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The problem oconsidered in this paper is that of alloecating
& budget of resources among the links of a network for the
purpose of increasing its flow capacity relative to given
sources and sinks.

On the assumption that the cost of inoreasing each 1ink
capacity is linear, a labeling algorithm is desocribed that
pernits rapid caloculation of optimal allocations for all

budgets.
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INCREASING THE CAPACITY OF A NETWCRK:
THE PARAMETRIC BUDGET PRCBLEM

l. Introduction. Suppose that a fixed vudset cen be sllocated

amon; the links ¢of a network for the purpose of increasing 1its
flow capacity relstive to a8 ziven source and sink. How should
the money be spent 1n order to maximize the resulting network
capacity?

In this note we assume that the cost of increasing the
capacity of a 1llnk 13 llnear and homo,;enecus, which permits
direct formulatlion of the prot.lem descriuved atove as a linear
prosram, and then descrive &an slgorithm that produces solutions
to the protlem, not only for a fixed budget, but for all budgets,
f.e., we sclve the problem parametrically. The ali;orithm uses
a variant of the labelling procedure previously developed to
solve maximal network flow prcblems and minimsl cost transporta-—
tion protlems [1-4].

It is interestin,; that, althoush the budget problem does
not fall within the class of transportation-type progsrammin;
protlems, 1t cen still te solved Ly 2 latelin procedure.
Rou,shly speaking, the underlyin:z reason for this 1s that, for a
riven bud et protlem, one can find 8 palr of transportation-type
linear pro;rams such that an optimal solution to the Ludget
proclem 18 ~lven ty a8 convex comuination of certain optimal
solutions to the two auxiliary provlems. Indeed, our algorithm
Is desligned to solve, efflclently, a8 sequence of sSuch related

transportation-type protlems, the sequence having the property
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that adjacent pairs of solutions produced by the algorithm cen
be used to generate a8 solution of the parametric budget problem.
Section 2, below, contains a formulation of the budget

problem as 2 linear prozram and a statement of the dual program.
In Section 3 we set up the sequence of sssociated proirams end
include some heuristic discussion. Section 4 provides a state-
ment of the algorithm. A numerical example illustrating the
computation is given in Section 5. Section 6 concludes with
proofs that the algorithm produces solutions to the sssociated

prozrams, and to tae budget problem.

2. The Budget Problem. We suppose given a network con-—

sisting of nodes Po, Pl’ 5 CacL Pn and oriented links PiPJ
leading from P1 to PJ. Each link P1PJ has assoclated with
it two integers: °1J’ the existing flow capacity of the link,
assumed nonnegative, and aiJ’ the cost per unit of additional
cspacity, assumed positive. We take PO to be the source for
flow, Pn the slnk.l

Letting x1J denote the flow from P1 to PJ along
PiPJ’ yi.1 the amount of capacity added to PiPJ’ b the total
budzet to be allocated for increased capacity, and v the net
flow throush the network from P0 to Pn’ the problem is to
determine nonnezative values of xiJ' yij' v that

Iwo mizht equally well assume that there are several sources
and sinks, provided we are interested in flows from sny source
to any sink. However, this situation can slways be reduced to
a singzle source and sink simply by Jjoining all old sources to a

new fictitious source by links of larye capaclty, and similarly
for the sinks.
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(1) maximize v
subject to the constraints
( ? (xOJ = xJO) -—v=0
(2a) < }j(le_le) =0 (L =1, ..., n-1)
\? (an "xjn) +vs=0
(2b) Xy = Vg5 $Cy
(2¢) 1?.1 8,y ¥y3y=b .

Here, of course, b 1s assumed nonnegative.

Clearly this problem will not, in general, have integrsal
solutions, because of the presence of constraint (2¢). Nonethe-
less, almocst all of the computation can te carried out in
intezers, as will be shown.

For future reference, we note that if we assi n constraints
(2a) the multipliers Ty (1=0, ..., n), constraints (2v) the
multipliers 7y g0 and constraint (2¢) the multiplier o, one
finds the dual of program (1) gnd (2) to be

(3) minimize z Lo

c )4 +
N
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Sub ject to

(4a) =g * U 2 1
(4b) =Ty + 71 20
(4¢) °"1J - 71J >0
(4a) 744 2 0.

