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SUMMARY

Solutiors are obtained to a symmetrical market game in
which the value of a coalition is assumed to be proportional
to the number of buyers or sellers participating, whichever 18

smaller.



THE SOLUTIONS OP A SYMMETRIC MARKET GAME

L. 5. Shapley

1. INTRODUCTION

This paper 18 directed to the problem of determining the
full sets of solutions to certaln multiperson games that dis—
play a rudimentary competitive pattern typical of many economic
models. The players are divided into two groups M and N — we
may think of them as buyers and sellers of some commodity -— and
the payoff functions are so constructed that players of opposite
types are complementary (i1.e., can enter into mutually profit—
able arrangements) while players of the same type are not; in
fact, belng perfectly interchangeable in coal!tions, they find
themselves in relentless competition for the chance to 'do
business with thelr opposites. The number ol players of each
type 13 unrestricted.

Our highly symmetrical characteristic function:
(1.1) v(s) min(|S M|, |S N|)

(the number of elements in a set X 1s dernoted by |[X|), emphasizes
the basic complementary/substitutability pattern to the exclusion
of other features of the market process that might have been
included, such as asymmetrical resources, elastic demand functions,

indivisidle goods, etc.,l and the rather exceptional regularity

1Characteristic functiong embod sing a number of these factors
are formulated and discussed briefly 11 [¢] (see the bibliography
at the end of the paper); we intend to treat them more fully in
a future publication.
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that we shall observe in the solution c2ts reflects tre structural
s<mplioity of (1.1). Nevertheless, our close esnalysis of a
special class of market games can be expected to point the way
for more general types. Also, qQqulte apart from the remote
practical significance of the results, the conquest of thir
class of large-eized games should prove of some theoretical
interest, especially since a technical device of considerable
generality 18 developed along the way.2 As (Gillies remarked on
a similar occasion: 'The intensive study of a particular class
of games provides empirical data on the nature of solutions,
methods which may be applied to other games, and may suggest
or disprove conjectures on solutions in general.'3
Surpricingly, large market games have been generally neg—
lected by game theorlists since the initlal work of von Neumann
and Morgenstern on the subject.u Markets meet the underlying
assumptions of complete information, transferable utility, etc.,
better than most economic pheromena, and ought to nrovide the
material for some good tests of the von Neumann—Morgenstern
solution theory. A reually decisive confrontation of the theory
18 not easy to arrange, but in such well-sulted apnlications,
as opposed to more artificially-derived examples, ocne feels

hat the critics are fully ‘ustiiled in insisting that the

2He refer to the s3skew sets, defined in §5 and §7 below.
>3], p. 0%
13", gr4; see also 4], [10], [17]. oOur (1.1) can be

‘\)]
obtained irom (:4.:) of [1?] by speclalizing the parameters
of the latter.
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solutions make economic sense: that they satisfy or perhaps
extend—but do not contradict—the expectations and intuitions
based on observed experience.

The one—parameter sets of imputations that make up our
sclutions are closely related to the bargaining curves that
have been observed in many other game solutiona.5 The parameter
in the present case can be Interpreted 43 the average net market
price of the commodity, or (transformed) as the total profit of
the sellers as a group. It varles continuously 1in each solution
from zero profit to the sellers ( cutthroat pricing) to zero
gain for the buyers ( 'all the traffic will bear ). At any
narticular parameter value, the solutlion tells exactly how the
individi:al gains are to be imputed among the players. I1In other
words, 1f the solution is vnown and the average price {5 known,
then the outcome, financlually gspeaking, 1c completely determined.

There 13 just one symmetrical solutien; lt corresponds to
the free trade or 'same—price—to—ll—-comers standard of
behalor. More generally, the solutlion cun be regarded as a
description of the institutionalized modes of collusion—premiums,
rerbutes, clasgs discrimination, boycotts, etc.—1n terms of thelr

net effect on the outcome. A nonsymmetric solution expregseu a

stable, self—consistent departure f~om the free trade nomm.

