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SMsARY

The general field of eammunication provides a rich source of
cambinatorial problems, a number of vhich arise in connestion with
the design and utilization of ecmmunication networks. Several
classes of extremal problems are 4discussed including the leasing
of minimal ocoet spamning networks, the finding of optimal paths
through netvorks, and the optimal routing of messages in networks,
along vith various gemeraligations.

The methods employed involve curious admixtures of the functional
equation approasch of &ynamic programming, linear prograsming, and
various ad hoc procedures. Interest centers on obtaining methods
vhieh are either efficient from the point of viev of machine
computation or vhigch emphasite the underlying structure of the

solutions.



I, INTRODUCTION

The general field of commmication provides a rich source of
problems in applied mathematics. These embrece fundamental con-
siderations of the communication proocess itself, [ 50] , & vide
spectrum of scientific and technological problems, and still others
involving the design and utilization of large-scale networks. The
rather modest objective of this paper is to drav attention to several
classes of commmication netvork problems, of same importance in the
applications, vhich lsad to camdbinatorial problems of varying degrees
of camplexity. Generally speaking, these problems are concernes with
the optimal design and utilization of cammunication networks in whiech
the camplex interactions among users' demands for service, system
capacities, and econmmic factors must be resolved. Pioneering efforts
along these lines are associsted vith the names of A. K. Erlang, [7] ,
T. C. Fry, [ 18] , E. C. Molina, [27 ], R. I. Wilkinson, [ 33] ,
and J. Riordan, among others.

Prodlems of the type mentioned have been assuming inereasing
importance in reeent years dus to the rapid expansion of communieation
systems, involving large capital investments. VWide-sveeping tech-
nological improvements in both svitching and transmission facilities
vill vastly alter the nature of the netwvorks. lastly, the advent of
the high-speed large-memory digital computing machine has foreed a re-
evaluation of the very methods 7f analysis and design vhie¢h are in
current use. Thourh the models wvhich wve shall discuss are highly
simplified, their analysis may point the wvay toward the treatment of

more refined and resalistic ones.
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The problems to bde discussed lead, from the mathematieal point of
viev, t0o the determination of extreme from among finitely many choices,
80 that no questions concerning existence of solutions arise. Interest
senters rether on obtaining algoritims vhich lead to efficient oompu-
tational schemes for obtaining solutions, and vhiech shed light on the
strueture of the solutioms. PFinding solutions in these problems through
the Bere enweration of cases, as remerked by Buler in his famous paper
on the Komigsberg bridge problem, is at best onerous and unsatisfying
and in many situations impossible (even with the aid of a high-speed
computing maghine), as vill becems evident.

The first type of prodblem vhich wo shall oonsider is that of
determining minimal oost connecting networks. Given a network, each
link of wvhich has a cost assigned to it, find a condected network vhich
inecludes all the stations and has least total cost. Solutions have
been propased by Kruskal, |24 | , Prim, [29] , and Kalabs in thé foras
of algorithms vhich lend themselves well to hand and machine computation
and vhich provide much insight into the nature of the solution. This
prodvlem ean be generaliszed sleng various lines.

The second type of problem is that of determining an optimal chain
oonnecting tvo points in a netwverk. D[Perhaps the simplest version of
%his type is ¢to find a shortest chain connecting twvo terminals in a
given netwvork, each link ef vwhich has a prescribed time of transit.
Solutions have teen previded by Bellman, [2] , through the use af
funetional equations, Duntrig, [10] , using a lineer pregraaming
appronch, and Ford, [1&] . ‘The problem may be modified by requiring

that the chain pass through several specified intermediate points, and
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{t still remsins amenable to treatment. Furthermore, Bellman aad Kalaba
have proposed a method for finding the nt'h shortest chain leading from
one point to another in a network, )]

The methods to be discussed make poseidle the solution of certain
optimal chain provtlems involving probabilitic considerations. In
particular, the problem of determining a path through a netvork wvhiash
maximizes the probability that the tim: of transit between tvo given
points be no greater than a prescrited time t is solved, using
funetional equations, under the assumption that the times of traverse
of the various branches are indepenssnt random variables with known
probability densities. In addition some applications to the theory
of blocking in networks are provided, [25] A

