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3ÜWURY 

The problem oomldered in this peptr it that of alloeating 

a budget of resoureei aaong the links of a network for the 

purpose of inoreasing its flow capacity relative to given 

sources and sinks. 

On the assuaption that the cost of inoreasing eaoh link 

capacity is linear« a labeling algorithm is described that 

permits rapid calculation of optimal allocations for all 

budgets. 
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INCREASINO THE CAPACITY OP A NETWORK: 
THE PARAMETRIC BUDGET PROBLEM 

1.  Introduction. Suppose that a fixed oudjet can be allocated 

amonj the links of a network for the purpose of Increasing Its 

flow capacity relative to a ^Iven source and sink. How should 

the money be spent In order to maximize the resulting network 

capacity? 

In this TiOte we assume that the cost of Increasing the 

capacity of a link Is linear and homogeneous, which permits 

direct formulation of the proliem described above as a linear 

program, and then descrlje an algorithm that produces solutions 

to the problem, not only for a fixed budget, but for all budgets, 

i.e., we solve the problem parametrlcally.  The algorithm uses 

a variant of the labeling procedure previously developed to 

solve maximal network flow problems and minimal cost transporta- 

tion problems [l—4J . 

It is interesting that, although the budget problem does 

not fall within the class of transportation—type programming 

problems, it can still be solved by a labeling procedure. 

Roughly speaking, the underlying reason for this is that, for a 

^Iven budget problem, one can find 8 pair of transportation—type 

linear programs such that an optimal solution to the budget 

problem Is given by a convex combination of certain optimal 

solutions to tbe two auxiliary proolems.  Indeed, our algorithm 

is designed to solve, efficiently, a sequence of such related 

transportation-type problems, the sequence having the property 
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that adjacent pairs of solutions produced by the algorithm can 

be used to generate a solution of the parametric budget problem. 

Section 2,  below, contains a formulation of the budget 

problem as a linear program and a statement of the dual program. 

In Section 3 we set up the sequence of associated programs and 

include some heuristic discussion. Section 4 provides a state- 

ment of the algorithm. A numerical example illustrating the 

computation is given in Section 3* Section 6 concludes with 

proofs that the algorithm produces solutions to the associated 

pro/^ams, and to the budget problem. 

2. The Budget Problem.  We suppose given a network con- 

sisting of nodes PQ, P,, ..., Pn and oriented links P1P. 

leading from P1 to P..  Each link P.P. has associated with 

it two integers: c. ., the existing flow capacity of the link, 

assumed nonnegative, and a^.,  the cost per unit of additional 

capacity, assumed positive.  We take P0 to be the source for 

flow,  Pn the sink. 

Letting x. , denote the flow from P,  to P. along 

P.P., y. . the amount of capacity added to P.1*«* b the total 

budget to be allocated for increased capacity, and v the net 

flow through the network from P0 to P , the problem la to 

determine nonnegative values of x. ., y.., v that 

We might equally well assume that there are several sources 
and sinks, provided we are interested In flows from any source 
to any sink. However, this situation can always be reduced to 
a single source and sink simply by Joining all old sources to a 
new fictitious source by links of large capacity, and similarly 
for the sinks. 
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(D maximize v 

subject to the constraints 

(2a) 

2 (x0J -xJ0) -v - 0 

]  (xiJ -XJi) 

^  (xnj -V + V-0 

(1 . 1, ..., n-1) 

(2b) xij - yij  < cij 

(2o) ifj 8u yiJ'b ' 

Here, of course, b Is assumed nonnegative. 

Clearly this problem will not, In general, have Integral 

solutions, because of the presence of constraint (2c). Nonethe- 

less, almost all of the computation can be carried out in 

integers, as will be shown. 