<

see [2], 9], [7], and [17]. Q& "0 ard Qro.r .., also [4],
p. C09. Bargaining curver are commonly found .ombined with other
point-sets ‘n the solut'on; the purity of the present occurrences
can be ascribed to the very direct complementary/substitutable

S

stricture of (l1.1). There 1is a close connection Letweer the latter
und the (m:.n)—persorn simple game P; ; B;, with (non—superadditive)
i i

characteriatic function:

ol v Ve v h)

v(8) LT 4 GRS S B
whose snlations are all of the @ ryva! ing curyel connggting the
zZers Thten of the two pro ;o of e S A
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Meanxhile the basic function of the actual market institu-—
tion—that of establishing and maintaining the general price
cquilibrium—must presumably be carried out by means of
"noncollusive bargaining tactics: bids, prices, concessions,
counter—proposals, etc., insofar as they are avallable among the
formally permitted moves of the game. This sets the stage or a
rather remarkable division of labor between 'cooperative game
thheory and its "noncooperative ' cousin. We make no attempt in
the present paper to solve the noncooperative bargaining proolems
posed by our cooperative solutions; to do so would require pre-
constructing the rtretegy spaces and payoff functions that under—
lie (1.1), and wculd lead us far afield. But the possibility
of being able to 'sclve the solution 18 not an unnatural one,
when we reflect on how much is left out of the cooperative
approach: most of the formal bargaining moves o the extensive—
form zame are rendered superfluous by the addecd, free coalition—
forming process implici% in the characteristic function; likewise,
all of the details of price and money transfer are swallowed up
by the hypothesis of unrestricted side—-payments. Indeed, the
fact that something identifiable as average price appears as a
parameter in the solutions, after so mich has been apparently
suppressed, speaxs well for the validity of the coorerative
solution concept.
O~ formal results fall short of a complete 1li1st of solutlions,

such as obtalned by von Neumann and w. Y. Mills on comparable

¢
occasions; however, we bring that ultimate goal wit)’: reach.

“3ee [13], 0°°, and [4].



Ne prove that all solutions are monotonic arcs spanning the
simplex of imputations, as discussed above; we also obtain a
bound on thelr location in the simplex and determine explicitly a
na jor, centrally-located subclass of soluticns, which in certain
cases turns out to be complete (se< below, Theorems 3, 2, 1,
respectively). As already noted, there 13 a unique solution
possessing the full symmetry of the game."

The main body of this paper 18 concerned exclusively with
the mathematical problem.8 We have tried to keep the presenta—
tion self-contained, and have adopted a mildly expository tone

at first, with the 1dea of easing the way for readers not versed

in ths intricacles of solution theory.

§1. Preliminaries

Iet M and N be the two groups of players, having respectively
m |M| and n  |N| elements. The (m+n)—person game to be

conslidered 18 given by the characteristic furction:
(1.1)  v(8) min(|s M|, |[s NJ|) all S in M N.

Define g v(M N) min(m, n). .ectors on ™ N will e

written as

X or -x * x - or (xi, TR R SRR xA).
This correspo:.. ‘c Bott's result for the (n. x)-games
|1], [?]——unother compa. »le, but incompletely solved, class of

large—alzed games.

The heuristic uccoint of the game and its soluticns, given
in [10!, 82111 appliea 7 r the moat rart, althoigh the mathe—
matical results thereln are now superseded.
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Sums over their compunents will generally be abbreviated

x(8) for s xd + S%N S
An imputation 18 a nonnegative vector on MUN such that
x(MUN) = g; the space of all imputations is a simplex of
m + n — 1 dimensions, denoted by A. The 'face AS is the
(]8| - 1)~dimensional set of imputatiors x such that x(S) = g;
these are the vectors that impute a total of g to the members
of S, and nothing to the other players. The opposing complementary
faces AM and AN will figure prominently in our analysis.

