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Summary

A large and important class of variational problems have

the following form. Given a vector equation of the form
dx/dt = g(x,y), x(0) = ¢,

where x 18 an N-dimensional vector, we wish to determine an
—-dimensional vector y so as to minimize a given criterion

functional

J(y) .{T h(x:Y)dtn

where h(x,y) 1s a given scalar function.

As has been shown in some recent publications, a variety
of problems of this nature arising in economic and engineering
control processes may be solved computationally by combining
the theory of dynamic programming with modern digital computers.

In recent years, problems of less explicit nature have
become more frequent. Thus, for example, what 1s called the
"bang-bang” control problem requires that y be chosen so
that the system tends to a specified equilibrium state as
rapidly as poaliblo.

The upper limit of integration is thus not predetermined,
but rather a function of the choice of the vector y. In place
of a formulation in precise analytic terms, we encounter an
implicit criterion of the following type:

"When x satisfies a set of conditions Cl,Cz,...,cp
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for the first time, we want a given scalar function of x to
be as small as possible.”

A particular example of a problem of this nature, equiva-
lent to one we shall discuss in more detail, is one in which
we require that a preassigned function be a minimum for the

first value of T for which xl(T) -a,, a given value.
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ON THE APPLICATION &I ZW'NAMIC PROGRAMMING
TO A CLASS OP TMPLICIT VARIATIONAL PROBLEMS

Richard Bellman*®
John M. Richardson*®*

1. Introduction

A large and important class of variational problems have

the following form. G(Given a vector equation of the form
(1) X = glx,y), x(0) =c
a'f ’ ] A ]

where x 18 an N—dimensional vector, we wish to determine an
m—dimendsional vector y 80 as to minimize a given criterion

functional

(2) J(y) =

where h(x,y) 18 a given scalar function.

The vector y may be subject to constraints of the form

(3) ro{x,y) <0, 1t =1,2,...,q.

In problems involving "terminal control,” we meet the

problem of minimizing a function only of the final state

(4) I(y) = k(x(T)).

A problem of this nature occurs when we wish to have the

e
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system in some specified state xo(T) at time T, without
caring how the system gets there. This is usually an ideali-
gzation, in the sense that a more realistic problem will
involve a combination of a criterion of the type appearing in
(2) together with some measure of the value of the final
state.

As has been shown in some recent publications, cf. [1]
where further references may be found, a variety of problems
of this nature arising in economic and engineering control
processes may be solved computationally by combining the
theory of dynamic programming with modern digi‘al computers.

In recent years, provlems of less explicit nature have
become more frequent. Thus, for example, what is called the
"bang—-bang” control problem requires that y be chosen so
that the system tend to a specified equilibrium state as
rapidly as possible; cf. [2].

The upper limit of integration is thus not predetermined,
but rather a function of the choice of the vector y. 1In
place of a formulation in precise analytic terms of the type
appearing in (2) or (4), we encounter an implicit criterion of
the following type:

"When x satisfies a set of conditions cl,cz,....cp
for the first time, we want a given scalar function of x to
be as small as possible.”

A particular example of a problem of this nature, equiva-
lent to one we shall discuss in more detail below, is one in

which we require that a preassigned function be a minimum for
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the first value of T for which XI(T) = a,, a given value.

A number of quite interesting existence and uniqueness
Questions arise in conjunction with problem statements of the
foregoing kind. These will be discussed at some time in the
future. Here we are interested in describing a technique
which can be used to obtain computational aolutions via the
functional equation path of dynamic programming.

The problem becomes of even more iriteresting nature 1if we

insert some stochastic influences into the process. Let the

governing equation be

(5) K = slx,y,r), x(0) = c,

where r 18 a random vector. We now wish to minimize an
expected deviation, or say the probability that the deviation
exceeds a given critical value.

Once again, let us point out that the rigorous groundwork
for thess questions remains to be laid. However, as we shall
see below, we have a simple method for postponing this type of
investigetion.

As 18 to be expected, certain simplifications are
possible if the underlying equations are linear, i.e. of the

form

(6) X

+ + -
- Axn 7% N c,

n+l n

and the criteria quadratic. We shall discuss these cases 1in

some detall since they are of some importance i1 connection
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with the application of the method of successive approxima* »ns.
Throughout, our aim will be to illustrate the applicability
of the functional equation technique of dynamic programming to
the computational solution of questions of this kind which
appear in many ways to be outside the domain of the classical

calculus of variations.