For future reference, we note that if we assign constraints 

(2a) the multipliers TI. (i « 0, ..., n), constraints (2b) the 

multipliers 7.., and constraint (2c) the multiplier cr, one 

finds the dual of program (1) pnd (2) to be 

(5) minimize ^ eij 'u + bcr 
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subject to 

(4a) -"o^'n^1 

(4b) Vi  -^+7^ >0 

(4c) ^»IJ-^lJ >0 

(4d) 71J > 0 • 

If tht nonnc^etlve numbers x.., v satisfy equations (2a), 

we shall call Xj, a flow (from P0 to P ) and v the flow 

value. 

3. Tha Related Problema. Consider the sequence of pro- 

blems 

(5) maximise    tv -     2   a. .y. . (t « 1,  2,   ...), maximize    tv —      £    04 «y« * 
i,J 1J 1J 

each subject to constraints (2a) and (2b) in nonnegative vari- 

ables. 

Notice that for t sufficiently large, e.^., If t is 

greater chen the cost of adding a unit of capaolty to each link 

of a chain from PQ to P . the form (5) Is unbounded on the 

convex set defined by (2a) and (2b). Thus the sequence of re- 

lated problems we will need to consider Is finite.  We let T 

denote the largest value of t for which the form (5) la bounded. 
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t  t  i 
Now suppose x1 ., y^.,  v 

problems, and define 

solve the t-th one of these 

ifj aiJ ^ ' 
If • • • A    X   • 

Then It  is easy to see that    x. .,  y..,  v      solve the budget 

proulem for    L = b   .    Moreover,   the numbers    b      will be mono- 

tone non-decreasing In    t.     It ml^ht therefore seem plausible 

that If we are ^Iven    b    such  that    b    < b < b + ,  then e solu- 

tion to such an Intermediate budget problem could be generated 

by expressing    b    as a convex combination of    b      and    b      , 

and taking the same convex combination of the solutions 

x^j,  y*      vt    and    x^1,  y**1,  vt+1   .    This turns out to be 

almost ritsht — that is, it is false that any two such solutions 

can be used in this way to solve an intermediate budget problem, 

but it is  true that  there exist solutions to the t-th and 

(t-»-l)-th    related problems  that do generate solutions  for all 
t    t-fl L    lylntj in the Interval    (b  ,b       )    associated with these parti- 

cular solutions. 

The algorithm of the next section will,   In fact,   be shown 

to produce  integral  solutions    xii»   ^i v  v      (t ■ 1,   ...,  T) 
12 T 

and hence a  set of integers    0 ^  b    <b    ^•••<b    >  such that 
.   , t t+1 
(a)    if    b    < b < b      ,   then a  solution to the budget pro- 

blem corresponding to 

at ion of    x, j, y. 

is  f^iven by a  convex cornbin— 

and .t+1    ..t-fl t+1 
Wiy v     a^   ^ij ' yij ' ¥ 

T T        T       T (b)    if    b > b   ,  a solution can be obtained  from x^,,  y^.,  v   , 
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Moreover, the computation for the related problem t begins 

with the solution previously generated for problem t—1, and 

thus the entire set of "spanning" solutions for the budget 

problems can be obtained efficiently. 

4. The Algorithm. Before stating the algorithm for solv- 

ing the sequence of related problems, we note that the dual of 

problem t la to find numbers 7;. , one for each node P., and 
t 

7^4,  one for each arc f^y  that 

(6) minimize  Z - 
ifj ^ ^ 

subject to the oonstralnts 

(7») -»o + 'ni* 

(7b)       »J - '5 ♦ rli > 0 

(7o) 0i^j <•!.)• 

It follows that feasible solutions    x. .,  y. ,,  v      and 

*!'  7*4 to the primal and dual problems,  respectively,  which 

satisfy the conditions 

(ba) ^ vl - 0, ^ - t 

(8b) irj - 1^ ♦ rjj > 0 —0 xjj - 0 
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<Bc) yjj > 0 —> xjj -y^ - c^ 

^^       yitj<8ij -> Hi'0' 

are optimal solutions. 