In general, x 1s said tc dominate y via S provided

that
(1.2) X —y 18 strictly positive ¢n S, and
(1.3) x(8) { v(s).

In the present instance 1t 111 suffice to consider only domin—
ation via sets of the form {u,l L, u € M, . € N, s'nce other

dominations always imply a domination of this kind. Then (1.2)

and (1.3) become simply:

r D § N 0
(1.4) X! >y and x '
(1.5) x' +x° { 1.

The dominion of a set Y of imputations, written dom X, 118 the

(open) set of imputations dominated by elements of X. The set
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A — dom A of undominated imputations is called the core of the
game; it comprises just thcse imputations x in which all
coalitions are 'satisfied ': x(S) » v(S). A solution of the game
i8 defined to be any set V nf imputations that domina.es 1ts
somplement in A, and nothing else: V = A — dom V. Eve: v
solution, being the complement of a dominion, 18 a closed set

and contains the core; no solution contains another. The two

properties:

vV ) dom V = G and V J dom V = A,

that combine to characterige a solution =111 be referred to

sometimes as internal and extarnal stability, respectively.

LEMMA 1. No =olution of (1.1) cortains an open

set, unless m - n 1.

Proof. Por every x ¢ A, there 18 a pai» p*, . * for vwhich

(1.5) holds; otherwise we could sum f inequalities of the form
xd + x> 1, involving 2g distinct indices, and obtain an

absurdity x(S) ~ g. Purthermore, If x is interior to A, every
neighborhood of » will :ontain a y for which (1.4) holds, with
respect to pyu®*, . *®, un'ess m n l. YHence every open set in

A 18 internally unstable. But no solution can contain an

internally unstable subset. QJ.E.D.
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§2. The case m = n.

The case where M and N are of eacual size can be disposed

of quickly. Let V be the set of imputations of the form:

7/

(2.1) z =(p, «o., P; 1P, ..., l-p), o¢p¢ 1.

For any 8 ¢ M _ N we have:

£,(S) - pls Ml « (1p)[S N

o min(|S M|, S N[} = v(S).
Thus zp 18 undominated, and V is at least contained in the core.
Or. the other hand, any x € A not in V must have Xie * x 4 {1 for
at least one pair u*, . *, and hence 18 dominated via /  *, .*
by some y ¢ A. Thus V is precisely the core. What is more,

we can take y 1:. the preceding argument to be cne of the elemente

of V, namely 2_ o where p* satiafies
¢

xd, W ok 1 - x',
We conclude that 7V dominates all of A — V, maxing 7 both the
core and a solution of the gam:. Undei these circumstances

is necessarily the unique solution. Qeomet. ically, V 18 the
straight line ‘foining the centers of gravity of tie cpposing

faces "M and AN.
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93. The cvuse min(m, n) - 1.
Q
The case of monopoly or monopsony, min(m, n) g 1,
will now be considered. We Ay assume m - 1, n 1. St.ce v taves

on only the values O and 1 we have what 13 culled a simple game:
the 'winning coalitions are thos~ consisting of the single
member ¢ M and one or more players from N. This game happena to
be factorable into one—person simple games, and a complete des—
cription of {ts solutions 1s therefore available (see [11]; also
footnote “ above). They turn out to be monotonic curves running
from the face A, to the opposite vertex of the simplex. Stated

N

precisely, a solution 18 any set of points of the form:

(3.1) Z p; £y(p}, -y £.(P) Ol 1B iy L.

where the functions .f : satisfy f _ O, 2 (p) 1—p and

are continuous and nonincreasing. In con'rast with tie preceding
case, the core, which consists of the single imputation (); O,
..., 0), does not dominate evern a part of {ts complement.

“1.e pron" that the curves (3.1) are solutions, and that they
are the only solutions, 18 omitteud In deference to the more
general results nroved later o:. (3ee Theorem 1 and the second
corollary to Theorem *). Pigire 1 {ll:strates two solutions
for the 3—person caselo m 1, n J; the 3haded areus represe:.t

the dominions of typical points on the curves, and mave {t more

Ycompare [13], aru.0..

