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SUMMARY

It 18 shown how the functional equation technique of
dynamic programming can be used to determine the optimal,
second best, third vest, etc., policles for various deter-
ministic and stochastic mulitistage decision processes,

This 18 of importance in varlious problems in combina-
torial analysis, network and switching theory, feedback
control, and sensitivity analysis. A routing problem 18

discussed in some detall.
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ON k=-TH BEST POLICIES

Richard Bellman
Robert Kalaba

l. Introduction

In recent years, a good deal of etfort has oeen devoted
to the study of the theory of multistage decision processes,

r 3

or dynamic programming, 8ee \li. The emphasis has veen upon
analytic determination of optimal policies and upon the
numerical determination of these policies and the associated
return functions through the use of certain alzorithms carried
out by means of hlgh speed computers.

In a number of situations where only a finite numoer of
possivle decisions are posasible, there is no question as to
the existence of an optimal policy. However, {f the number
of po3sibilities 18 large, then no straightforward enumerition
of cases 18 feasible, and one !8 forced to develop more e.ezant,
if less simple, techniques. In the course of doing this, the
question arises as to whether or not it 1s possibie to determine
not only the optimal policy, vrut the next hest policy, and so
on, {.e., the preferred suvoptima. policies.

Not only 18 this a challenging mathematical question, but
as we shall discuss beiow, it haa signi!iciance In connection
with "sensitivity analysis' and a varlety ol network proovlems.

Before consldering the yeneral problem, we shall discuss

an interestin, particuiar problem, that o' “optimal routing.”
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2. An Optimal Routing Problem

Consider a network, plane cr otherwise, consisting of N
nodes and interconnecting links. Associate with any two nodes,
the i-th and j-th, a quantity, tij’ which we can for
intuitive purposes call the time required to travel from 1
to J along the connecting link.

It 1s important to keep in mind that t1J need not equal
tJi’ and that some of these quantities need not be finite.

The topoiogical meaning of this last comment 18 that 1 and J
need not be connected. Flnally, tiJ’ the time of traverse,
need not necessarily be proportional to the actual '"physical
distance” between the nodes 1 and .

If we think of node 1 as the 1-th state of a system
which can only be In one of N states, and if t1J is taken
to be the energy required to transform the system from state
1 to state J, then we are seeking the control decisions to
be made in order to bring the system from an initial state 1
to a desired terminal state N with minimal expenditure of
energy. This is a fundamental problem of automatic control
theory.

The problem of tracing a path of shortest "time" between
two o~iven points of the network, 1 and N, has been considered
by a number of authors. Some published results are contained in
Minty [9], Ford [6], Dantzig {“,5], and Bellman :2]. Bock,
Kantner and Haynes E}], have discussed the determination of the
k-th shortest path, as have Hoftfman and Pavley [7]. For a
general discussion of this toplc and related optimization

”

problems, see Kalaba 8].

(.
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Our aim here 13 tc discuss thl!s latter problem using the
functional equation technique of dynamic¢ programming.

Although the orizinal question 18 that of tracinZg minimal
paths from 1 to N, we 1mbed this problem within the fam!ly
of problems requiring the determinatlion of minimal paths from
a generic point 1 to the tixed point N. Thls apparent com-
plication of the problem enacles us to employ functional
equations. First we determine shortest paths, then second
shortest.,

We introduce the sequence of quantities iuig, where

(2.1) u, = the time required to go from { to N using
an optimal policy, 1 = 1,2,...,N—-1,

uN = 0.

Observe now that {t the initial point 1s { and {! the
initial decision 18 to go directly from 1 ¢to Jj, then the
remainder of the route must certainly ne selected to minimize
the time required to xo from J to N. This {s an application

of the principie of optimality [l].

Ne are led by this observation to the system of equations

(2.2) u, =mn (t,, +u,), t=1,2,...,N-1
1 1 » y & ’ 14
PSR
uN = 0.