The dual variables 7.. and primal variables y.*    need 

not be mentioned explicitly in describing the computation.  In— 

stead, we shall deal only with node numbers TJ1 and flows x1,, 

and will construct these to satisfy 

{9B) T'O " 0' % " t 

(9b) ^-^<«1J 

(9c) 1']~'alm 0       "^ xiJ 1 cij 

(9d) v]  -TTJ - a^ -> x^ > c^ 

(9e) v*  - «J < 0   —> x^ » 0 

(9f)        0<^-irt < 8^ _> xt^ m  c^ # 

In addition,  all variables will have integral values. 

It  is easy to check th^t if there are node numbers    TK 

and a flow    x1.    such that  (9a) - (9f) hold,  then by defining 
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(10) yjj - max    (0,  ^ - irj ) 

(11) yjj - max    (0,  xjj - c1j), 

one hau feasible solutions to both primal and dual problems that 

satisfy    (daMbd),  and hence are optimal. 

To start the computation,  take    v.   " 0   and    x1, > 0. 

These clearly satisfy conditions  (9) for    t * 0.    The computation 

now progresses by a sequence of "labellngs" (Step A below),  each 

of which can terminate In one of three ways:     "finite break- 

through/' In which case the flow Is changed (Step B),   "nonbreak- 

through," In which case the node Integers are changed  (Step C), 

or "Infinite breakthrough," In which case the computation ends, 

and    T   haa been discovered. 

The Inputs for the t-th application of the routine composed 

of Steps A, B,  C are    TT.     , x.T .     The node numbers    7/. are 

used to divide the links    P.P.    of the network Into three classes 

as follows.     A link    P.P.    Is O-^admisslble, a-admissible,   or 

inadmissible according as the value of    TJ/"   - ^j~     la    0, a.., 
2 

or neither of these. 

Step A.     (Labeling process). 

(1)    Assl^    PQ    the label    (Pn.»l»  * ^ consider    P^    aa 

unscanned. 

Thua initially all links are O-admisslble.    Steps A,  D, C, 
then reduce to the algorithm of ref.   [l]   for constructing a flow 
of maximal value in a network with capacity limitations    c. . on 
links. 1J 
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(2) Take any labeled, unacanned node P.; suppose It Is 

labeled (P^, oo).  (Initially P0 will be the only such.) To 

all nodes P. that are unlabeled and such that ?*?<    is a - 

admissible, assign the laoel (P., oo ). Conalder P.  as scan- 

ned and the newly labeled P., If any, as unsca^ned.  Repeat 

until either the sink P  has been labeled (infinite breakthrough), 
n 

or until no new labels are possible and this is not the case. 

In the former case, terminate; in the latter case, proceed to O) 

below. 

(3) (At  this sta^e we have a  labeled set of nodes includ- 

ing    P0    but not    P ,  and each has a  label  of the  form    (P^,  oo).) 

All nodes now revert to the unscanned state,  and the  labelin,; 

process continues as follows.    Take any labeled,  unscanned node 

P.;  suppose  it  is  labeled    (Pp  h).     (Initially we have only 

labels of the  form    {?t,  oo).)    To all nodes    P.    that are un- 

labeled,  such  that    P.P.    is 0 - admissible,  and    x.T   < c   ., 

assign the label     (pt,  min  (h,  c. . -x.T  )).    To all  nodes    P. 

that are now unlabeled,  such that     P.P.     is 0 - admlssiLle,  and 

^T1 > 0, a33l«n the la-el  (P^»  m^n  (h»  x^^1^•     Next»  lf    Pj 

i3 unlabeled and    P.P      is a - admissible,   lauel     P*    with 

(P.,  h).     (Initially,   when we are  labtlln^ from a  node  of the 

starting set,   this case cannot  occur.j    Finally,   If     P.    is un- 

labeled,  P.P.     is a - admissible,  und    x ,7    ^ cii»   label    P. 

with     (P7,   min   (h,  x .7    - c..)).     Consider    P,   as  scanned and 

the  r ewly  labeled     P.,   if any,   aa  unscanned.     Repeat  until  either' 
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the »Ink    Pw    has been labeled with,  say,   (Pj^, h)^,  or until no n K 

new label» are possible and this is not the case.  In the former 

case (finite breakthrough), go to Step 5. In the latter case 

(nonbreakthrough), go to Step C. 