OIncluded, of coyrse, {1, the complete analysis of generul—a.m
T person games in [17]|, ®' 0. and 2+ .0,
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or less apparent why the functions rl must be monotonic to

avoid internal instability—1.2., self—domination.

4. The general case.

we now drop the reatrictions on m and n. By a monotonic
arc we shall mean a one—parameter family of !mputatio.. of the
form:
(+.1) z_ - f (p)s £y(p), ooy £ (p) all p ¢ R,
where R {8 some real interval, and the functions ', f are
L .
continuous, ncnnegative, and respectively nondecreasing and

nonincreasing. Without loss of generality, we can choose the

parameter r sc that

)

[
4

—_
$
o
S

p) e, f (p) = g-p,

v

P2
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thereby making R a subinterval of [O, g].ll

Let E denote the subset of A delimited by the mn in—

equalities:

(4.3) xd v X {1, all u € M, . ¢ N

i

Clearly E 18 nonempty, closed, and convex, a&and has a nonempty
intersection with both Ay and AN. It 18 the subset of A In

which every palr 4,. . 18 an effective coalition, in the
sense of (1.3).

THEOREN 1. Every monotonic arc 1in

connecting AM and A” is 1 solution of

the game.

Remark 1. The theorem !8 not vacuous, 8s8ince the stralgh
line ‘'oining the centers of gravity of AM and AN 13 a monoconic
arc and !s conteined in E.

Remark 0. If m n then E 18 exactly the core (seen
(¢.1)), and {f ¢ 1 then 2 - A. Thus, all of the solutions
described in 92 and 63 ar«e {ncluded tn the theorem.

Remark 7. +nen m ¥ n, one of the contacts & Ay OT

F Ay 18 a single point, namely (1, ..., 1; 0, ..., 0) or
(0, ..., 0; 1, ..., 1), which pins dow.. one end of thr solutions
of thr theorem. The explanstion for this lies in the fact that

the point in question 13 the core, and 18 necessarily contalned

in all solutions.

llwe can now interpret p as the total profit realized Ly
the sellers' group, M, under the imp.tation zp. Adilng thelr
costs (assumed constant) and dividing by g gives us the verage
net marxet price (mee the discussion in the Iutroduction?
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Proof of tneorem. Let V be a raonotwnic arc in E running

from A, to A, and parametrized according to (4.1), (4.2). 1o

M
show that V 18 externally stable, take any x € A, and let Py

be the greatest p ¢ R such that

(4.4) fd(p) { o xt, <11 | € M,

and p, the least p ¢ R such that
(4.9) r,(p) < x, all : € N,

The existence of these extrema 18 assured by the fact that V
touches A, and Ay, 1.e., that R [0, g]. We d:stinguish

two cases.

Case A: p, < py» Let py, < p* < Fo- Then for some u*, . * we

have both
fd.(p') P xd. and f;,(p') R x;..

Using the fact that V . E, we see that zp. dominates x via
(u®*, . *®
Case Bt py . p,- Inserting p, In (4.4) and p- in (4.5) and

summing, we obtain

Py * 8- P £ x(M N} - g,
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with the aid of (4.2). This mrans tha. Py p. and that

equality holds in all of the m + n inequalities (~.4), (4.7),

with p. and p. inserted. Hence we have:

fhis completes the prcof of external stability, our two cases
having shown that every imputation x 18 ither 11 VvV or in dom V.
As for Internal stability, 1t 18 obvious that the contrary
direction of the two sets of monotonic functlons ‘f;} ,.ff.
rules out the posaibility of domination within & monotonic arc.
i& completes th: proof of the theoremn.

