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SUMMARY

The effects on criticality of neutron-neutron collisions involving
annihilation are investigated for one-dimensional, single and multi-group
cases. The analytic treatment shows that regardless of the magnitude of
the cross section for collision between moving neutrons, there is no
critical length (mass).

The analogy between this situation and that in hydrodynamics, wvhere
the addition of an arbitrarily small viscosity term eliminates the
discontinuous shock phenomenon, is indicated.

As in earlier papers, the underlying equations are derived using taie

principls of invariant imbedding.
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l. Imrodustion

In previous pspers in this series, [2,3,)&; , Y@ huve considsred
neutron transport models in vhiek various types of ocollisions
(seattsring, absorption, fission) vere alloved to oecur between the
moving particles and fixed nuelei. The effeetyd of oollisions between
neutrons vere not eonsidered. 'n the surrent investigation ve inelude
this proeess, as vell as the others, assuming that the nev type of
eocllision results in the annihilation of the particles involved.

Considerations are again eonfined to a one-dimensional model,
though partieles vith several possible energy states are ineluded.
™e ooneept of invar.am: mbownc,\l‘, is used to derive the
functional wquations vhigh ocons\itute a mathemmtical deseription of
the physieal proeesses.

First, the internal flux equations are derived, assuming a very

general and physieally reasonable neutron-neutron ecllision lav., A

Work performed in part under the auspioes of tiie ''.5. Atemie
Energy Commissgion.
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special ease is then investigated in some dstail. The equations so
ocbtained are amsnadle to analysis, although not easily salved explieitly.
It is vorthvhile, then, to present the results of same numerical
experimentation.

The analytic treatment shovs, regardless of the magnitude of the
cross section for occllision between moving neutrong, there is no
eritieal length (mass) for the rod. Arditrarily large fluxes may be
obtaimed, as might be imagimed, if the souree is strong encugh.

The analogy betveen this situation and that ia hydrodynamiacs,
vhere the addition of an arditrarily small viseosity temm eliminates
the ‘iseamtinuous shoeck phenemsnon, is then pointed out.

various imtercomneetions among internal fluxes and transmitted
and reflected fluxes are exhibited for the modsels considered. They

are, of course, more caxpliecated than those desecridved in khJ' , vhere

the effedts of calliisions betveen moving particles wvere negiected.

2. A Collision Model

Consider a rod of length x containing nuele! wvhia:. are fixed in
positian. A peutron moving ir tlie rod may callide vit) a nucleus,
wvidch results in une of several possible events:

a. the peutron may bde adserdved vithout ereation of more partieles;

b. 1t may be seattered in the forvard or baskvard direetior;
0. it may disappear {tself bdut give rise to nev neutro: s
through tie process of fissiorn,
For convenienes we assume, 1niti{ally, t .at all :reutrors are a‘ t-e

same energy level. Thus tie events described may be aggregatad by
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sssuming that a neutron making a collision wvith a nusleus gives rise,
o the average, to F neutrons moving in the original direection of
travel and B neutrons moving in the opposite direetio:.. Steady state
conditions are agsumed in deriving tne basie equations.

In addition, we c.all suppose t.at :.eutrons moving in opposite

directions may ccllide with one another, resulting in their anninhilatio:.

To reduce these ideas to mathematical form let us i{ntroduee some
convenient notation.
Assume that y neutrons per unit time are introduced i{nto the

system at x, as is shovn in the figure below.

O' t-h g 8g+h ) ¢

Figure 1. The Physical Situatior

let
0% + oflh) = probability that a ‘eutror will collide wit a
(1) nueleus i a segment of lergth h. ( ere o 18 the
eross sectior a:d is the same as A . used {r [L
u(2;x,y) = the expected number of neutrons per u it time
(2) passing ar interior point ¢ irn the direction
opposed to that of the {icidart neutro:s.
vig;x,y) « the expected sumber of reutrons per unit time
(3) passing un iuterior point 1 i~ t.e same direction

as the {:¢6ide:.t reutrons.

k(u,v's « o(h) « the expected number of :eutrons {: s stream of

strength u vhion are a'rihilated per unit time d.e to

ecllisiore vit: a. opposi:ig stream of streigt v,

ar. ‘.terval of lenyg'l .

