/l  1J J 

(4.4)    v  - max / ,  1 = 1,2,...,N - 1. 
max9 P,.u 
J/l2  1J J 

The solution may now be obtained by successive approxi- 

mations . 

^ . .tochastlc Decision Processes 

Let us return to the deterministic decision process dis- 

cussed In Section 3. We wish to modify this process, though. 

In that we shall now assume that the result of making decision 

1, with the system In state x,  1s no longer precisely known. 

Tn Its place, we merely know that there Is a certain probability 

that the system is transformed ln-o the stite y,  which we de- 

note by  dG(y;x,l).  The objective of the process will now 

become that of maximizing the expected value of a given 

function g(x)  of the final state. 

i.et 

(5.1) ^K^Xi   r   ttie exPect'ecl  value of the  return   from an 

N-stige process,   beginning in  state    x,    and 

using an  optimal   policy. 

For a  one-stage  process,   we   find 
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('3.2) f  (x)   -  max   / g(y )d0(y ;x,l), 
i 1 

where the  Integration la over all  states    y.     For the N-stage 

process,  we have 

(5.3) fN(x)   =  max ^ ^(y )dG(y ;x,l),     N  -   1,2,  

For the determination of suooptlmal policies,  we  introduce 

the  functions 

(5.4) f *   ^(x)   - the expected  value of the return  from an 

N-stage process,   beginning In state    x, 

and using a k-th best  policy. 

Using the  same  reasoning as earlier,  we are  led to the   formulas 

/ 

(k) 

/;f U    ^l 
(i) (y)dG(y;x,l), 

(2) (5.5) V    ^)   = 'naxk<;/rrf_1
v^(y)dO(y;x,l) 

^^ Vl(k)(y)da(y;x'!)' 

(M (5.6) fi
lK;(x)   .  maxk   /;g(y )da(y;x,l ), 

which permit  the   recursive determination of the  functions de- 

fined In Equation  (5-4)  along with  the  appropriate policies. 

In effect,   we  have  to  compute a   sequence of  functions  of the 

variable,     x,     which  represents   a  basic  simplification  if    x 

is of dimension three or  less. 
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6.     Sencltlvity Anaiysla 

Let  us now explain the  olgnlflcance of  the   foregoing  reoult» 

In connection with the actual  solution of physical  problems. 

As we know,  whenever we  construct  a mathematical  model  of a 

real  situation,  we make  certain  compromises,   or approximations, 

as  they are more diplomatically  called.     It   Tollowa that an 

optimal  solution to a mathematical  proolem may not  be an optimal 

solution  to  the engineering or economic  problem under considera- 

tion.     There  are now  two alternatives.     We  can either complicate 

the mathematical model  to  remove  this difficulty,   or we can  look 

for approximate  solutions of the  mathematical  problem which  more 

nearly  solve  the physical  proulem.     -Vhlch  step we   take depends 

upon the available time,   the  coot,  the  utility  of  Improved 

solutions,  and  so on. 

If we  are   Interested  In  finding approximate   solutions  of  the 

mathematical   proolem,   then   the   foregoing  techniques  are  useful. 

In  somewhat  the  same  context,   we are   frequently   forced,   be- 

cause of  the   limited memories  of  computers  and  their slowness of 

computation,   to  use much  coarser grids  In  ooth  space  and  time 

than we  would   like.      Sometimes,   we   ire   forced   to   retain  this   type 

of  solution   for want  of  better,   while,   occasionally,  we  can  use 

these  crude  solutions as   Initial   .ipproxlmatlons  to   be  successively 

Improved. 

One  way  o:"  evaluating  the  meanlngfulness  of  a  coarse  approxi- 

mation   Is   to   examine   the   Dehavlor of  the  nelghuorhood  cf  the 

optimal   policy.      If there   Is   ■oo   drast'c  a  change,   we  can  be 

assured   that   the   '"omiulat 1 on   !s   too  crude.      If  the   change   la 
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Blight as we go from optimal to second best, from second best 

to third beat, and ao on, then there la a chance that we are 

getting worthwhile results. 

The numerical solution of any physical problem must 

always be subjected to a stability, or sensitivity, analysis 

cf this type. 
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