Altiiough these equations are interlinked in such a fashion
that they cannot be solved recursively, there are several julte

] o
efficient ways ol obtailning the solution, discussed in 2,0 .
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Here we snall merely oopserve that | we define the new 8equence

I4

{uik} by means of the relations

(2'3) uid = t'N’ 1i=1,2,...,N-1,
uNO = 0,
and
(2.4) uik+1 = min (t1J + qu), 1t =1,2,...,N-1,
JAL
uNk+l £ 0,

for k =0,1,2,..., then the sequence iuik} will converge in
a monotonically decreasing fashion to the sequence Sui} as

k — 0o0. In actuality, it is easy tc see that k need never
be determined beyong the value N — 2,

Sirce only additions and comparisons are required, and
since only a small memory 18 needed, this is a feas!ble com-
puting scheme for elther hand or machine technlques.

Wwith this background, let us treat the problem of deter-
mining a second shortest path from 1 to N. Let us {introduce

the new notation

(2.5) mink(xl,xd,...,xN) = the k-th smallest value of the

quantities Xy

This function is not defined for all k: for example, 1f all

the x are equal, there is no second smallest value,

1
Let us introduce the quantities 2 defined as follows:
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(2.6) v, = the second shortest path length from 1 to N,
{1 = 1,2,...,N— 1, if it exists (v1 < ui);
VN T 0.

In order to obtain equations connecting the various members

1L
to N 1is to be second shortest, then whatever the initial choice,

of the sequence v we argue as follows. If a path from 1
the continuation must be either a shortest path or a fecond

shortest path., It followa that v must be equal to one of the

p
expressions
(2.7) ?;?Q(Lij 2 uJ),

min (t + v, ).
1Y
gat v
Since 1t must equal the smiller o! these, we ootain finally the
desired relation

(2.0) v, = min[min_ (¢t +u ﬂ E
1 2t J

minl(tij + VJ)

LA -

"nce the sequence %ull has peen computed, the sequence
%vig can ve determined using successive approximations in the
fashion cutiined above,.

3. General Discrete Deterministic Proresses

Let us ,;eneraiize the foregoing conslideratlions by con-

sidering dynamic programming processes o! the following speclal

type:
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(3.1) (a) The state of the system is specified by a finite
dimensional vector, the components of which can
assume only a finite set of values,
(v) At each stage, we have a choice of only a finite

set of decisions.

The problem of determining an N-stage policy which maxi-
mizes a prescrived function of the final state is then of
completely finite nature, and it 1s sensible to ask not only for
an optimal policy, but also a next best policy, and so on. We
consider all policies leading to a maximum retu.n as optimal or
first best, all policies leading to a refturn that is less then
optimal but at least as great as all others as second best, and
80 on. Why we are interested in ordering policies will pe
discussed velow ‘n Section 6,

Let g(x) denote the criterion function measuring the
value of the final state, and let %Ti(x)} denote the set of
aliowable decisions, resulting in t;ansformations of the state

.7 the system at each stage. Then, i1f we intrcduce the function

(3.2) FN(x) = the return from an N-stage process obtained
using an optimal policy, starting with a

system in state x, N =1,2,...,

we obtain in the usual fashion the relations
(3.3) £,(x) = max g(T,(x)),

f‘N(x) = m:;x f‘N_l(Ti(x)), N =2,3,....



P-1417

Next, let us introduce the functions

(3.4) fN(k)(x) = the return trom an N-stage process with the
system initially in state x, using a k-th
best policy. A k-th best policy produces a
return which 18 smailer than all 1l-s8t,2-nd,
...,{(k — 1)-8t best policies, out which is
at least as great as the return produced by

all other policles.
In particular, we have

- 2
(3.5) ry(x) = gt (x).
Another application of the principle of optimality leadsa to the
relations

(306) f‘N(k)(X) = mzilxk{fr(\&%(Ti(x)),rr{:z('f‘i(l)).---:f&z('fi(x))io

N=2,3,...,

(3.7) £ %(x) - nax, &(Ty(x)).
It follows that the terms in the sequence fN(l)(x),fN(Q)(x),...,
may then te determined recursively, {or suitable ranges of N
and x. At the same time, the appropriate decision in a k-th
best policy 18 determined in terms of the state of the system and
the time remaining vefore ternination of the process.

As k 1ncreases, the dimensionality of the problem
increases. The memory requirements are directly proportional

to k.



P-1417
8

4, Paths Most Likely to be Available in a Network

Once again, let us consider a network of N nodes numbered
from 1 to N. The link from | to J 1s assumed to be
avallable for service with probability piJ' and the avalla-
voilities for the various links are assumed to be independent.
Consequently, we are involved in a stochastic situation.