4,
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Though ve shall not enter into a detailed discussior of the desiradble

properties of the eollision funetion k(u,v), elearly ve should expect

(5) (5) k(u,V) - k(V,U),
(b) l(u,O) =0,

(a) x(1,1) = b,

vhere b is the effective croes seotion for collisio:. betwear neutro:s.

Tre symmetriec behavior in (%) {s eonvenient, but not necessary.

5. The Internal Flux Equations

By noting the expected flows past observers at & a 4 - ., after
suppressing the dependence of t'y furetions u a:d v on x &:.d y, ve

see that

(1) u(z) = u(g-h)(l-3n) + u(s=-")orF + v(z)o .B - "kx(u,v' + o(h)

8imilarly for the funetinr v(s) wve find tre relatio:.

(2) vw(g) = v(g+h)(1-31) + v(%g)ohF + u(w)onB - ~x(u,v) + o(h)

letti:g h +0, ve are lead to the nonlinear system of di{fferertial

equations for te internal fluxes

(3) u'(s) = (F-l)ou(z) + Bov(e) - k(u(z),v(s)),

v (g) « (1-Flovie) - Bou(e) + Xlu(z),v(x)

Tne boundary corditions are

(&) ul0) «C, vix) ey,



vhich foliov from the formulation. Observe that these arm tvo-point
oonditions, rether thar initial values at O or at x.
In the followving discussion, ve shall assume t .at t.e collision

funetion Xx(u,v) 1s given by

(5) k(u,v) « buv, 1©>0,

and %hat as a res3ult of a fissioning one neutron is forvard-ssattered

and ¢ is baskvurd-scattered, so tiat

(6) FeBal,

'nder thase assumptions the equations ir (3) redusce to

u' = gv - buv,
(")

v' «.0u + buv,
Along vit-: the boundary conditione of equation (L), the equatiors (7)
represent a tvo-point ronlinear boundary valus prodblem for t.e expected

valuss of the internal fluxes.

L. Analysis and Computational Results

Thoug!., in gerneral, the Aiscussion of a two poi:.t norli:ear bourdary
value problem presents formidatle difficulties from bot. t e analytioal
and camputational viewpoints, in this case it is possidle to prooeed

in ret:er straightfervard fasaion. WwWe consider solution eurves whie:

pass throug. the point

(1) V(O) -4, U(C) - O!
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It 18 cornverient to normalige the unit of distance in suer a vay t at
(2) c =1,

and to consider three cases, dependirg on vhether 4, &3 defined in
equation (1) 1s less than, equal to, or greater than p-l

We first oconsidsr that
(3) 0<acvt,

Fram equation (3.7),

(&) Uu' = v - buv = v(1l-du)

Y' @ - u+ buy e u{bv-l),

ve se. that initially u is increasing and v is decreasing. As ¢
inereases, v decreases and u increases, so tat u' deersases ard v'
becomes more a:d more negative. Eventually v must became serv at,

say, the value
(5) s -z, =1(4),
at vhich poirt wve have

(ﬁ/ h(ﬁ)"

Jet us now snhov that

Upor. integrating the equation



(L) c_i_g v(l-bu
av T wlov-1) "’
which follows from equation (4), we find the relation

{l-bu} (1-bv) - b(d-v-u),

(9) log T-td
vhere
(10) 0tvsd-nb L

Consequently ip this case the curve u = u(t) cannot cross the line

uebl, Inaddition from formle (9) we determine that

(11) v(0) 4 = u(e,) »u .,

provided 4 « b-l.

We have nov established that both u(z) and v(z) are monotone and

uniformly bounded by b’l op the ipterval |O,t (d)‘ , for d- b-l.

Graphs for this case ip vhich b = .0l and various values of 4
are assigped are showvn {p Pigure 2. The curves were obtaiped by

Dr. E. C. Deland using an abalogue computing machipe.

The case {n vhich d = b'1 can be resolved explicitly. The result

is
-1 -z
(12) U(Y)-b (1-0 ),
v(it) = b-l.
Ir 4 \b°l, then initially u apd v increase as t increases. The
functicn v'(2) also increases. 'n the other hand, since u(r) cannot

cross the line u = t'l, and u {s monotone increasing, u approaches a

limit, vhich, according to equation (9) must be b . Graphs for this

case vith - e« .0l are shown {n Figure }.
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It is a straightforvard matter to prove that for each x, y>o there
exists a v-curve passing through the point (x,y), as well as a corresponding
u-curve passing through the point (0,0). A proof by contradiction is readily
constructed,

In summary wve state that regardless of the value of v(0) = 4,
(13) 0s u(z)sb'l, 0s zszl(d).
For the function v(z) we have

0< v(z) < Max [v(x),b'll , 0sz<x.