If the nonnezative numbers xij' v satisfy equations (2a),

we shall call xiJ a flow (from Po to Pn) sand v the flow

value.

3. The Related Problems. Consider the sequence of pro-

blems

(5) maximize tv — I (t =1, 2, ...),

WRETKEY
each subject to constraints (2a) and (2b) ln nonnegative vari—
ables.

Notlce that for t sufficliently large, e.z., if t 1is
greater then the cost of adding a unit of capacity to each link
of a chain from P, to P, the form (5) 18 unbounded on the
convex set defined by (2a) and (2b). Thus the sequence of re-

lated problems we will need to consider is finite., We let T

denote the largest value of t for which the form (5) is bounded.
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Now suppose xfj, ny, vt solve the t~th one of these

problems, and define

-t t
0 = z a y t:l e e e To
i ) 14 I
L1,y HITH
t t t
Then it 18 easy to see that xiJ’ yiJ’ v solve the budget
t t

proovlem for b = b . Moreover, the numters b will be mono—

tone non—decreasing in t. It might therefore seem plausible

that 1f we are ziven b Ssuch that bt <b< bt+l, then & solu-

ticn to such an intermediate budget problem could be generated

by expressins; L as a convex combination of bt and bt+1,

and takinyg the same convex combination of the solutions

t t t t+l t+l t+l
xij’ yiJ’ v and xi‘1 p yiJ s V . This turns out tc be

elmost right — that 1s, i1t is false that any two such sclutions
can be used in this way to solve an intermediate budgzet problem,
but It 1s true that there exist solutions to the t-th and

(t+l1)-th related provlems that do zenerate solutions for all

t t+1)

L lying In the interval (b7,D assoclated with these parti-

cular solutions.

The al;orithm of the next section will, in fact, be shown
to produce intesral solutions sz, ytj, v (¢ =1, ..., T)
and hence 8 set of integers O = bl < b2 < +o0 £ bT , such that

(a) 1ir bt <bg bt+l, then a solution to the budizet pro—

blem corresponding tc U 18 glven by a convex combin-—

t t t+l t+1 t+1
stion of xiJ’yij’ v and xij 5 y1J s V H

(b) 4if b > bT, a solution cen ve obtained from x{%, y{%, vT.
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Moreover, the computation for the related problem t begins
with the solution previously generated for problem t-1, and
thus the entire set of "spanning' solutions for the budget

problems can be obtained efficlently.

. The Algorithm. Before stating the algorithm for solv—

ing the sequence of related problems, we note that the dual of
problem t 1is to find numbers nf, one for each node Pi’ and

t
71J’ one for each arc PiPJ, that

t

(6) minimize X Cyy 71J

1,

subject to the constraints

t t
(7a) -1t 2 t
(7o) N -.vg + 7§J >0
(7¢) 0¢ 7?1 <oy -

It follows thst feasible solutions xzj, ny, vt

t .t
Ty 7y

satisfy the conditions

and

to the primal and dusl problems, respectively, which

t t
(Ba) . Tg =0, u =t

t t t 3
(8b) Uy =gty > 0 == Xyq = 0
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t t
(Be) 7§J >0 wm> Xy4 - Yig = Cyy
t t

are optimal solutions.
The dusl variables 72.1 and primsl variables yzj need
not be menticned explicitly in describingz the computaticn. In-

stead, we shall deal only with node numbers uf and flows xti"J,

and will construct these to satisfy

(9a) 18 =0, 1l =t

(9b) “3 - n: < 8y

(9¢) nj-n§-0 = "11:35."13
(9d) ng-—wt-au - xL}_ciJ
(9e) 15 -] <O == x, =0
(or) 0<n§—w§<au - x{'J=c1J.

In sddition, all veriables will have integral values.
It 13 easy to check thut if there sre node numbers 1:11;

end a flow xI'J such that (9a) — (9f) hold, then by defining
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(10) 7§J = max (O, vj -nz )
(11) sz = max (O, x:J - ciJ)’

one has feasible solutions to both primal and dual problems that

satisfy (B8s)-(bd), and hence are optimal.
0

To start the computation, take n? = 0 and xij = 0.
These clearly satisfy conditions (9) for t = 0. The computation
now prozresses by a sequence of "labelings" (Step A velow), each
of which can terminate in one of three ways: "finite break-
through," in which case the flow is chanzed (Step B), '"nonbreak—
through," in which case the node integzers are chanzed (Step C),
or "infinite breakthrouzh," in which case the computation ends,

and T has been discovered.