The last type of problem discussed involves the optimal routing
of messages in netvorks, [20] . Under certain comnditions ons may
formulate this as & linsar programming problem for vhiech Dantiig's
simplex method is available for numeriecal solution, provided the
netvork is not too large. A method of solution based on an idea of
Yord and Pulkerson, [16] , makes possible the numerieal solutiom of
problems involving about 150 links. Finally, soms related problems
involving interoffice trunking and the augmentation of networks to

meet increased demands for servies are discussed, {21] e

Acknovledgsment. During the preparation of this paper the author

has had the bemefit of many discussiens vith R. Bellman, C. Dantzig,
D. R. Fulkersen, and N. L, Juncosa and expresses his sincere thanks

for their friendly interest and suggestions.



II. MI¥IMAL COST CONNBCTING NETWORKS

l. Yormmlation,

A television drosdcasting company vishes to lease video links so
that its stations in various sities may be formed into a sonnscted net-
vork. Assumiyrg that the costs for the individual links, all different,
are xnown, we vish to shov hov to construct the network at minimal
oost, [ 1 ]. (contimuity considerstiens enable one to remove the
restriction that the eosts be differemt, but, as vill beeome evident,
uniqueness of the salution may dbe lost.)

Various solutions for this prodlem will nov be discussed and some

extensions will be indicated.

2. BSolutiom I.

Kruskal, [24 | , has proposed the following solution, the simplieity
of vhiech is quite remarkable. Perform the folloving step as often as
possidble: Among the links not yet included in the comneoting network,
choose the lowest priced link wi eh does not form any loops vith the
links already chosen. The proof, vhieh follows, is by contradiction.

If there are R stations in the netwerk, it is evident that a
minimal cost oonnegting network, dencted by K, contains no loops and
consists of exactly N-1 links. Let the links chosen agcording to the
above algortitims be denoted dy @15 85, ov) 8y 45 since the costs are
all 4di{fferent frem eash other, this sequence is uniquely determined.
This set of links is denoted by lN-l'

I x,&r..ﬂ_l, let e, be the link of lowest index of L, , vhich is not

in XK. If e iludd.dtothoutx,alocpioforndofvhiahoi is one

i
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link. This loop also contains a link, f, vhich is not in I"N-l but
vhich is in K. Furthermore, the link f does not elose a loop vhen

for all these links, including f,

add.dtotbcutol,o cee, @

2 1-1’
lie in the set K, vhich oontains no loops. But aceording to the

algoritim ., is the lowest priced such link; consequently

(1) price (f£)> price (01).

T™his implics that the netwvork cansisting of the union of K and
¢, fram vhich f hay been deleted, vhich also contains N-1 links and
does not eontain any lcops,is available at lower cost than K,
esamtrary to assumpl.ion. Hence the Xruskal tree LN-l = K is the

unique minimal cost connecting netwvork.

3. Solutions II and III.

In the same paper referred to adbove, Kruskal also proposes two
additienal constructions. Let S be an arbitrary, but fixed and non-
empty subset of all the N stations to be joined into a connscted
netvork. Perform the following step as often as possidle: Among
the links not yet chosen, dut vhich are conreeted either to a station
in 8 or to a link z2liready chosen, choose the link of lowest price
vhich 4ces not form any loops vith the links alreedy chosen. This
reduces to the constructiom of Section 2 if 8 consists of all the
stations in ths netvork.

The other consists in Aetermining the links not in K by choosing
as many times us possidble, from among the links not yet chosen, the
most expensive limk vhich does not disconnsct the network. The set

of links not eventually chosen forms the minimal coet eonnecting



netvork K. This may be established by showing that it is always possible
40 remove a liak from consideration for membership in K if the link is
the most costly link vhose removal from the netvork does not disconnect
it. Let A be the set of links vhich can be removed vithout dis-
connecting the netwvork, and let ¢ be the one of greatest cost. Suppoee
e t0 be in K. The removal of the link ¢ from the set K diseomnects

this netvork, vhich can, however, be reconnected by the addition of

a link f vhich is oontained in the set A and is different from e; for

if this vere not the case, e could not be an element of the set A,
Comsequently, the wnion of K and f, from vhich ¢ is deleted, wvould de

availadble at lower cost than K, vhich results in a contradiction.

