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Summagz

In a series of papers, it has been shown that the integral

representation
N/2

(1) T - )@ e_(x'Ax)dx
[A] “—o0

where A 18 a8 symmetric matrix whose real part is positive
definite, dx = dxldxe...de, and the integration is over the
whole x—epace, can be used to establish a number of inequali-
ties derived in other ways.

On the other hand, the methods used by other authors,
Ostrowski and Taussky, Ky Fan, and Oppenheim, possess the
advantage of being equelly applicable to the study of hermitian
matrices, whereas (1), as it stands, can be used only for
symmetric matrices.

In this paper we shall establish an analogue of (1) for
positive definite hermitian matrices, and then use this result
to derive a number of known inequalities.

As a further example of the use of representation theorems
of this type we shall use (1) and the hermitian analogue to
derive a partial generalization of a recent inequality of Hua,
We shall then use a deeper representation theorem of Siegel and
Ingham to obtain a further generalization. The result for her—
mitian matrices requires a generalization of the Siegel result
due to Braun. A generalization in a different direction enables

st21]1 further results to be obtained.



In a recent paper by Marcus, extensions of a still

different nature are indicated.

P-1361
5658
.



P-1361
5~6—58

REPRESENTATION THEOREMS AND
INEQUALITIES FOR HERMITIAN MATRICES

ichard Bellman

1. Introduction

In a series of papers, (1], [3], (4], 1t has been shown
that the integral representation
N/2

(1) L

_/ooe—(x,A.x)dx
|A| —00

where A 18 a symmetric matrix whose real part is positive
definite, dx = dxldx2...de, and the integration is over the
whole x—space, can be used to establish a number of inequali-
ties derived in other ways; cf. Ostrowski and Taussky, [11], Ky
Fan, [8], Oppenheim, (14.

On the other hand, the methods used by the authors of the
papers cited above possess the advantage of being equally
applicable to the study of hermitian matrices, whereas (1), as
it stands, can be ured only for symmetric matrices.

In this paper we shall establish an analogue of (1) for
positive definite hermitian matrices, and then use this result
to derive a number of known inequalities.

As a further example of the use of representation theorems
of this type we shall use (1) and the hermitian analogue to
derive a partial generalization of a recent inequality of Hua,

(6] . We shall then use a deeper representation theorem of

Siegel, (13, and Ingham, (7], to obtain a further generalization.
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The result for hermitian matrices requires a generalization of

the Siegel result due to Braun, [5 . A generalization in a
different direction, given in [}], enables still further re-—
sults to be obtained.

In a recent paper by Marcus, (9], extensions of a still

different nature are indicated.

2. Evaluation of an Integral

By analogy with the formula of (1.1), let us discuss the
integral
(1) 3(1) = /@ e~ EH2)ggy,
—

where 2z = x + 1y and H 18 a positive definite hermitian

matrix.
Write H=A + 1B, A and B real, so that A' = A,
B' = — B, It follows that

(2) J(H) _‘/)(n e_(x’Ax)—e(Bx’Y)_(y’Ay)dxdy.
—00

Since the integral is absolutely convergent, it may be evalu—
ated by integration first over x and then over y.

Using the relation, (recall that B' = — B),

(3) (x,Ax) + 2(Bx,y) = (x,Ax) — 2(x,By)

-1 — | -
had (A(X - A BY)rx — A By) - (ByoA

we see that

1

By),
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(%) c/700 e~(x.Ax)—2(Bx,y)dx - WN/Q e(By,A—IBy).
2 |A|
Hence
/2 oo ~[(y,Ay)+(y,BA  By)]
(5) J(H) L& b{;g e dy
N/2 N/2

N
L4

1Al [T+ A TBap|1/2 "

3. Relation between J(H) and |[HI

It remains to express J(H) in terms of
(1) IH| = |A + 18| = {A| |I + 1A71B|
|H'|= |A — 1B] = |Al |T - 1A %B].
Since |H| = |H'|, we have
(2) HI12 = 1A% (1 + 1A7IB)(I — 1a71B) |
1

- [A1Z |T + A" 1Ba 1B,

P-1361

|H|. We have

Combining the foregoing result with (2.5), we obtain the

desired result.