The inputs for the t-th application of the routine composed

of Steps A, B, C are wf’l, xt]l. The node numbers nf-l are

used %0 divide the links Pipj of the network into three classes
as follows. A 1link P, P, 1is O-admissible, a-admissible, or

1
inadmissible according as the value of wj’l - nf—l is O, aiJ'
or neither of these.‘

Step A. (Labeling process).

+

(1) Aasiyn Py the label (Pn+1'

¢ ); consider Py as

unscanned.

°Thus initislly all links are O-gdmissible. Steps A, B, C,
then reduce to the algorithm of ref. [1] for constructing a flow
of maximal value in 8 network with cepacity limitations clJ on

links.
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(2) Tske any laveled, unscanned node P,; suppose 1t 1s
labeled (P}, o). (Initially P, wWill be the only such.) To

all nodes PJ thet are unlabeled and such that Pipj i1s a -
admissible, assign the lavel (PI, @ ). Consider P, as scan-
ned and the newly labeled PJ, if any, as unscauned. Repeat
until etther the sink Pn has bteen lsbeled (infinlte breakthrough),
or until no new latels are possitle and this 18 not the case.
In the former case, terminate; in the latter case, proceed to (3)
Lelcow.,

(3) (At this staze we have a laveled set of nodes includ-
tn; P, Lut not P, and each has a lalel of the form (B, ®).)
All ncdes now revert to the unscanned state, and the labeling

process continues as follows. Take any labeled, unscanned node

P, suppose 1t 1s labeled (Pi, h). (Initially we have only
labels of the form (P;, 0 ).) To 8ll nodes PJ that are un-

: t-1
labeled, such that PLPJ is 0 — admissible, and xlJ < ciJ’

assign the label (PI, min (h, ¢y —xf}l)). To all nodes PJ
that are now unlabeled, such that PJP1 is 0 - adimissitle, and
t—-1 : - t-1

Xy 2 O, assigzgn the lalel (Pi' min (h, X5 )). Next, 1if PJ

i3 unlabeled and PlPJ !s 8 — admissible, lavel P‘J with
(PI, h). (Inttlally, when we are labellin,; from a8 node of the

starting; set, thls cese cannot occunn) Finally, If PJ {8 un-

laveled, Pjpl 13 8 - admlssliile, sund x%?l > ch, latel PJ

- t—1 ~ . D
L , ij - ch))' Cons'!der }i a3 scanned and

the rewly laveled FJ, If any, 8s unscanned. Iitepeat until elther

with (P7, min (h
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the sink Pn has been labeled with, say, (P;, h)3, or until no
new labels are possible and this is not the case. In the former
case (finite breakthrough), go to Step B. In the latter case
(nonbreakthrough), Jo to Step C.
Step B. (Flow change).

(Here the sink P_ has been labeled with (P;, h).) Re-
t-1 t—1

place Xn by X, + h, end go on to Pk end its label. In
+ t-1 t-1
general, if P, 1is labeled (PJ, £), replace X 5k by X1k + h,

and if labeled (P}}‘z), replace xi}l by xﬁ}l — h, in either

case turning attention then to PJ and its label. Stop the
flow change when PO has been reached. Now discard the labels

generated in (3) of Step A and repeat A3 with the new flow 1n

t-1
place of xiJ b

Step C. (Node number change).

(The labelinz process has resulted in nonbreakthrouzh. )

Give the present flow (which may or may not be xf}l)

x:d and define node numbers nz by

the name

uf'l tf P, s labeled
'Ht =
{
t-1
( Ty + 1 ir Pi i1s unlabeled.

The entire routine is then repeated using "t and xfj

as inputs.

3The sink P, will never recelve a lavel of the form (P, h),
since every flow _enerated LYy the algorithm will have j- 8.
Similarly each flow will have x;q5 = O, 80 that a0y “node

PJ labeled from P, will have a lalel of the form (PO, h).



