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SUMMARY 

Using the formal Identity Max [(x,Ax) - 2(x,y)]- - (y,Ay) 

we have In previous papers studied the properties of the 

Green's function of various functional equations and properties 

of the resolvent operator.  Prom this latter we were able to 

deduce properties of the characteristic functions and 

characteristic values. 

In this paper we show how varlatlonal techniques can be 

applied to deduce similar properties for complex operators and 

for operators which are non—eynmetrlc. 

For complex operators we use a rnln-raax variation and 

analytic continuation. If necessary, while for non—symmetric 

operators we use an Imbedding technique, plus analytic contin- 

uation If required.  A non—symmetric operator Is Imbedded within 

a family of symmetric operators associated with a varlatlonal 

problem. 

Once the varlatlonal problem has been formulated we can 

apply the functional equation tecbniques of the theory of 

dynamic programming. 



P-1331 

-1- 

FUNCTIONAL EQUATIONS  IN THE 
THEORY OP DYNAMIC  PPOORAMMINO—IX: 

VARIATIONAL ANALYSIS,   ANALYTIC CONTINUATION 
AND IMBEDDINO OF  OPERATORS 

Richard Bellman and Sherman Lehman 

1.    Introduction.    Consider the formal identity 

Max   [(x#Ax) - 2(x,y)]   -  (y^y), (l.l) 
x 

where    x    Is an element of a space    S,    and    A    is a symmetric 
operator defined over    S    with the property that     (x,Ax)    is 
negative definite.    Since  the Euler equation associated with 
this varlatlonal  problem is    Ax • y,    we see that the element 
x    furnishing the maximum is given  in terms of the  Inverse 
operator.    For the case of ordinary or partial differential 
operators,  these operators are expressible in terras of Green's 
functions. 

On the other hand,  several  classes of varlatlonal problems 
of this type  can  be treated by means of the  functional equation 
technique of dynamic programming.     Combining  the  two approaches, 
we can derive a number of properties of Oreen's functions.    Por 
the case of second order linear differential operators,  these 

1 2 techniques were applied in Bellman    and Bellman and Lehman  , 
while the classical Hadamard varlatlonal formula for the Oreen's 
function associated with  second order partial differential 
operators,  of elliptic  type was obtained In  this fashion In 

ted i 
.^5 

Bellman and Osborn . Similar results were obtained for linear 

Integral operators and Jacobl matrices in Bellman 

Since this approach yields results In a quite straightfor- 

ward fashion, it is of some interest to see whether or not they 

can De extended to cover cases in which A Is not necessarily 

negative definite, in which A may be symmetric and complex, 

and in which it need not be symmetric. 
2 

In  it was shown how analytic continuation could be used 

to overcome the lack of positive definiteness. Here we shall 

show how analytic continuation and a mln-max variation can be 

used to treat the case of a complex symmetric operator, with 
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partlcular reference to second order linear differential operator», 

and how analytic continuation and an Imbedding  technique can be 

used to handle non-eymmetrlc operators.     Specific applications 

will  be given subsequently. 

?.     Complex Symmetric  Operators.    Let    A -f IB    be a complex sym- 

metric operator.    The equation     (A + lB)(x ♦ ly) ■ u •♦• Iv    reduces 

to the two real equations 

Ax - By - u,     Ay  •♦■ Bx - v. (2.1) 

If    A    Is negative definite,   these can be  considered to be  the 

varlatlonal  equations arising  from the  problem of determining  the 

maximum over    y    and the minimum over    x    of  the functional 

(y,Ay) - (x,Ax)   ♦  2(x,By) - 2(u,x)   + 2(v,y). (2.2) 

If A Is not negative definite,  we replace      by    A - zl    where     z 
Is a  sufficiently large positive scalar,  and  then employ analytic 

2 continuation as In 

3.     The  Second Order Linear  Differential  Operator.    As an  Illus- 

tration of  this technique,   consider the equation 

u"  +  (g(x)  + lh(x))u - p(x)  + lq(x) (3.1) 

over    a  < x < T.    Setting    u ■ v + Iw,    we obtain the equations 

v" + g(x)v - h(x)w  - p(x), 

w" -f g(x)w + h(x)v  - q(x), 

which  are   the varlatlonal  equations  connected  with  the  problem of 

determining  the minimum over    v    and maximum over    w    of  the 

functional 

/T   L v'2 ♦ w«2  ♦ g(x)v2 - 2h(x)vw - g(x)w2 

^       L ^ (3.2) 

- 2p(x)v  +  2q(x)w|dt. 

Since  this   functional  la  convex  In    W     and     concave  In    v',     It 

Is  c^sy   to  show  that    mln  max  - max mln. 
w       v v      w 



With   this Information,   the functional equation technique 
2 

can be applied as In 
If    g(x)    Is not uniformly positive In  the Interval     [a,?], 

we  Introduce the function    2  ♦ g(x)    where    z     Is a sufficiently 
large positive quantity and employ analytic  continuation,  as 

2 Indicated  In 
In a  variety of problems  In mathematical  physics,  complex 

functions occur when energy dissipation Is  taken Into account; 
cf.  Oolph     , where the mln-max formulation Is discussed In detail. 

4.     Non—eymmetrlc  Operators.     Let    A    be a non—symmetric operator, 
A / A1.     In order to study    A- ,    and the  resolvent operator 
(A - XI)-  ,     by varlatlonal   techniques we  consider the problem 
of maximizing the functional 

(x,Bx)  ♦  (y,By)   + 2(x,Ay) - 2(u,x)  - 2(v,y), (4.1) 

where P Is a negative definite operator 

The varlatlonal equations are 

Bx -f Ay ■ u, 

A'x + By - v. 
(4.2) 

We have  thus Imbedded the equation    Ay ■ u,     not necessarily of 
varlatlonal  origin, within a  family of varlatlonal equations. 

In order to carry out  the analytic continuation, we  replace 
B    by    zB    and study the analytic character of  the symmetric 
matrix operator 

fzP       A  ) 
M(z)  - (4.^) 

».A •      zB; 

and Its Inverse, as functions of z. 

z - 0 so as to obtain 

M(0) -1 

(A') -1 

A 

0 

-A 

Eventually we wish to set 

(4.4) 
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The analytic  details In each  case will  depend upon  the 
nature of the operators    A    and    B.     For  the case of  linear 

2 
differential  operators,   the methods given   In      will  yield  the 
desired resulto. 
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