Step B.  (Plow change). 

(Here the sink Pn has bean labeled with (PjJ, h).) Re- 

place XjJJ"  by x-T •♦■ h, and go on to P^ and its label.  In 

general, if Pk is labeled (Pt, i), replace x.^  by x,^ + h, 

and if labeled (PT, i ), replace x.T by x^T - h, in either 

case turning attention then to P. and its label. Stop the 

flow change when P0 has been reached. Now discard the labels 

generated in (3) of Step A and repeat A2 with the new flow in 

place of x.T . 

Step C.  (Node number change). 

(The labeling process has resulted in nonbreakthrough.) 

dive the present flow (which may or may not be x.T ) the name 

x. * and define node numbers TI.  by 

t 
71 i 

u^1 If ?i    is labeled 

TI*~1  + 1  if Pi is unlabeled. 

The entire routine is then repeated using ...  and x 
1J 

as inputs. 

*The sink Pn will never receive a label of the form (P^, h), 
since every flow generated by the algorithm will have x^. - 6. 

Similarly each flow will have XJQ ■ 0» ao that anJHnode 
P. labeled from P0 will have a label of the form (P*, h). 
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In the poncludint; section we shall sketch proofs that the 

t 
flows x^ M    generated In the computation have the properties 

discussed in Section 3, but perhaps some preliminary explanatory 

comments are in order. 

The labeling process Al—A2 is a search for a chain from 

Pn to P  of a-admisslble links.  If none such exists, we 

proceed to enlarge the search (A3) in an attempt to find a path 

from PQ to P  of admissible links (where the word "path", 

as opposed to "chain", means that a link may be traversed op- 

posite its orientation in ^oin^ from P  to P ) having the 

property that the (integral) flow change h made alon^ the 

path (otep B) is positive and yields a flow a^aln satiafyin^ 

(9c) and (9d).  Inadmissible links correspond to (?e) and (9f), 

and in these we keep the flow fixed, so that these conditions 

are also maintained. Thus if we enter the routine with node 

numbers i,."     and e flow x.T  satisfying (9c)-(9f)» the same 

node numbers TJ.   and the output flow x. .  still satisfy 

(9c)-(9f), and consequently the output flow will a ,aln be a 

solution to related problem t—1.  In addition. It is a solution 

to related proolem t (as can be shown usin^ the transformation 

of node numbers ^Iven in Step C), and hence we can repeat the 

process.  It is this fact — that x. . solves both problems 

t-1 and  t— which enables one to prove that the sequence of 

1        T 
flows xii» •••#*<< produced by the algorithm are spanning 

solutions for the budget proilem. 
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5.  An Example. Let the network be that of Fi£.  1 below, 

the capacity Cj, of link P^, being the number in the upper 

left of the box, and the cost a. , of adding one unit of capa- 
4 

city being the number in the upper ri^ht. Assume that we have 

(Pji   OD) 

(P$,    CO) 

3)     (Pj,    1) 

Pig.    1 

the node numtera    irj    shown in the figure,  and the  flow    x^ . 

indicated by t^e numbers in the lower left of the boxes, and 
4 4 5 

wish to compute    x. .    and    71.,    Uaint:; the numbers    1,.,  we divide 

the links into the three classes:    O-admissible  (indicated in 

the figure  by a rero in the  lower rl^ht of the box), a-edmlsslule 

(indicated by an a in the lower rijht of the box),  and Inadmis- 

sible  (indicated by no entry  in the lower ri,jht  of the box). 

k 
Links no« ahown in Fig« 1 are aaaumed to have sero capacity 

and largo coat for additional capacity. 
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The laLelin^ proceaa A1-A2 yields the labels (pj, OD ) 

on PQ and (P^, 00 ) on ?2.    We then ^o on to A3. Scanning 

P0 t^ives no more labels, but from Pp we can label P,  with 

(P2, mln (00, 1)), and this completes the scanning of Pp. 