P-1401
O=12-50
N

In the concluding section we shall sketch proofs that the
flows x?i generated in the computation have the propertlies
discussed in Section 3, but perhaps some preliminery explanatory
comments are in order.

The laleling process Al-—A2 is a search for & chain from

P to Pn of sa-admissivle links. If none such exists, we

0
proceed to enlarge the search (A3) in an attempt to find a path

from Py to Pn of admissible links (where the word '"path',

as opposed to '"chain", means that a link may be traversed op-

posite its orientation in soing from Po to Pn) having the

property thst the (integral) flow change h made alony the
path (Step B) i3 positive and ylelds a flow again satisfying
(9c) and (9d). Inadmlssible 1inks correspond to (%9e) and (93f),
and In these we keep the flow fixed, so that these conditions
are also maintained. Thus 1f we enter the routine with node

numbers wf’l and a flcw xf}l

node numbers ni—l and the output flow xfj still satisfy

satiafyinz (9¢)=(9f), the same

(9¢)—-(9f ), and consequently the output flow will agzain Le a
sclution to related provlem t-1. In addition, it is a solutlon
to related provlem t (as can te shown using the transformation
of node numiters iven In Step C), and hence we can repeat the
process. It 1s this fact — that fo solves both problems

t-1 end t— which enables cne to prove that the sequence of
flows xiJ, e, xfj produced Ly the algorithm ere spanning

solutions for the budget protlem.
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5. An Exlmgle. Let the network be that of Figz. 1 below,

the capacity c1J of link PiPJ being the number in the upper

left of the box, and the cost ‘15 of adding one unit of capa—

city being the number in the upper rizht. Assume that we have

1|2 (P2, 1)
I3 7] 1 1
b 2 a
(Py, @) (B 11 1‘*' ﬁb (P}, 1)
4
10 00
1 2| e €
1 a| | 2
+
2 (PO, @ )
Figz. 1

the node numbers wf shown in the filgsure, and the flow xfj

indicated by the numbers in the lower left of the boxes, and

wish to compute x?J and nt. Usin, the numbers nf, we divlide
the links intc the three clesses: O—admissible (indicated in

the fisure by & zero in the lower right of che btox), a—admissivle
(indicated Ly an 8 in the lower ri:ht of the vox), and inadmis—

sible (indicated Ly no entry in the lower risht of the Lox).

“Ldnkl not showm in Fig. 1 are assumed to have gero capacity
and large cost for additional capacity.
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The lalelin: process Al—A2 yields the latels (Pz, @ )

on P, and (Pg, @) on P We then zo on tc A3. Scanning

2.

B gives no more labels, but from P2 we can label P1 with

0
(P;, min (oo, 1)), and this completes the scanning of P,
(Notice that P, could slso have been labeled with (P;, min
(o0, 1)), since the order in which the lateling rules of A3 are
applied is immaterial.) Finelly, frocm P1 we break throush to
P} with the lalel (PI, 1), and have thus located a chain,
found by tracing the labels backward from P3, alonz which we
can increase the flow by an additional unit.

After chanzin: the flow, discarding the old labels, and

relabeling, we obtain the labels shown in Fiz. 2 below. Az3in

+ 6 11 14 | +
(P“) m) \-_.{]\ 1 0 i_];Dl ;_l'.«j (Plt l)
™ I —d r"/

.\.'_._—_‘. L
E ]




P-1401
61258
14~

we have a finite treakthrough, and therefore change the flow
along the path indicated by the labels: add 1 to xl)’ sSub-—
tract 1 from Xy09 end add 1 to Xno We then relabel, obtain-
ing the labels shown in Fiz. 3 below. This time we have a non-

breakthroush, and thus 3o to Step C, the node-number change.

o -

O F

h

R P

1 2\ | 2 6

3 & ' 2

\_ .
'EEEY(PS. @ )

The flow shown in Fiz. 3 is therefore sz' and the new node

4
numbers m, Aare glven by adding 1 to the numbers on unlabeled

4 4 4 4
nodes Pl and sz o = 0, Ty = 3, T, = 2, "y = b,
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Observe that

4 4

y
2 By Y=Vt

1,

and thus if we are :;iven a thudget bt = 7, we should toost the

capaclity of PGPQ by 2 units, that of P1P3 ty 3 units,

thereby achievinz a totel flow of ¢ units from PO to Pj. On

the other hand, we see from Fis. 1 that

3 SN

IR s

1,J

8o that with U = 1, the cepacity of Ple should ve incressed

by 1 unit, permitting a total flow of 4 units through the net—

work. Notice also that

jvj - I a

1,

S . 4 . b

)

and hence xu solves related protlem 3 provided le does.