Theorem 1.

(3) J(H) = 7" /|H]|.

4, Extensions

It 18 easy to see, following, for example, the argument
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given in [4], that (3.3) is valid for a matrix of the form

H, + iH provided that H is a positive definite hermitian

1 2’ 1
matrix, and H2 is hermitian.

5. An Inequality of Ostrowsxi and Taussky

If H=H, +# 1H where H and H2 are hermitian, we

1 2’ 1

have

(1) J(H, + 1H2) -;/OGD e_(E'le)e_i(z’Haz)dxdy,
-0

1

with (E,le) and (i,Hez) both real. Hence,

(2) J(H) + 1H,) < J(H,),

with strict inequality unless H2 = 0,

This ylelds the inequality

(3) Hy + tH,| > 10,

whenever H1 's positive definite, with strict inequality
unless H2 = 0. By continulty, we see that the inequality
remains valid for H1 non-hegative definite. This is a result
due to Ostrowski and Taussky, [11].

As pointed out in [1], an immedilate consequence of (3) is

the inequality

(4) |A + B| > |A],

whenever A 18 a real symmetric matrix which is non-nhegative
definite, and 2 18 skew-aymmetric. We 8liall use this result

below.
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Closely related to the foregoing result is the inequality
(5) 'I-RU|_>_II"R|’

where R 18 a non-nhegative definite hermitian metrix with
I — R non-negative definite and U unitary.

For closely related and further results, see Taussky, [13.

6. Some Determinantal Inequalities

Using Theorem 1 and Holder's inequality, we readily derive
the inequality

(1) Ny + (B, > [y My D),

provided that Hl and H2 are positive definite hermitian and
O < A <1; cf. Oppenheim, [0, and the corresponding result

for symmetric matrices in [1].

7. Hua's Inequality fer Symmetric Matrices

In a recent paper, Hua, (6], established by means of
representation theorems of a different type, the folilowing

result:

Theorem 2. Let xl,xz,...,xm be complex matrices of

*
order N with the property that I - xixi is positive

definite hermitian for 1 =1,2,...,m, Then for p > O

(1) (1T = xgx, | 7P+

is non-negative definite.

As we shall show, the exponent — N — p + 1 can be
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considerably improved. One method will yield an improvement
in one direction, while the other method will yield an improve-
ment of different type.
Let us begin by establishing
Theorem 3. If A, ,A

12R5s++-» 18 a set of real matrices of

order N, then

/2y,

(2) (II-AU\J 1, = 1,2,...,M,

is positive definite for k = 1,2,..., provided that

I - AiA1 is positive definite for 1 = 1,2,...,M,

Proof. Tet us begin with the observation that every real

matrix B can be written in the form B = Bs + Ba where B8

is symietric and Ba is skew—symmetric. Thus

(3) B, = (B +B')/2,

B, = (B —B')/2.

Observe also that

(4) (x,Bx) = (x,BBx).

We also wish to use the fact that

(5) AlA, + AA, ~ (AiA

Ay 1A, + AiAj) - (Ai - 4\3)(/\1 + AJ)

J

18 non—negative definite. It follows from our assumptions

concerning I — AiA1 that I — (AiA is positive definite.

1s

Referring to G4, we can then conclude that



(6) T - agA | > 1T (AfA)) 1.

It follows that Theorem 3 will be demonstrated if we prove
that

(7) (11 = (Aghy), 17/%)

is positive definite.

Now
N/2 —(x,(I-A!A )x)

(8) L 77 =/% e 1707 ax
IT = (AR, ‘<

—(x,x) (A x,A,x)

_o/oaa e e 1 J dx.
-0
, (Aix,A x)
To show that (e 377y, 1,5 «1,2,...,N 1s non-negative

definite for all x, we begin by showing that ((Aix,AJx)) is
non—nesative definite. This follows readily from the fact that

(9) . ; 1uiuJ(A x, A x) (;Zlu A%, uiAix]

To continue, we require a useful result of I. Schur,

lemma. If A = (a,,) and B = (b,,) are both non-nega—

1J 1J
tive definite, then (aijbij) is non—negative definite.

x)k), k = 1,2,..., 18 non—

J (Aix,A P

negative delinite, a?d hence)that (o J ) 18 non—negative
A,x,A x

definite. Since (e 17 ) can be non—negative definite on

It follows that ((Aix,A

a set of N—dimensional measure zero, at most, it follows that

(1T - (A'A ) '-1/2) is actually positive definite.