(Notice that P,  could also have been labeled with (Pp, min 

(00, 1)), since the order in which the labeling rules of A3 are 

applied is immaterial.) Finally, from P,  we break throu.ih to 

P. with the label  (P,, 1), and have thus located a chain, 

found by tracing the labels backward from P., alon^ which we 

can increase the flow by an additional unit. 

After chansin5 the flow, discarding the old labels, and 

relabellnji, we obtain the labels shown in Piz,.   2  below.  A^ain 

(Pt, ex?) Poo 

2)   if-,   1) 

3 7 1 

r 

1 1 
1   0 

1 2 
12 a 1 

3) (P+, 1) 

(p;, 00) 

Fi '. 2 
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we have a  finite breakthrough,  and therefore change the flow 

along the path Indicated by the labels:    add 1 to    x^,,  sub- 

tract 1 from   Xy2t and add 1 to   x02.    We then relabel,  obtain- 

ing the labels shown In Fl^.  3 below.    This  time we have a non- 

breakthrou^,  and thus go to Step C,  the node-number change. 

(pv ®) ftJo 

2T{*0>  »^ 

Fig.  3 

The flow shown in Pig.  3 la therefore    x. .,  and the new node 
4 J 

numbers    T^    are given by adding    1    to the numbers on unlabeled 

nodes and P3:    ^O 0,  v. 3, v2 2,   it. 4. 



P-lUGl 
6-12-50 

-15- 

Obaerve that 

ifj '^ ^J " 2 ^2 + 1 ^5 " 7' 

and thua If we are ^Iven a bi.d^et    b - Y,  we ahould toost the 

capacity of    PCP2    by  2 units,  that  of    P,?,    by 3 units, 

thereby achieving a  total  flow of 6 units from    P0    to    P,.    On 

the other hand,  we see from Fij.   1 that 

^j 8ij y'j -1 ^ij ■l' 

so that with bei, the capacity of P.P  should be increased 

by 1 unit, permitting a total flow of 4 units through the net- 

work.  Notice also that 

^ - ^ 8ij ^ij • " ■?v4 - ^J'IJ^J 

4 5 
and hence x. . solves related proLlem 5 provided x. .    doea 
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6. Theorema and Proofs. It is not difficult to see that 

if we enter Step A with a flow x., and obtain new numbers 

x^j via Step B, then x,* is a flow also« since it is obtained 

from x1j by adding a positive amount  h to the flow in 

links of a path from P0 to Pn that are traversed with their 

orientation (in going from P0 to P ), and subtracting h 

from the flows in links traversed against their orientation. 

Moreover« h is no greater than the minimum of the link flows 

in the reverse oriented links of the path, so that nonnegativity 

is maintained. 

The routine composed of Steps A, B, C terminates. For if 

Al and A2 do not locate a chain of a-admisslble links from 

FA to P . let L be the set of indices of nodes that are u     n 
labeled in Al and A2.  Thus OcL, n^L. Now any flow 

Xj. produced via A3 and B satisfies x.. £ c., for all 

links P.P, that are not a-admissible. Hence« summing equations 

(2a) over icL yields 

v - Z («ir^ii) S 2 xii 
IcL  1J J1   icL 1J 

J4L J4L 

and thus« since links P1P. for icL« J4L are not a-admissible« 

we have 

icL 1J 

at 
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Consequently, since v Increases by h ^ 1 with each occur- 

rence of a flow change« there can be only finitely many of 

these. 