Lastly, we note that if a source of neutrons is applied to a sufficiently
long rod, them, under the assumptions we have made, both the pumber of
peutrons reflected and the pumber of neutrons transmitted are approximately
equal to 1. This s the asymptotic value as x— co.

The physical meaning of this, ip marked contrast to the case in vhich
no annihilation of neutrons through neutron-peutron collisiomn takes
place, [ l&] , 1s that there is no critical length (msss) of the rod. The
{nternal flux which in direction is opposed to the incident flux at
each interior point of the rod is bounded a priori in terms of the
collision coefficient. The internal flux vhich in direction agrees
with that of the incident flux is bounded by an expression depending
on the coefficient of collision and the source strength, and may be
made arbitrarily large by having a sufficiently strong source. These
results must not be taken too seriously in any physical situation,
since the assumption that the interaction between u and v has the form

buv may very well break down as u and v become large.



P-1408
6-20-58

: | . ! R ' L [ ! f i ! _
| R P SN | | 1 ! ¥
. % oo N N - . fes o} cief -} TR SO S N .
f ! | | - L ﬂ Cod i w 1
ro | : _ i ! | ! o
4 ! g N - B ! = H ; i *
. b1 T 1 T 5 T “ w f
: I P i , : N
. S S P SN SN S S . - | A b ) B R T
g S SR A B w | R w o f
.T.. ! . ; L 1 : | mw | —r | L
£ R A T ] Y i
: t i H ) ’ t ' i N
- A . N S . MO RO SR || | - ! o . N T O N .
o : * A , P “ i .
¢ : S S, i . + }
P | _ ; : | ,
m N m SR S U VSR SRS PN | 1L . - fos AN SR RN N . o
v o : ! i } i |
b , ‘ B . i L . .
_.\m.ﬂ N . . S U I S S X . SN PO SRS SO SO . B . . ' e §rc g o votbe s
| E- ! : ] “. ! ! i
o ; | . . -
Lo A | : { ! i u «
QIR Y SN U8 SUCTS NUUUN I VO DUUUR TEIU SR NENOE MNET: SIS B S R . R SO VO S R .
| KT ! ! : | w 1
/ ! { { i : ! i ! ' —
[ —< m : T IR N i T 1 ] : ; _ m
i P i i K ! J ! | § ! o ! ‘
- pm e D VIS IERES SRS RGP SR oy D (SN - i d —— R S i eeee . ST - e e
R B LT : ! ! . , ] ! L) m
[ : . e : L i , : i : ]
H— m i ¥ b ! ! ! | " s ; , 3
; i | : VN , ) I ' ; m ; X ! ©
= [ 9 § oo B e S Pt A o T st oo b oo e eyt e Sl diis e gt M i/ N S e S St el “
. ! . ; _ | ‘ i i { : :
- ‘ M ; : ! \ i ; i i ; : | —
pet ooy t ! / " T t A " 1 ' w t i ¢ T : “ m
1 { ! 1 H { f ' i i ; &
o b g i N e e - —ie N VT TS DU S * . N DU T S .
: . ” 1 i _/ ] /N i i , i . w ; n
{ ! , \ L ; | : ! L !
“ : T T Wrﬂ/ T T L. ) 4 T : : ' ™~ ¥ =
i o w ! o N , ! { ! : : : i
o m SO IFTSE VOO S TS . xx.lo#ijir.ﬂ/ U . W% AU SRS SUUUN SN S NNV OO SRS MR SO PO NN, W S WSS R O )
! i m . % ! ! I ; ! : ;
— ¢ ! : L Lo X4 m N /1 } M _ ” ' ' . . +
| “ it : w HEL S5 A ‘ ; i " . : ! . .
| »..vw. O S i DS U S .weé. R S } s S| RPN ¥ . B o R el T
! i : ' R | . “
i+ A | i ‘ Kl 4 '
i - : . i . | L. {
H ..// i | : ! ] i
i { ¢ + a T i i e
b ot T R I S e o ETa e ' S S
I e : i “
+ N b
1o i draigs s ; M m :
- 1 Ry & G G we shei o=s Lm- S3ENS antShan St R
! H i H i1 5 o i i i i
i H \ H H i . . \ }
1 ¥ »w H \ i : ! 4 ! '
| { ! H ! i i “ { :
ekt AIIOE 1 R, LU ctet | NN T W PR PR T . N e s S =L TR
.r. - 4 1 | t ! ! m ; i o ,
2 i _ ! e

