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SUMMARY

Using the formal identity ng[(x,Ax) - 2(x,y)) = - (y,Ay)
we have in previous papers studied the properties of the
Green's function of various functional equations and properties
of the resolvent operator. From this latter we were alble to
deduce properties of the characteristic functions and

characteristic values.

In this paper we show how variational techniques can Le
applied to deduce similar properties for complex operators and
for operators which are non—symmetric.

For complex operators we use a min-max variation and
analytic continuation, if necessary, while for non—symmetric
operators we use an imbedding technique, plus analytic contin-
uation if required. A non—symmetric operator 1s imhedded within
a family of symmetric operators asscciated with a variational
problem,

Once the variational problem has teen formulated we can
apply the functional equation tecltniques of the theory of

dynamic programming.
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FUNCTIONAL EQUATIONS IN THE
THEORY OF DYNAMIC PPOGRAMMING—IX:
VARIATIONAL ANALYSIS, ANALYTIC CONTINUATION
AND IMBEDDING OF OPERATORS

Richard Bellman and Sherman Lehman

l. Introduction. Consider the formal identity

Max [(x,Ax) - 2(x,y)] = (y,aly), (1.1)
X

where x {18 an element of a space S, and A 1is a symmetric
operator defined over S with the property that (x,Ax) 1is
negative definite. Since the Euler equation associated with
this variational problem is Ax = y, we see that the element
x furnishing the maximum is given in terms of the inverse
operator. For the case of ordinary or partial differential
operators, these operators are expressible in terms of Green's
functions.

On the other hand, several classes of variational probtlems
of this type can be treated by means of the functional equation
technique of dynamic programming. Combining the two approaches,
we can derive a number of properties of Green's functions. PFor
the case of second order linear differential operators, these
techniques were applied in Bellman1 and Bellman and Lehmane,
while the classical Hadamard variational formula for the (Green's
function associated with second order partial differential
operators, of elliptic type was obtained in this feshion in
Bellman and OsbornB. Similar results were obtained for linear
integral operators and Jacobil matrices in Bellmanu’s.

Since this approach yields results in a quite straightfor—
ward fashion, it 18 of some interest to see whether or not they
can be extended to cover cases in which A 1is not necessarily
negative definite, in which A may bte symmetric and complex,
and in which 1t need not be symmetric.

In 2 it was shown how analytic continuation could be used
to overcome the lack of positive definiteiness. Here we shall
show how analytic continuation and a min-max variation can te
used to treat the case of a complex symmetric operator, with
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particular reference to second order linear differential operators,
and how analytic continuation and an imtedding technique can re
used to handle non-symmetric operators. Specific applications

will be given subsequently.

2. Complex Symmetric Operators. let A + 1B be a complex sym—
metric operator. The equation (A + iB)(x + 1y) = u + 1v reduces
to the two real equations

AX — By = u, Ay + Bx = v, (2.1)

If A 1s negative definite, these can be considered to te the
variational equations arising from the problem of determining the
maximum over y and the minimum cver x of the functional

(y,Ay) — (x,Ax) + 2(x,By) — 2(u,x) + 2(v,y). (2.2)

If A 18 not negative definite, we replace . by A - zI where 2z
18 a sufficiently large positive scalar, and then employ analytic
continuation as in 2.

3. The Second Order Linear Differential Operator. As an illus—
tration of this technique, consider the equation

u” + (g(x) + 1h(x))u = p(x) + 1q(x) (3.1)

over a < x {T. Setting u = v + iw, we obtain the equations

v' + g(x)v — h(x)w = p(x),

w" + g(x)w + h(x)v = q(x),
which are the variational equations connected with the problem of
determining the minimum over v and maximum over w of the
functional

/T [C v v w2, g(x)ve — 2h(x)vw — g(x)w°
a - (}-2)

-

- 2p(x)v + 2q(x)det.

Since this functional 13 convex in w' and concave in v', 1t

13 zasy to show that min max = max min,
w v \' L
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With this information, the functional equation technique
can be applied as in 2.

It g(x) is not uniformly positive in the interval [a,T],
we introduce the function 2z + g(x) where 2z 1s a sufficiently
large positive quantity and employ analytic continuation, as
indicated 1in

In a variety of probtlems in mathematical physics, complex
functions occur when energy dissipation is taken into account;

cf. Dolph 6, where the min—max formulation 18 discussed in detail.

4. Non-symmetric Operators. Let A be a non-symmetric operator,
A 4 A', In order to study A—l, and the resolvent operator
(A - AI)—l. by variational techniques we consider the problem

of maximizing the functional

(x,Bx) + (y,By) + 2(x,Ay) - 2(u,x) = 2(v,y), (4.1)

where R 18 a negative definite operator.
The variational equations are

A'X + By = v,

We have thus imtedded the equation Ay = u, not necessarily of
variational origin, within a family of variational equations.

In order to carry out the analytic continuation, we replace
B by 2B and study the analytic character of the symmetric
matrlx operator

R A
wiz) - | ] (4.3)

\A' zB

and its inverse, as functions of z. Eventually we wish to set
2z =0 80 as to obtain

0 A1)

- 4.4
(ar)~2 OJ (4:4)

M(0)™} - [
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The analytic details in each case will depend upon the
nature of the operators A and B, For the case of linear
differential operators, the methods given in . will yleld the
desired results.
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