It {5 eas!ly verifiled that the solutions given by Theorem
1 £111 ur alil of E. An example, given below in & , shows that
solutlions ~xi6t that are not conta'ned in ¥. Je now define =

larger subset of A, denoted by P, that contains all solutions,

Zziving us the chain:
A I nto: of all solutions i core.

In fact, let P be the Bet of all imputations x such thut

max x' + min x 5 l, and
Mo N
min x' b ¢ 1
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A comparison with (4.3) shows that P contains Z. Note that

F may not be convex.

THEOREM 2. very solution of the game 18

contained in P.

Proof. Let V be any solution, let x be any element of

V, and let 4*®* be any e¢lement of M such that
(4.¢) xd. + x ) 1 all . ¢ N,

supposing that such a p*® exists. The case xd, - 0 leads at once
to the absurdity: x(N) > n o g. If xd. O we can find z € A
that majorizes x in 711 components but x&,, and that i{s so near
to x that ¢ie strict inequalities of (4.+) remain valid for z.
Then any imputation that dominates z dominates x as well.
Therefore z is undominated by V, and hence must sctually be 1In
V. By the same reasoning, 4 small neighborhood of z is in 7.
But this is impossible, by lemma 1. Hence the existence of [ *

™ulfi1lling (4.7) 1s refuted, 2nd
max X' 4 min x S 1
is estadblished. A symmetrical argument completes the proof.

COROLLARY. No component of any imputation of any

solution exceeds 1.
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This 18 an inetance of the general location theorem of

~

G1llies and Milnor,l’ which states that the components of all

imputations in a solution must sat!afy the Inequality:

x, ( max [v(8) — v(5 - 1. )]
‘ S el
A stronger general theorem ([“], p. 1) 13 avetlable; ** wou:ld

improve on the corollary but not on Theorem 2 itsel:.

05. Skewnesa of solutions.

In this section we shall prove that every solutior of the
game (1.1) ie & monoton!c arc connecting AM and A”, though not
necessari{ly contatined 11 ®. Our maln tool will be a property
~alled s.,;cewness , which !8 & special «ind of {nterral stab!lity.
Once we have proved that . very, solution is skew (Lemma °) the
main result (Theorem *) follows quickly.

Por vectors a and b the notatlon a bo|a R b] will denote

(4=
that every component of 3 — b 13 nonnegative |nonpositive].

v sup(a, L) [t:r(a, b)] we shall mean the least upper |greatest
lower| bvound of a and b. By med(a, b, c¢) we shall mean thre

vector each of whose components 1s the median of the corresponding
components of a, b, c. A vectHor ¢ w!ll be said to lie betwee: the

two vectors a ani b !{f ¢ med(a, u, ~). We observe tha* *‘he

median of any three vectors {3 betweern every t‘woc of them.

lp[?] and [’ ]; or see [-], p. o<,
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We call a pair x, y of imputations skew if elither

x' . y' and

] BT

[

a

set 18 obviously internally stable, in view of (1.4).

Given any three elements of a skew set, one of them will be

found to lile betwaen the other two. A ronotonie arc 1s an

obvious example of 8 skew set.

skew,
that

next

(5.1)

While tnere is no & priori reason that a solution must be
the hypothesis of non-s<ewness has far-reac.:ing implications
eventually prove aont.adictory. Our entering wedge is the

lemma; note that it s trivial for skew solutions.
LEMMA 2. If x and y are elements of a solution
V, then the two vectors
u = <« sup(x', y'); inf(x', y ) . and
v = inf(x', y'); sup(x’, v') >
are also elements of V.

Proof: If u and v are in A, that 1s, 1If

u(M 'N) = v(MOUN) - g,
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then it 's easily seen that they are in V, since any z ¢ V that
might dominate u (say; would also have to dominate either x or

y. Therefore our task 18 to prove (£.1). Suppose that

u(M N) < g.

Take a vector w that 8 strictly greater than u in every
component, with w(M_N) = g. Then w must be in , since any—
thing dominating it must also dominate either x or y. By the
same reasoning, a smal) neighborhood (in A) of w must likewise be

in V which 18 impossible, by Lemma 1. Hence we have

(Do 2) u(M 'N) _ g.