2. Preliminaries

Since, as mentioned above, we are primarily interested in
a computational solution of implicit varlational problems of
the type described in the foregoing section, we shall pose our
problem in discrete terms. The recurrence relations we derive
vill then be ready for use in a digital computer.

In place of the differential relation of (1.4), ccnsider

the difference equation

(1)

X 41 " g(xn,yn,rn), Xg = ¢, 1 =0,1,...,N,

One of the advantages of formulating problems in this fashion
is8 that there are now no conceptual difficulties concerning
the meaning of random functions or the existence of minimizing
functions. In return, sometime or other we must show that the
1imit of the discrete process exists, and, preferablv, ylelds
the continuous procese. PFor a start in this direction, see
3.
In order to 1llustrate the method in simple fashion, we

shall consider a two—dimensional process,
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(2) xl(n+1) - xl(n) - yl(n) - rl(n), xl(O) - Cys
x,(n+1) = g (x,(n),x,(n),y,(n),ry(n)), x,(0) = c,.

The aim of the process is to choose yl(n) and ye(n), sub—

Ject to constraints of the form

(3) 0<a; <vy,(n) <ay,, 0<by <y,n) <,

80 as to minimize the expected value of (x2(m) - xo)2 where

m is the "time" at which xl(m) = 0., The r,(n) are inde-

g
pendent random variables with given distributions.

The expected value 18 over the random variables ry and
Ts where ry can depend upon the choice of Vel and Yo

but, in any case is subject to the condition that

\4) y;(n) + ry(n) > a, > 0.

It follows that xl(n) 1s steadily decreasing as n 1increases,
The recurrence relation in (1) ‘s valid until xl(n) = 0,

Properly, we should write

-

(5) x(p21) = Max [0, x,(n) = y;(n) = ry(m)].

The process ends as soon as x, assumes the value zero.

3. Punctional Equations

It 38 clear that the minimum of the expected value of
(x,(n) — x )2 depends upon ¢, and ¢, and only upon these
2 0 1 2

variables assuming all other functions and distritutions known



P-1374

5—1¢—58
>
and fixed. t us then write
(1) f(cl,c?) = Min Exp (xg(n) - xo)e.
Yi r
We have
(2) £(0,c,) = (¢, = x5)°
12 2 o’ ¢
and the principle of optimality, see [1], ylelds the
functional equatlon
(3) r(cysc,) = Min  |Exp flcy —y, — ry,ale),c,v,,r,)
yl’y2 Pl'r‘e

(-

There 18 no difficulty in treating the case in which the
distribution of random effects depends upon the decisions that

are made.

4, Frobability of Deviation

In place of mean—square deviation, let us consider tne

problem of determining Yy and y. 80 as to minimize the

c

probability that Ix2 - x5l > d.

As above, let

(1) f(cl,cg) = Min Prob [|x? - xo} > d].
yi i ’
Then
(2) r(o,ce) =1, ‘o, - x5l >4,
.O, lcg— XO < d,
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while ‘(°1'°2) satisfies the same functional equation as in

(3.3).

5. Discussion of Computational Solution
In order to determine the function f(cl,cz) using a

digital computer, we employ a discrete grid in (cl,cz)-cpace.
Let c, assume only the sequence of values 0,06,28,..., and
¢, @& sequence of values 0,54,25,... . Since ¢y is mono-—
tonically decreasing as the process continues, we can use it

as a "time" variable. VWrite
(1) r(kb,cz) % :k(cz).

Then (3.3) may be written

(2) flcy) = ;‘:?Vz [:?"2 tp(s(kb.cz.vz.ra))].

where p 18 determined by the ~ondition
(3) p = [(ey = vy = r)8),

the greatest integer contained in (¢, -y, - r,)/s.

Since g(kb,cz,yz,rz) in general will not be an integral
multiple of [, we can either take as its value the nearest
integer multiple of /A, as we did in (3), or we can use inter-
polation, if more accurate results are desired.

The value of fo(cz) is determined by the relation

(¥) folcy) = (e = x)2.
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Consequently (2) furnishes a recurrence relation which enables
us to compute the function rk(cz) in terms of tn(cz) for
ne0,1l,...,k=1. We thus have a feasible computational

scheme.

6. Deterministic Process

Returning to a purely deterministic process, as speci-
fied by (1.1), we may wish to determine y 8o that x 1is ir
some desired state at some subsequent time. One way of
attacking this problem is to treat the problem of minimizing
(x5(T) - xo)2 where T 1s the first time at which x,(T)
has its desired value. The functional equations are as above,

without the averaging over the random behavior.