Thus, starting with the flow x^. - 0 ,  the algorithm 

successively produces flows x. . for t > 0 . 

Theorem 1. The flows x^ produced by the algorithm and 

the corresponding yjj - max(0, xjj - c1j) ,  v* - Z(XQJ - xj0) 

maximize the form tv - Z a. < y. 4  subject to constraints 
i,j 1J 1J    

(2a), (2b) in nonnegative variables, i.e. x.. y. .  and v 

solve related problem t . 

It suffices to show that ir5, x** satisfy (9a) - (9f) • 

Since it is clear that 

0,0.0      0  Ä 
^i ■ 0' X1J " 0' ^IJ - 0» v ■ 0 

satisfy (9a) - (9f) with t - 0 , we may proceed by induction 

on t . 

Property (9a) IB clear from the Induction assumption 

TQ  ■ 0, T   - t - 1, the node number change of Step C, 

and the fact that P~ is labeled and P  unlabeled in case o n 
of nonbreakthrough. 
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Conüder (9b). Since rr" - wf"   ^ i^M,    then r*  - r^ 

could exceed a^j only If Fj  - »J" " aii and TJ * rJ  + 1 » 

TJ - T^1
 . But then P^P. is a-admlealble, f^  is labeled and 

Pj unlabeled at the conclusion of labeling, a contradiction. 

for (9c), suppose M "" 'i * 0' and con8lder oases. 

If TJ"
1
 - T^1

 < 0, so that xjr1 - 0, then, since PjP. 

is inadmissible, we also have x*.  • x^T - 0 ^ c^^. . 

If Tj  - TJ" - 0, so that Xj^j  ^ o14 # again we have 

xiJ ^ cir 8lnc* X
IJ  

oan be increased by at most c.. - x^j 

in a sequence of flow changes. If 0 < r.  - rr"   < a.-, then 

PiF. is inadmissible and consequently x?. - xrT1 - c. . . 

Finally, if T*
-1
 - vj"1 - a1J , then vj - r*"1 ♦ 1, vj - vj"1 , 

and hence P. is unlabeled, P. labeled at the conclusion of 

labeling. But if x?* > c.. , this is a contradiction, since 

f^f*   is a-admissible. Hence x*  ^ c1j . This completes the 

proof of (9c). 

Proofs of the remaining properties can be given along 

similar lines, and so we omit them. 

Corollary. The flow x^j and its corresponding y. * , v 

solve related problem t - 1. 

This follows from the fact that xjT1, y^T1, v*"1 

solve related problem t - 1 and the remarks at the end of 

Sec. 4. 
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Suppose that the algorithm ttrmlnattt after the Tth 

application of the routine composed of steps k, B, C, I.e. 

we enter step A with   T*,    xt*   and Infinite breakthrough occurs. 

Thus a chain of a-admlsslble links from   FQ    to    P    «    say 

(12) f**±,f±\,-.,f±     f. (10 - 0,  1.   - n) , l0 11      11 12 ^-1 ^ 0 ^ 

has been located, and hence from (9a) and the definition of 

a-admlsslblllty. It follows that 

(13) T - ^n - ^ -   ^    1*1       - Tl   ^  ■    ^   al 1 n       0     i-0 V 1l^l       ^ )      i-0    1i1i-i-l . 

Consequently this chain« of ,,a-ler'Tth" T, has n alraal a-length 

over all chains from P0 to ? ,    since If T were greater 

than the a-length of some chain, the form Tv — Za. . y.. 
1,JIJ 1J 

would obviously be unbounded, contradicting the maxlmallty of 

^ -.f u A) ■ 

Let b - Z a., yj. (t ■ 1, ... ,T) be the 
1,J 1J 1J 

successive values of Za^ y.. produced by the algorithm. Then 

0 - b1 ^ b2 ^ ... ^ bT . 