L. Bolutiom IV.

8til]l ancther algorithm is availadle in vhich ve proesed from one
eomnecting network eontaining rno leoops to ancther of lesser cost until
the optimal netvork K is attained. 3elect any ocomnecting network with
precisely N-1 links. Add another link to this network © that a loop
is formed and eliminate from the loop the most costly link. Repeat
until no further changes in the camnecting network are possible. The
resulting network T is the optimal network K. For suppose TAK and
that e 1s the link of smallest index in the Kruskal construstion of

Secticn 2 vhich 1s net fn T. M4 o %o T te form & locp. This loop
mnw-mqm&unrmumux. Fwprthermore

smuc"toth. set of Kruskal links o, &, .., o._lannat complete
a loop sinee all these links, inelwling o_;, lie in the network T, vhiah

is free of loops. Therefore

(2) price (o))< pries (a1),



00 that the algorithm calls for adding LR to T and eliminating c; from
T, vhich 15 esatrary %0 the sssutiption, under the rules of the algoritim,
that »o frther changes in T are possidls.

5. Bolution V.

Though the algoritims mentioned above rather clearly show the
structure of the minimiging netwvork, they are not the best insofar as
rapid camputation of the solution is comcerned. In this regard, a
suggestion of Prim, [ 29| , involving s ecmbination of algorithms I and
1I, 1s probably best, for it avoids considerations of loops and
connectedness, and makes rather modest memory requirements om a
camputing machine.

It is a simple matter to determine the most costly womnecting
netwvork using similar procedures. Prim has also called attention to
the fact that the minimizing conneoting network K also minimises all
increasing symmetric functions and maximizes all decreasing symmetric
functions of the link costs, among all connecting networks with no

loops.



IIT. OPTIMAL PATHES THROUGH NETWORKS

In tids section wve shall discuss a variety of problems involving
the determination of optimal paths through netvorks. The first of
these, and perhaps the simplest, vhiach vill be attacked in several
wvays, iavolves the determination of a path of minimal time of transit
betwveen twvo points ¢of a netwverk. It is assumed that the time of
transit of each link is known. It is then shown how the n—t'-13 shortest
path (or paths) can be determined. The ®drmer problem is closely
related to finding a path betweea tvo points in a netvork vhieh has
minimss prodedility of being bloeked, given the probabilities that the
individual links are blocked, and the faoct of the independence of the
individual links being blocked. Lastly an interesting extension is
indicated vhich consists in determining a path between two points in
e netwvork vhich maximizes the probability of being traversed in a time t
or less, being given the probadbility densities for the timas of transit
of the individual links and the informetion that the times of trunsit
are independent.

It is elear that problems of the types just mentioned are of
importance in the ostudy of netwarks vhere the possibility of alternate
routing exists. This vill deecoms even more apparent in Part IV in
vhich 1% is shown that these prodlems are intimately conneeted vith

the general predblem of optimal routing of messages in networks.

6. PFormulation and Solutiom.

Given a netvork eonsisting of N stations and intercomnecting

1inks, vhere the time to traverse link (1,J) 1s tij: 0, t,, =0, find

Jd



a shortest path fram point 1 to point N. Kote that t“ need not equal

3 need not be proportional to the distance bvetween points

1 and J. Our first approach is based upon that given by Bellman, [?J )

tJi and that ti

in wvhich the original problem is imdedded within the class of problems
of determining the shortest paths fram any point 1 in the network to
the point K.

The problem is a combinatorial one in which we seek the minima of
times of transit of a finite mumber of paths. For N of tke order of
twenty, the enumerative approach btecomes Qquite operous, so that we must
determine more efficient methods of obtaining the extrema.

Dcnotototiloottrmitfruitoﬁviamoytinlpathbyui.
Exmploying the prineipal of optimality, [ l] , Yo are led to the systea

of ronlinear equations

Mn

'u1 - 141 {tij +uJ} , 1 «1,2, ..., N-1,

\lh-O.

To resclve this system, followving Bellman.we rv.sort to the method

of successive approximations. As an initial aprroximation ve set

(0) _ 4

(2) u

vhich corresponés physically to tiaversing the direct links from points
1 to poirrt N. The higher appraximations are then obtained through use
of the formulas

(x+1) Min (x)
u1 x,j,‘i {tiJ+uJ } , =1, 2. ..., N-1,

u(k+1)

N - 0,
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for X « 0, 1, 2, ... . It is readily seen that uik) 1s the minimal
tims of tramsit from peint 1 to point N via k intermediate points.
Sines the sequence uik) >0 1s monotens non-inecreasing in k, the
sequense eonverges to a solution of equation (1) in no more than N-2
iterstions beyond the initial one. PFurthermore, as Bellman has shown,
the solution is vnique, though an optimal path need not be.