7. Linear Equations and Quadratic Criteria

In general, the application of a straightforward
functional equation approach is limited by dimensionality
difficulties in the sense that functions of three or more
variables cannot be readily stored in a fast memory. Conse—
Quently, the techniques described above must be aided and
abetted by successive approximations of various type=, a
subject which has been discussed elsewhere. If, however, the
guiding equations are linear, and the criteria function quad-
ratic, then the sequence of functions /f (c); will consist
of a sequence of quadratic functions 1n> c. These functions
are determined once the coefficients are determined. As we

shall see, reasonably simple recurrence relations exist con-
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necting the coefficients of rn(c) with those of tn_l(c).
Consider, to begin with, the problem of choosing the vy

80 as to minimize the expected mean—square deviation

T
(1) Ip(y) = hrp[(x(‘r) - 8,x(T) - a) ¢ k;(yk.ayk)].

Here T assumes the values 0,1,2,..., B 1is a posltive
definite matrix, a 1s a specificd state vector, x and y

are related by means of the linear relations

(2) Xney = AX, ¢y *+r,, X5=c,

where {ri} is a set of independent, random vectors with
identical distributions.

The process is assumed to proceed in the following
fashion. Ve observe c, the initial state and on this basis
and the foregoing information, choose Yor the initial control
vector. Then a random effect ro occurs, yielding by way of
(2) a new state vector Ac + Yo *+ Fg- The process then con-
tinues in this way, stage-by-stage, a "feedback control®
process.

Although this problem can be, and has becn, treated by
straightforward variational techniques, we shall treat it by
functional equation methods. There is some merit in doing
this even in this case, and in addition we shall prepare the
way for the following section devoted to a process of random
duration.
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Define the new sequence of functions {rT(c)l by means

of the relation

(3) rar(c) - Tln JT(Y)O
Y,
Then
(8) £ole) = (c = a,e — a),

and the principle of optimality yields the recurrence relation

(5) fn(c) = Min Exp [(yO'ByO) + rn—l(‘c + Yo + ro)]n
Yo To

for n=1,2,... .
Let us now show inductively that each fn(c) may be
written in the form

(6) t'n(c) - (c,an) + 2(bn,c) +u.

The result is obviously so for n = O,

Substituting in (5), we have

(1) fale) = Mo ((501Bg) + (Ac + yo + rouM, ) (A + 3 + o))

> 2(bn_1.lc + yo ¢+ ro) + “n-l]‘
Taking expected values and using the result that

® M (o) + 2(8,5)] = - (&,7),
y



P-1374
5-14-58
11—

whenever C 18 positive definite, we see that tn(c) has the
form stated in (6). Carrying through the calculations, we
obtain recurrence relations connecting lln. bn and dn with

"1s Ppy @nd 4 ,.

8. Linear Process of Random Duration

Consider now a system specified by the equations
(1) Unel " Yy = Tipr Yo = Cor

el = AXp ¢tV t T Xg = oo,

where w, and Ty, Are scalars, Xo» Yp and r, vectors.
The process ends whenever u, becomes zero or negative.

The quantity ™in is a uniformly positive random vari-
able, so that the process is always finite. The control
vectors In are to be chosen so as to minimize the expected

value of

m
(2) I(y) = (x(m) - a,x(m) - a) + kzo(yk.ﬂyk).

where m 1s itself a random variable determined by the
condition that it is the first integer for which W, is
negative or gero.

Write

(3) f(conc) = Min Exp J(y).
y r

Then
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(%) r(0,c) = (¢ — a,c - a),
and
(5) r(co,c) = Min Exp t(c° - rlo,Ac +yo ¢+ ro).
Yo To

Assume, as previously, that Co can assume only a
discrete set of values with a similar condition on ro° Let,
suitably normalized, o take the values O0,1,..., and 0

only the range of values dl.dl+1,...,d2. Then, writing

(6) f(k,c) & rk(c), k =0,1,2,...,

we may write (5) in the form
(dz

J

(7) f(c) =Min Exp ( 3 p,f ,{Ac +y5+ 1y,
Yo To [1%4 l

where

(8) P, = the probability that ro = 1.

The function tk(c) is identically zero for k < O.
Once again, it 1s easy to see that each element of the

sequence {tk(c)i 1s a quadratic function of ¢, of the form
(9) f,(c) = (c,mc) +2(b ,c) +u.

The recurrence relations connecting .k' bk' u, with "k—l’
b, ys 4 _, can be obtained from (7) in the way indicated

above.
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