Similarly, we have

(5:3) viM' N) _ g.

Adding, and using the i1dentity u + v - x + y, we obtain the
expression 2g _ 2g. This means that we actually have equality in

(.2) and (5.%), as was to be shown.

COROLLARY 1. The median of any three elements of

a solution is 1tself in the sc .ution.

Proof. Apply the lemma repeatedly to the iden:ity:
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med(x, y, z) &

{inf(sup(xjy'),suplyiz'),sup(zjx')]; sup[inf(x,r'),inf(y,z"),tnf(z,x "))

exploiting the fact that the 'med” function can be expanded in

terms of 'inf ' and ‘sup’' in two different, anti—symmetric ways.

COROLLARY 2. If x and y are elements of the
same solution V, then x' D y' implies x' { y'.
Equivalently, i1f x, y € V are not skew, then

four indicates Hy» Ho € M, € N can be

A
found suceh that:

x' Dy, x' Cy' o, X :

! Hy Mo ko 1 1 "2 e
Proof. Suppose x' 2 y' but not x' ( y'. Then u' = x'

and u ( x', with u $ x (defining u as in the lemma). Then

u(MUN) ¢ x(M UN) = g, contradicting (%.1).

ILEFMMA 3. If two distinct elements of a solution
V are skew, then there is a third, distinct

element of V between them.

Proof. Let x, y be a distinct, skew palir of imputations
belonging to V, with x' > y', x' ¢ y ', and let z be any other

imputation between them. If 2 18 in V then we are finlshed;



if nct, we can

thus:

Since w 13 not

also have

xd, 2
let t - med(x,
t 18 between x

that

find a w ¢ V that dominates 2z viua some . pu*, »*,

r

28N

permitted to dominate elither x or y, we must

Yy, ')‘

and vy.

. ¥

y

e

and Ye 2 We -

By Corollary 1 above, t is in V. Clearly

Inspecting the above inequalities, we see

and t', wi, ¥ x’,

Herice t 1s disetirct from both x and y, ae required.

LEMMA 4.

Every palr of skew points in a solution

V can be connected by a monotonic arc lying entirely

within V.
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Proof. Define a partial ordering of imputations by the

relation:

(5.4) s > t 1f and only 1f B8' o t', 8 (t, s ¥t

.
- ! e

Let x, y € V be skew, with Xx y. By Zlorn's Lrmma, the set

ny of elements of V that lie between x and y (including x and

y) contains at least one maximal chain (maximal linearly—ordered
subset). Denote this chain by C. Clearly C contains x and y.
Since ny is a closed set, and the closure of a chain 18 still

a ohain, C 1s a closed set. The continuous function g(s) a(M)
maps C into a closed subset #(C) of the real interval I - [y(M),
x(M)]. The mapping is 1:1 as far as 1t goes, since ¢ 18 strictly
order-preserving, and it covers the endpoints of I. If it ralled
to cover the interior of I, then I — g(C) would contair an open
subinterval with endpoints belonging to g(C). The inverse images
of these endpoints, in C, would be skew to each other. By Lemma

% there would be a distinct element z ¢ /—C bertween them. But
such a z could be added to the chain C, contradicting the latter's
assumcd maximality. Therefore we conclude that g(C) covers I —
1.e., that # 18 '1:1 onto. The inverse of ¢, mapping I continuously

back onto C, then provides a parametrization of C as a4 monotonlic

arc Joining x and y, as required.

IFMMA ©. PFvery solution 18 a s<ew sget,
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revedls the existence of four monotcnic ar-as
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!

them both.
v.)

X,
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follows:

nong. ew

sip(x:, y');

‘ges Lemma . )

Wil
Lemma

vy, XV,

Prom this conflp:ration we shall deriv
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By the second corollary to lLemma 2, none of these is empty.