105

100

95

5

* ewp3 3Tim

o
zod guorqney

fr oAVt VY

I

|
1
o~



%. Perturbation Congiderations

An interesting example of the diffiguities whieh can arise tnrough
formal use of perturbation proeedures cen nov be given. Onee again

eonsider the system

(1) u' = v(1l-bu),

v' = u(bv-1}, 0<sg<x,

along with the boundary eonditions

(2) u(0) = 0, v(x) = Y,

vhere b is eonsidered to be a small quantity. let us put, following

tne usual proeedure,

2
(3) u-u°+bv1+bu2+...,
v = ¥ 4+ bV +b2v L
G 1 -
vheare

w(0) =0, 1=0,1,2, ...,

vy (x) '{o, 11,2, 5, ... .
For u, and Vo YO obtain the eguationms

Uy = Vo, uc(o) = 0,

(5)

V; "uog vo(‘) =Y,

for which the selution is readily seen to be
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v (2) w—X— eos 1, O<_:.§x<1g-.

A eritical length exists and is %— , since both u_ and v_ become
{nfinite as x, the length of the rod, is inareased to this lengtn.
This agrees vith the results previously obtained in L:] for the
linear case.

The equations for the funetion ul(l) and vl(n) are

b B U AP w (0) =0,
(7)
Vi eu v uv, vl(x) = 0,

The solution is of the form
2
w =L 1 (s,x),
@08  x
v ==L f,(a0),

o
A
L

A

x<g’— "

vhere the funetions fl and f2 are bounded avay from zero as x tends
to -g— for almost all z.

This would tend to strengthen the belief that g— is the aritical
length. In reality, as we know from Section 4, there is no eritieal
length, The transition frem the sase b = O to the sase b >0
corresponds to & drastie change in the nature of the solutions
wvith regard t0 the existemece of eritiecality. We would, of course,
be varned of this by the faet that the supposed perturbation terms,

nlnndvl,mmmdlmncnnmtm%cnlvoux—«-%.
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The Reflected and Transmitted Fluxes

Let us nov ecmsider the problem of determining directly the
reflected and transmitted fluxes under the same assumptions of
Sectioms S and k. Tm particular we seek the reflected and trans-
mitted fluxes from a homogeneous bar of length x vith an ineident
flux y. In the spirit of the prineiple of invariant imbedding, LlJ ,
ve imbed this problem within the elass of problems of determining
these fluxes for bars of all lengths x > O. The problem is trivial
for x = 0, and knovledge of the solutiom for a bar of length x enables
us to determine the solutiom for a bar of length x + h.

Mathematically, wve are led to the refleetion and transmission
funetions as selutions of initial value problems. Knowledgs of these
functions then enables us to Aetermine the internal fluxes, u(s) and
v(z), as solutions of initial value problems, vhieh is of great

importance from the eamputational viewpoint.

We introduce the funetion

r(y;x) = the expected number of neutrons reflected per unit
(1) of tims frem a homogeneous bar of length x as &
result of having y ineident neutrons per unit of

time .

— r(y;x)
~— — +—t e—Y

oT
]
L]
+
=2

Figure 4. The Refleeted Flux.
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The expected number of neutrons reflected from a bar of length
x+h 1s the sum of three terms, %0 vithin terms with probabilities of
orders gero and one in h. A neutron upon pessing through the segment
[x+b,x] may undergo fission in that segment. If it doces not, it
will give rise to some newtrons whieh will be reflected from the rod
of length x. In twn some of these will enter the flux reflected from
the ber of length x+h and some vill undergo fission in tre segment
[x,x&] thus giving rise to neutrons vhich re-enter the bar of
length x, ultimately to eontribute to the total flux reflected from
the bar of lemgth x+h. All ether processes which give rise to the
reflected flux have probabilities that are of order greater than the
first and so may be neglected, as vill be seen.