P—1361
5—-6:23

To obtain the result stated in Theorem 3, we apply the

foregoing lemma to this last result.

8. Hermitian Matrices

In exactly the same fashion, we can use the representation
of Theorem 1 to establish

Theorem 4, If I - H, H

1Hy i1s positive definite hermitian

for 1 =-1,2,..., then

(1) (1T - HH, |7,

17 1=1,2,...,M,

is positive definite for k = 1,2,...

This is the first extension mentioned above.

9. Ingham—Siegel Representation

In order to establish a result for a less discrete set of
exponents, we shall employ a more recondite identity, discovered
independently in equivalent forms by Ingham, [7], and Siegel, [12J.

Here we shall restrict ourselves to the real version. The

hermitian analogue may be found in Braun, [-]. The identity is

SOV et XYYy e=(M1) 2y o ¢ (0) /1118,
where
(2) ey(8) = NNy T(s = 1/2) (s = (N-1)/2).

The real part of 8 18 assumed to be greater than (N-1)/2.

Here X and Y are symmetric matrices of order N,

daVv = Tﬁdeij, and the integration is over the region in
1<
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xij—epace where X 18 positive definite.

The proof proceeds along the same lines as before once we

observe that
(3) tr(Xy) = tr(Xxy,),
provided that X 1s positive definite. This follows from
(4) tr(xy) = tr(x22yx1/?) . tr(xl/aysxl/z) + tr(X1/2YaX1/2)
: tr(Xl/zstl/g) - tr(xy,).
Furthermore,

(5) (tP(XAiAJ))p 1, =-1,2,...,M

is non—negative definite 1f X 18 positive definite.
The final result is

Theorem 5. Under the assumptions of Theorem 3, the matrix

(11 = AiAJ|k) 18 positive definite provided that k > (N-1)/2.

What the precise exponent should be is not clear.



10.

11.

12.

13.

P-1361
-10-

References

Bellman, K., "Notes on Matrix Theory—II," Amer. Math.
Monthly, vol. 60, 1953, pp. 174-175.

Bellman, R., "A Generalization of some Integral Identities
due to Ingham and Siegel," Duke Math. Jour., vol. 24,

1956, pp. 571-5T78.

Bellman, R., I. Glicksberg, and O. Gross, "Notes on Matrix
Theory—IV," Amer. Math. Monthly, vol. 61, 1954, pp.

Bellman, R,.,, and A. Hoffman, "On a Theorem of Ostrowski and
Taussky," Arch. Math., vol. 5, 1954, pp. 123-127.

Braun, H,, "Hermitian Modular Punctions,” Ann. of Math.,
vol. 50, 1949, pp. 827-855.

Hua, L. K., "Inequalities Involvin% Determinants,” Acta
Math. Sinica, vol. 5, 1955, pp. 463-470.

Ingham, A. B., "An Integral which Occurs in Statistics,”
Proc. Cambridge Phil. Soc., vol. 29, 1933, pp. 271-276.

Fan, Ky, "On a Theorem of Weyl Concerning Eigenvalues of
Linear Transformations, II," Proc. Nat. Acad. Sei.,

vol. 36, 1950, pp. 31-35,

Marcus, M., "On a Determinantal Inequality,” Amer. Mati..
Monthly, vol. 65, 1958, pp. 266268,

Oppenheim, A., "Inequalities Connected with Definite
Hermitian Porms, II," Amer. Math. Monthly, vol. 61, 1954,

pp. 463466,

Ostrowski, A. M., and O, Taussky, "On the Variation of the
Determinant of a Positive Definite Matrix," Ned. Akad.
Weten—-Amaterdam, Proc., Series A, vol. 54, no. 5.

Siegel, C. L., "Uvber die Analytische Theorie der Quadratischen

Formen," Ann. of Math., vol. 36, 1935, pp. 527-£0C.

Taussky, 2., "On a Determinantal Inequality of H. P. Robertson,"”

(to appear).