Our first task will be to prove:

(*.95) min x' = min y'
Mo M uLM1 H

To 4o this, we start with a [ixed

1 1’
¢ b ¢ -y . Deiine z ¢ A by
1 i
|z! x' ' +/(men=1) all | « W
%8 U
ZE ) v /(m:n-1) all . ¢« N = -
|
z
1 1
Suppose first that z ¢ V. Taxe any 0 ¢ N — 1y and let ho
be such that z' = min z'. By Theorem 2 we have z' . z 1.
Lo MooM Ho Q1

Hence z dominates x via contradicting the internal

. uo' 'O' ’
stability of V. Therefore z ¢ /, and there 18 a w ¢ V/ that

dominates ¢ via some ., *, .*: , wilth

' N C
'LL. 4 WL. N 1.

But z almost ma‘orizes x; to <eep w ‘rom dominating x as well

as zZ we must have . * ..+ Therefore:

€ N and select a8 positive
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Bt now w threatens to dominate y; to prevent this we must have:

ll. o u. LL. x,l. ’
from which we conclude that * ¢ M . tlence:
S in x' < ' w' 1 - w,

( ) : n lu AN\ xu. “0 - w;.

2

1 - x
]}

Now, ta,'» a2 1, € Ml so that y' min y', and select a positive

i My My M
7 X\ -y There will be a point t on the monotonic arc

1 )|
xv V with t' y' « 7 . Note that t & y , BO
k) H 1 1 "1
that we are in danger of having t dominate y via Hyr 77
To avert this requires t' .+ t 1. Thus we have:
! 1

&Y minm y! = y' = ¢ -
( ) M yu 'ul LLl

1

1 -t - 1 - x -
1 1

Since (.’ ) and (‘.”) are valild for arbitrar!ly small ¢ and - ,

we conclude that m#n yd o m&n x&. A symetrical argum~nt
establishes the rngrse 1nqua11ty, and (*.%) follows.

To complete the proof of the lemma, choose a point y « uy
far enough from § so that && y& for all u¢ Ml' but not so far

that y = u. (See Pig. 2.) Then x and ﬁ ire nons‘ew. Defining



Ml and M2 as above, with respect to the pair r, 9, we see at

once that M, M, and M, DM, since y' . y'. Hence
min x' N min x' , and
M, Mz
min ! min y' min y' ,
; yu - 5 Yu . Yu
pl 1 1

and (5.5) must fall for one of the ralrs x, y or x, y. This 1s

the desired contradiction.

THEOREM *. Every solution of the game i8s a

monotonic arc conneocting AM and AN'

Proof. Let V be a solution, and let x ¢ V be its 'nearest
approach’ to the face Ay, in the sense that x(M) 18 maximired.

Since V 1s a skew set (Lemma ©), we have

x', X &1 w € V.

£' = x' + x(N)/m all ¢ M

zf e 0 all . € N

is sxew to every element of V, and hence 18 undominated by 7.
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There"ore, it belonge to V, and {3 in fact the eleme:t x. Ir.
other worda, V actually touches AM' By a similar argument,
touches ,.. Therefore (Lemma 4) . includes a monotonic arc C

S

connnecting the two fares. But C {8 obviously a maximal skew

set; hence C. This compietes the proof.

TJROLLARY 1. The only s>lutlion possessing the
full symmetry of the game 13 the set of imp.ta-—
tions of the form

Bpi G pste, s S g e g,
-— that 18, the line ‘oining tlie midpol:ints of
A, and A,,.

M N

Thus, the unique symmetric solution {8 precigsely the set

13

of symmetric imputatlions.

COROLLARY <. If uin (m, n) = g 1, then all the

dolitions of the gume are given by Theorem 1. (See 87.)

d' . Two examples.