These considerations leed to the equatiom
(2) r(ysx+h) = yon + r(y-dbhr(y;x);x) [l-b:m] + r(ohr(y;x);x) + o(n) .

By letting h tend to zero and assuming r(0;x) vanishes we find that r(y;x)

satisfies the quasilinear first order partial differential equation
(3) r (yix) = gy - br(y;x)r (yix) - vyr(y;x) + or(y;x)r (x,0), o<y, x,

vhers, as usual, the subseripts indicate partial differentiation. The

reflection funetion r(yjx) also satisfies the initial eendition
(h) r(y}O) s 0,

Thé equation (3) epeeializes, fcr b e O, to the Riceati equation

derived in ow earlier papers for the refleetion eocefficient. It may

be resclved via characteristie theory, iéj , or by direet numerical
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integration, retwrning essemtially to (2). The equations for the

characteristics are

3l

(3) ¥

ar ;
a = gy - byr + or ry(:'0>'

L]
g

Since x=s, y=0, r=0 is a solution of the system (5) passing through

the point Xxwywre(, we find that
(6) r(03x) = 0,

as was assumed above on physical grounds.

Once the function r(y;x) has beer determined for suitable ranges
of y and x, one may reduce the determination of u(z) and v(z), the
interval fluxes, to the solution of initial value problems, as was
mentioned earlier. If the incidert flux v(x) = y 1s specified, then
the reflected flux is r(y;x) = u(x), so that now both u(z) and v(s)
are specified at z = x. Through use of equations (3.7) the funetions
u(z) and v(s) may nov be determined om the entire mumu[o,x] .

The equations satisfied by the trensmitted flux t(y;x), wvhere

t(y;x) = the expected mmber of neutrons emergent from the

end ¢ = 0 of & homogeneous bar of length x as a
result of having y neutrons per unit time incident

(7)

on the end z = x,

are similarly derived.
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We have

(8) t (y3x) = -br(y;x) ty(yxx) + or(y;x) t (0x),  O0c<y,x,
along vith the boundary conditions

(9) ¢(0;x) =0, t(y;0) =y.

Internal SBSources

Investigations paralleling those in "20 can be carried through for

|
L o4

the determination of emergent fluxes due to internal scurces. lat,

for example,

‘v(y;z;x) = the expected number of neutrons emerging per unit
time from the x-end of a bar of length x as a
result of a source of strength y neutrons per

wit time, moving towerd x, at the point z.
We find that
(2) v(y;z;x+h) = w(y;z;x) + r(wah;x) + o(h) .
This leads to the system
(3) v, - uy(O;x)v, x’ge,
viyisiz) =y,
fcr vhich the solution 1s

x
(&) v =y exp cgry(On)ul i
t J
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8. Two-Group Theory

Following the usual approximation to the physical situation vhere
a neutron possesses a direction, and an energy wvhich varies continuously
between certain limits, let us assume that there are just two types of
peutrons, 'fast' and 'slov,' and that i{n the fission process either can
give rise to the other. In addition, either type can annihilate the
other ip a neutron-meutron collisionm.

To simplify the equations let us assume that fast peutrons have
a probability crh + o(h) of splitting in an interval of length h and
that when they do split there is probability one-half of a fast neutron
produced going in one direction and a slov neutron going in the other,
and probability ome-half of a slov neutron going in the former direction
and a fast peutron going in the latter direction. The same situation
is to prevail for slov peutrons with 9% replaced by og- To account
for the annihilation of peutrons through collision let us assume that
the expected number of fast peutrons annihilated per unit time in an
ipterval of length h as a result of collisions with an opposing stream
of fast peutrons is b"u’(l)v’(z)h + o(n), where u’(z) and v’(z) are the
respective stream strengths. The other coll sion coefficients b,,s

and b__ are defined similarly, as are the functions us(z) and vs(:).

S8
Collisions between slowv peutrons and overtaking fast peutrons are
neglected, We specify that y’ fast peutrons per unit time are incident

ontbnbu'nts-x,umysllovncutronoporunittiu.
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Taking into account the various fission and collision processes

whaich can occur in an interval of length h we find for the functiom
up(z)

ur(z-m) - (l-cp}:) ur(z) + % ci)\i ur(z) + vr(z) 1 +
(1) %’- csb {us(z) + vs(z)j - bn,b\LF(z) vr(z)

- b?S er(z) vs(z) + o(h).