For on the first application of the algorithm, all links 

are O-admlsslble, hence '.}, ^ c.. or yj. - 0 . To establish 
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the monotonelty, assume that b < b  . Slnoe y^T # v 

and y1. , v  are respectively maximal In problems t — 1 

and t| we have 

(t-1) v^1 - b1^1 ^ (t-1) v* - b1 

t v* - b1 ^ t v^1 - b^1, 

whence adding gives 

an Inequality that is also clear directly from the algorithm. 

Thus,  if   b* < b*"1,    we get 

(t-1) v1^ - b11 > (t-1) v^1 - b^1, 

a contradiction. 

Theorem 2.    Let    b - ob* •»• (1-a) b^1  , 0 ^ o ^ 1. 

Then 

^ij - <3  + (^ <? 

^ij - ^h + (lHl) ytu 

v  - av* ♦ (1-a) v^1 

solve (1) arid (2). If, on the other hand« we have b > bT, 
t i   « 

then the flow x^- and iti corresponding y^ , v obtained from 
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x*ji yjj, v  by adding ^ (b - b ) unite of flow along 

the a-admieeible chain (12), eolve (1) and (2). 

While Theorem 2 can be proved directly, we choose to give 

a proof using the dual problem (3) and (4) in order to point 

out how to obtain solutions to the dual of the budget problem 

from the node numbers generated in the algorithm. 

Inasmuch as >r. and the associated y,.    given by (10) 

satisfy the constraints (7)« it follows that 

(HO ¥i .  ^i ,   nj   .   -ii ,   ,- .   1 

satisfy the constraints (4).    Moreover» we have 

^ oij y'a - *vt -bt' 

since IT. , y..    are optimal for (6) and (7) • Thus 

- ^    (t  vt - bt + b) 

- vt -»• 1 (b - b1)   . 

Now since    x.t    ,    yA    ,    v +      and    x.,  ,    y..  ,     v      both 

solve problem    t,    we have 
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t vt+1 - bt+1 - t v11 - bt 

Thus If b^1 - bt - b, then vt+1 - vt - v, 

and henct 1  c.j y,.  •♦• bo" - v.  If, on the other hand, 

b1 < b^1, we have 

ao that 

1   vt41 - vt 
F ' bk+1 - b1 ' 

v - vfc + (1 -o) (v^1 - vt) 

- v1 + (b - b^ (vt+1 - v*) 
b'^-b' 

- vt > ^ (b - b11) . 

Thus In either case, we tee that 

(15)       ^j C1J nj * b<r ■ v • 

Hence, alnoe x**$  y ., v aatiefy (2), and w., y ., a 

aatisfy (4), it follows from (13) that they constitute optimal 

dual solutions. 

Suppose, finally, that b > bT . It follows from (9d) 

and the existence of the a-admissible chain (12) that 



.T  1 /w  wT,  k 
all y11 " b + «f (b - b ) s ai i 

and hence from (13) we have 

z »u ylj -» . 

tit . . 
Thus XJ^J , y^* ,  v  satlafy (2) . Defining 
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agaln gives a pair of optimal dual solutions to the budget 

problem. 



P-1401 

-24- 

REPERENCES 

1. Ford,   L.  H.,   Jr.,  and  D.   R.  Fulkeraon,   "A simple 
algorithm for finding maximal network flows and 
an application to the Hitchcock problem," Can.   J. 
Math.,  Vol.   9,   195f,  PP.   210-21c. 

2.     ,   "Solving the transportation 
prol lein,  Man.   Sei.,   Vol.   3,  No.   1,   1956,   pp.   24-32. 

3.     ,   "A primal dual algorithm for the 
capacltat-ed Hitchcock problem," N.   h.  L.  Q.,  Vol.   4, 
No.   1,  1957,   PP.   47-^. 

4.      ,   "Constructln ; maximal dynamic 
flows  from static  flows," to appear In  J.  0.  R.   S.   A., 
June,   195^'• 