Theorems 2 and *, while they narrow the class of cand!{dates
to a falrly concise family of sets — the maximal monotonic arcs

in P — nevertheless fall short of a complete characterization

l}Contrast thin with the situation for the familiar three—

person simple ma‘ority game: the unique symmetric solution
conalsts of three asymetric imputations; the unique symmetric
imputation belongs to three asymmetric solutions (see [13],
032, 633).
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of the solutions of the game. Maximal monotonic arcs lying
entirely in E are certainly solutions, by Theorem 1, Sut the
status of those that enter the regicn P — E remains in doubt.
We give two examples to show that e problem has no simple,
gall-or-none resolution.

let M = {1, 2; , N =(3, 4, 5, . (Any smaller game
would come under thmspecial cases m nor g = 1.) Let v, and

YV, be polygonal arcs, with vertices connected in the order

listed:
(1, 1; o, O, O) (2R i N 6, O IS O )
(3/4, 3/4; 1/, 1/¢, 1/1) (/300222
(2/4, /43 1/2, 1/4, 1/4) (2/3, 1/3; 2/3, 1/€, 1/¢)
(1/4, 1/4; 1/2, 1/2, 1/2) (1/3, 1/ 2/3, /3 1/3)
( ) (

@, 0 2/3, 2/3, 5/3 @, 0 ; 2/3 2/3, &2/3)

Vertices of V Vertices of V|

1

In each ocase, the third vertex 18 in P — E, by virtue of xi +

x% > 1. We assert that V

1 is a solution, and that V? is not.
To verify the former, we refer to the proof of Theorem §
and observe that the only statement therein that does not
apply to V1 is the claim of domination via ,*, - *, - .1, 3
for certain values of p®* — a claim that 15A1nvalidated by the
failure of condition (1.9) in the vicinity of the third vertex.

However, the only imputations whose domination depends on this
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are those with 1/2 « 3 3/4, 1/4 xi 1/2, and a straight—
forward argument shows thit all sucn imputations are dominated
by V; via other pairs . u, .} for which (1.¢) alwuys holds. «e
omit the deta'ls.

To verify that VL {8 not a solution, we ovserve simply
that the imputation (1/%, 0/%; 1/*, 1/2, 1/3), amor.g others,

138 undominated by /..

[4

07. Q(eneral form of the srewness concept

It was remarxed !n d° that s-rewness s a special form of
internal stability. It may be of interest to have this relation-—
ship made prectse in the context of general n—person games, and
to gugsclt why 1t worxs 80 well in the present case.

Pollowing 311ltes [:], let us call a coallition S vital 1If

there does not exist a nontrivial partiiion (Sl’ ceey Sr) of S

-

such that v(8) = _ v(S (In the game (1.1) the only vital

1)’
coalitions are the one—element sets and those 0” the form
‘W, » with o « M, . ¢ N.) Let us call two imputations x and v

skew 1if neither x — y nor y — x 18 strictly positive on any

vital coalition having more than one memter.

Our previous definition (%) 18 obviously tncluded in the
above. It 18 easy to verify in general that s<ew Bets are
internally stable, and that for simple games the solutions are
always maximal skew sets. That the converse of the latter 1isa
not true may be seen from the example of three—point configira-—
tions in the essentiul zero—sum 3>person game which are maximal

skew, but not solutions. An indication of a possible role wt.ich
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skewness might play in the general theory may be gleaned from
[13] 030.% (esp. $30.3.0). However, there are grave difficultles
to be overcome in the general approach outlined there, and the
best immediate prospect lies in applications to restricted
classes of games, especially those with relatively few vital
coalitions.

In the present application, the key property 1s the fact
that s<ew sets are linearly ordered chains in the partial ordering
(5.4) defined in the proof of Lemma 4 (but used elsewhere
implicitly); that is, skewness of a three—point set implies that
one of the points is between the other t\vo.M For other claases

of games we may hope to be ahle to discover and exploit other,

equally decisive, special properties.

luThia is a esonverse to the general theorem: if z {8 between
x aad y, and if <« x, y. 1is skew, then . x, y, z) 13 skew.
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