We first show how to determine which paths from 1 to N
have greatest probability of being avallable for service, and
then indicate how the second, third, and other greatest paths
can be calculated. This problem 18 an important one in tele-
phony where one point in a switching network can be connected to
another via several different paths; i1f the most likely paths
are unavailable, then the second most likely may be scanned, eto.

Let

(4.1) u, = the probability that a path from 1 to N 1is

{
avallable for service, the path being an optimal

one.

Once again, upon employing the principle of optimality [l], we

have

(L}Q) u 1 =1,2,...,N =1,

= max p, ,u,,
i {

i P
These equations can he resoived using successive approximations,
and, as before, the method 18 a method of exhaustion; i.e., 1t
convergzes after a finite number of steps bounded in advance.

Next, let us introduce
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(4.3) e the probabiiity that a second pest path is

avallable for service,

Then we have

i
(u_u) vi:mx » i =‘l,2,..-,N—l.

max, p, U

A

The solution may now be obtained by successive approxi-

mations,.

5. .tochastic Decision Processes

Let us return to the deterministic decision process dis-
cussed in Jection 3. We wish to modify this process, though,
in that we shall now assume that the result of making declision
i, with the system in state x, 18 no longer precisely known.
In its place, we merely know that there !s a certain probabtiity
that the sysatem is trans‘ormed in.o the state y, which we de-
note.ny dG(y;x,1). The obJective ot the process will now
become that of maxim!zing the expected value of a given
runction g(x) of the final state.

et

(5.1) rN(x/ - the expected value of the return from an
N-8stage process, berinning in state x, and

using an optimal policy.

For a one-s8tage process, we find
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(5.2) Bt iinax J/ 8(y)daly;x,1),

where the integration is over all states y. For the N-stage

process, we have

= )‘ ! A =
(5.3) ry(x) X S T (V)dG(y5x,1), N = 1,2,....

For the determination of suovoptimal policies, we introduce

the functions

(5.4) rN(k)(x) - the expected value of the return from an
N-stage process, beginning in state x,

and using a k-th best policy.
Using the same reasoning as earlier, we are led to the formulas
( 1
c//)fN-—l( )(y)dc(y;X.i).

(5.5) f‘N(k)(X) = maxkg(/’f‘N_l(e)(y)dG(y;xA).

L e M 60aaty ix, 1),

(5.6) fl(k)(X) max  /’g(y)da(y;x,1),

H

which permit the recursive determination of the functions de-
tined in Equation (5.4) along with the appropriate policies.
In effect, we have to compute a sequence of functions of the
variable, x, which represents a basic simplification 1f x

is of dimension three or less.
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6. Sencitivity Analysis

Let us now exp:aln the significance of the foregoling results
in connection with the actual solution of physical problems.

As we know, whenever we construct a mathematical model of a
real situation, we make certain compromises, or approximations,
as they are more diplomaticaily called. It follows that an
optimal solution to a mathematical proolem may not be an optimal
solution to the engineering or economic problem under considera-
tion. There are now two alternatives., We can elther compllicate
the mathematical model to remove this dif{iculty, or we can 1look
for approximate solutiong of the mathematical problem which more
nearly solve the physical provlem. Ahich step we take depends
upon the avallable time, the coat, the utility of improved
solutions, and so on.

If we are interested in finding approximate solutions ot the
mathematical proolem, then the fore.-oing technigues are useful.

In somewhat the same context, we are frequentily forced, be-
cause o' the limited memories ot computers and their slownesa of
computation, to use much coarser ygrids in opoth space and time
than we would like. 5Sometimes, we ire forced to retain this type
of solution for want ot better, while, occasionally, we can use
these crude s8olutions as initial approximations to be successively
improved.

One way o! evaluating the meaningsi'ulness of A coarse approxi-
mation !s3 to examine the nehavior of the nelyghvorhood ¢t the
optimal policy. TI! there '8 100 drast'c a change, we can be

assured that the *“ormulation 'a toc crude, [ the chanye 13
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slight as we go {rom optimal to second best, from second best
to third best, and s0 on, then there 18 a chance that we are
getting worthwhile results.
The numerical soiution of any physical problem must
always be subjected to a stability, or sensitivity, analysis

cf this type.
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