1
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6. Theorems and Proofs. It is not difficult to see that

if we enter Step A with a flow xiJ and obtain new numbers
x;J via Step B, then x;J is a flow also, since it is obtained

from x by adding a positive amount h to the flow in

i
1inks orJa path from Po to ’n that are traversed with their
orientation (in going from P, to Pn). and subtracting h
from the flows in links traversed against their orientation,
Moreover, h 1is no greater than the minimum of the link flows
in the reverse oriented links of the path, so that nonnegativity
is maintained.

The routine composed of Steps A, B, C terminates. JPor if
Al and A2 do not locate a chain of a-admissible links from
Po to P let L be the set of indices of nodes that are
labeled in Al and A2. Thus O¢L, n¢L. Now any flow
X,y produced via A3 and B satisfies X, 4 { ¢,y for all
links P PJ that are not a-admissible. Hence, summing equations

(2a) over 1¢L yields

-z
VT e (x, = Ji)gin 1]

J4L J4L

and thus, since links Pi’J for 1elL, J¢L are not s—-admissible,

we have

v Z ¢ .
S i¢l 14
J¢I.



Consequently, since v increases by h 2 1l with each occur-
rence of a flow change, there can be only finitely many of

these.

0
1J

successively produces flows x:J for t DO .

Thus, starting with the flow x = 0 , the algorithm

Theorem 1. The flows x?d produced by the algorithm and
t

the corresponding Vg " max (0, x:J - °1J) ’ v - ?(xgd - xgo) ’

maximize the form ¢tv —"}’.‘."al‘1 yiJ aublect gg constraints
t G

(2a), (2v) in nonnegative variables, i.e. X/y, Yyy, and v
e ]

t

solve related problem ¢ .

It suffices to show that w:, x‘i‘J satisfy (9a) — (9f) .

Since it is clear that

Vg‘o.xg.’.o. y?J-O, VO-O

satisfy (9a) — (9f) with t = 0 , we may proceed by induction
on ¢t .

Property (9a) is clear from the induction assumption
o teo, wlato,

and the fact that P

the node number change of Step C,

0 is labeled and Pn unlabeled in case

of nonbreakthrough.
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Consider (9b). Since 1 f:-l 4 8, 4 then '; - f:
1 _ _t-l t | _t-l
c:uld exceed 8, only if Ty W =8y and Ty =Ty +1,
v, =7y . But then P,P, 18 a-adnissible, P, 1s labeled and

PJ unlabeled at the conclusion of labeling, a contradiction.

Por (9¢c), suppose tg - t: = 0, and consider cases.

t-1

t-1 t-1
Ir LT 1 { 0, 8o that xta - :: then, since P1PJ
1
is 1n:f:10l1:i;. we 2lso have xtil- X4 = 0< Cyyq -
It fJ -7 = 0, 80 that xiJ 4 °1J ,» again we have

t t-1 t-1
xy {6440 8ince X7  can be increased by at most c,, — X,y

in a sequence of flow ochanges. If 0 < 73'1 - 1:—1 ¢ °1J’ then

L 0 S
rird is 1nadm1.;1ble a:d consequently x%J xiJ cth. ,
- - = 1 -
Finally, if 'J T, ‘1J » then LES 7Y + 1, rJ tJ ’

and hence P, 1s unlabeled, PJ labeled at the conclusion of
labeling. But if x:J > Cygq s this 1s a contradiction, since
P,P, 1s a-admissible. Hence x:J 4 ¢,y - This completes the
proof of (9¢).

Proofs of the remaining properties can be given along
similar lines, and 8o we omit them.

Corollary. The flow x:J and its corresponding y:g ’ v

solve related problem t - 1.