Passing to the limit by letting h tend to zero we find
(2) up = % op(vp - up) + % oglug + vg) - bpgupvy - bpgupvg.
As a boundary condition for the function u?(z) we have
(3) w0 =0

Similar considerations then yield the following nonlipear system
and boundary conditions for the functions us(z), vr(z), vs(z):

u'-lo(v-u)olc( +v,) - b_uv, - b, u.v

g "3 9%\Vg “Ys) T3 %YtV rss'F  “sgs’s’

(8) vp '% oplup - vg) + é’ oglug + vg) - bpgvplg - bypvpu,

Vg " % oglug - vg) ’% oplup + vp) - bpgvaup - begvoug,
(5) ug(0) = 0, vy(x) = yp vg(x) = v

The resolution of the nonlipear two-point boundary value problem
of equations (2), (3), (4) apd (%) is troublesome, even when attempted

mumerically on a high speed computing machine. For situatioms involving

more than two velocity groups this problem becomes even more serious.
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It 1s advantageous, therefore, to undertake the analysis frem a different
vievpoint, viz., the determination of r lected and tranmmitted fluxes
for rods of length x ’ O, vhich leads to initial value problems.

Let us imtroduce the funetioms ry(’r’ys;') and rs(y},,ysxx)

defined to be

rr(yr,ys;x) = the expected number of fast neutroms reflected

per unit time from a homogemeous rod of length x

as a result of yF fast neutrons Andys slow
neuvtrons ineident per unit time on the end

L = X.

rs(yF,yS;x) = the corresponding quantity fco- the slow

neutrons reflected.

Through reasoning paralleling that of Sectiom € we derive tha following

equation for the funetiom rF:

/ P 1
(8) !'FKYprslz"h) - 5 ofvr + 5 as ws +

1

[ ’ 1
(2 - 3 9fR - Ppg¥gh - By Tp(Yp - Dppfp¥ph - by - 5 ophyy
+ % ogh¥g »Yg r ) x)
+ % obro(yp,ygix)
+ 1y(3 ophr, + 3 ogrg, 3 ophry + § oghrgix) + olh).

The corresponding equation for the fumetion rg is
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(9) rg(ypsygs x+h) '% optp + % ogly g+
r 1 1
12 -3 98" - %" - Pae | TsUr PP Ve
1 1 )
® -2- GP)UF + 5 cshys, ys~..., x)
1
+3 °r'”’r(’r”s“) +
rg(3 ophry + 3 oghTy 3 ophry + 3 oghrgix) + o(n).

By passage to the limit in equatioms (8) and (9) we obtain a
nonlinsar system of first-order partial differential equations for

the reflection functioms rr and rs- The initial ocanditions are

(10) rp(yp,¥gi0) = rglyy,yg50) = 0.

Correspondingly, equations for the transmitied fluxes can be
durived.

As in the one-velocity case, murrtndrshswbocnwmmd
for suitable ranges of the independent variables, the deterwmination

of the intermal fluxes is reduced to an initial value problem.

9. Analogy between Shock Waves aad Critical Mass

In our paper, [3] , ve derive the quasilinear partial differential

equation

(1) \g‘-r\g‘-h(u+t\\t)+utu(1+\)+cunt+ct+f

for the gemerating function assoelated vith the number of neutrons
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reflected from a one-dimensional case.
This equatiom is & generalized version of the equation
(2) u +m o= 1
(Coursnt-Hilbert, V. II, p. 55), vhich is used to illustrate the nature

and origin of ome-dimensional shoek vaves.

Camparing the two equations, ve observe an interesting analogy
between the time at whiech a shoek first oeccurs and the length at wvhiech
eriticality oecurs.

In the present paper, this analogy is pushed further. The equation

of Burgers, L5, j

(3) ut+uu = bu , b >0,

vhere the term bun corresponds to a physieal viseosity, does not
exhibit a shock. Similarly, the introduction of a ecllision phencmenon
eliminates criticality.

The interesting thing to do is to exsmine the corresponding
situation for multi-dimensicnal shocks and multi-dimengional fissiom

processes, and this we shall 40 in a subsequent publicatiom.
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