This follows from the fact that xt}l. yi}l. vb'1

solve related problem t -1 and the remarks at the end of
Sec. 4.

- v b - - ey pe N -
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Suppose that the algorithm terminates after the Tth
application of the routine composed of steps A, B, C, i.e,
we enter step A with I"f, "L and infinite breakthrough occurs.

Thus a chain of a-admissible links from Po to ’n » BAY

(12) P .’ PP , .., P, P (L, =0, 1, =n),
has been located, and hence from (9a) and the definition of
a-admissibility, 1t follows that

k K
T T /P T

(13) T=w -7y 4 - >-Za

0 t-o TR =0 1s1g41 .

Consequently this chain, of "a-ler~th" T, has n aimal s-length
over all chains from ’O to Pn’ since if T were greater
than the a-length of some chain, ¢the form Tv - z'.ai J Yy J

would obviously be unbounded, contradicting the ma.xmanty of

T T

t
Let b’ = I 8, yfd (¢t =1, ...,T) be the

1,J
successive values of zai J Yy J produced by the algorithm. Then

o=bl¢ p2¢ ... ¢bT.

For on the first application of the algorithm, all links
1 1
are O—admissible, hence 44 4 cyy, OF ¥iy O . To establish
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t-1 -1  t-

the monotoneity, assume that bt (b Since Yyg 0V

t t

and yiJ » V' are respectively maximal in problems ¢t - 1

and t, we have

(t-1) v*1 — b1 > (1) VB - bt

t-1 t-1

t -~ p¥l,

tvi bt Dt v

whence adding gives
vt—l S vt ,

an inequality that is also clear directly from the algorithm.
Thus, if bt < bt"l, we get

t-1 _  t-1
’

(t-1) v® — bt > (t-1) v b

a contradiction.

Theorem 2. Let b = ab® + (1-a) b**1 , 0 {ag 1.
Then

t t+l
Ayg = axgy 4 (1-a) 2y

yid . ay:J + (1—0) y:sl

t t+l

v =av’ + (l1-a) v

solve (1) and (2). If, on the other hand, we have b ) b,
' ! ]
then the flow X4 and its corresponding Yyg o V obtained from
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T T T 1 T
Xyq0 ¥yyo v by adding g (b — b") units of flow along

the a—admissible chain (12), solve (1) and (2).

While Theorem 2 can be proved directly, we choose to give
a proof using the dual problem (3) and (4) in order to point
out how to obtain solutions to the dual of the budget problem
from the node numbers generated in the algorithm.

Inasmuch as vg and the associated 7:J given by (10)
satisfy the constraints (7), it follows that

't Yt :
1 1
(14 R R Y S

satisfy the constraints (4). Moreover, we have

t t t
z c1J 713 =tv —-b,

1,J

since 1: ’ 7:3 are optimal for (6) and (7). Thus

1 t

1 t

- & (tv' v 4)

- vt % (b - bt) :

t+l t+1 t+l 4 t t
Now since x1J » y1J » vV and xiJ ’ y1J » vV both

solve problem t, we have
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_ bt+1 -t vt _ bt '

Thus if b‘:"'1 - bt = b, then vt+1 - vt - v,

and hence X c1J 713 +boc = v. If, on the other hand,

¥ < bt*l. we have

1 vl vt
t bE+I S

80 that

vevts (1 -a) (vt+1 - vt)

t t t+l t
=v +(b-bD ! (v -v)
+

b" b

v+ (b-1%) .
Thus in either case, we see that

(15) 1?3 °1J Yid + bo=v.
Hence, since Xygo Vg0 V satisfy (2), and Tys Vg0 O
satisfy (%), 1t follows from (15) that they constitute optimal
dual solutions.
Suppose, finally, that b > b . It follows from (9d)
and the existence of the a—admissible chain (12) that
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Za,, ¥, = b4k (b-0bT) 5 a
13 71 T 10 ‘g,

and hence from (13) we have
'
z .1J yiJ - Db .

Thus x;J ’ yiJ ’ v satisfy (2) . Defining

' ff ' 7? ' 1
(16) ’1 - ol ‘YiJ - -Tl y O = r

again gives a pair of optimal dual solutions to the budget

problem.
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