This furnishes e feasible method for machine caloulation with N
of the order of several hundred. S8ince only additions and compar isons
are required, the camputation prooweds rapidly. Moreover, the memory

requirement for the eemputstien of uik*l) is modast, since for each

valus of i only the 12 rov of the matrix (tm) is required in addition

to the previeusly ocamputed values ugk).

It is also possidble to odtain a monotons increasing sequence of

approximetions. lLet

(0) Min

= gh1 Yy 112 ., K-l

(&)
u.éo) = 0,

be the initial uppraximation, and let the additional appraximations de
determined by the relatioms in equation (3). We can see inductively

that the sequence is monotons non-4ecreasing and furthermore that
k
(5) ui ): W, 41=1,2 ...,F k=0,1,2 ...,

vhers u, is the solution of equation (1). For k = O the inequality (5)

is valid. Hence if we assume it helds for k = m, we obtain
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(6) s 3(,1111] {tu * “i-)} : ?;: {tu * “1} £Yy
vhich completes the industion and establighes the monotone eonvergence
of the sequsnce defined by equations (3) and (4).

Observe that if a shortest path eonnesting 1 to N through one
intermediate point, m, in required, the solution is given by the sum
of the shortest chains connecting 1 to m and m to N. Should two inter-
mediate points, m and n, be specified, the solution is the shorter of
the chains (1,m,n,N) and (1,n,m,N) vhere each pair of nodes, (1,m},
(m,n), (n,N), etc. is joined by a shortest chain, If the number of
intermediate points is small, then a shortest path can be dstermined
through enumeration of cases, the computation of a shortest path

between two specified poirts being effected as above.

7. Solution II.

Another technique for solving the problem posed at the beginning

-

of sectien 6 is contained in an algorithm described by Ford, 'Lth , and

others. It is, of ecourse, simply another way of solving equations (6.1)
and runs as follows. Aui;nthevmluoo-uﬂtothnnochandui-m
to the nodes i ¢ N. Hunt through the network until a pair of points

i and § with the prouperty that

] + U

(1) ui> 13 3

is found, should there be any such. Then replacs Uy at the node i

g4 + “J‘ Repeat this step until no pairs

fulfilling the inequality (1) remain. The mumbers u, then assigned

to the nodes i represent the minimal times of transit from these nodes

vith the smaller value t
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t0 the nods N. This vill nov be proved.

let 1, 4., 1 eeoy N be an optimal chain fram { to N. We have

A 2

(2) Wom oy Sty

vith similar inequalities holding for every link in the chain. Through

addition of all these inequalities ve find that
(3) w ¢ minima) time of transit from i to N.

On the other hard, for every ncde m¢N there is & link from m to a

node n for vhieh

(&) wWos ot .

All nodes exocept N were initially assigned the values o, and theese
values have been monotone decreasing (or else have not changed at all).
At the last decrease in W, there is an n vhich still has the same
value., We can traos a chain frem § to N composed of linke for which
equalities such as that in equation (4) hold. The valuss at the nodes
are decreasing. Eventually the point N must be attained. Along this

chain

(5) Uy - Uy =ty
A summation yields that

(6) W = time of trensit of this chain.

Consequently this is a shoertest chain.



AR slegant version of this algorithm has been suggested by Dantxig.
It enadbles ome to determine the minima) times of transit fram { to N
and the paths to be traversed through use of a constructive proocedure
reainisoent of Kruskal's algorithm. First determine a closest point
to N, say Pl, and record the tims of transit from Pl to N. Then
dstermine a closest paint to Pl' say Q,and also a point vhich is seaond
closest, via a direct path, fraa N, say R. Determine the smaller of
t,. and ¢ + upl. This ylelds P2, the second closest point to N,

RN QP

and an optimal path from P2 to N. A compearison among the timess to
trevel to N from the closest unchosen point to N, via a direect path,
and the closest points to Pl and P2, continuing from P1 or P? along
the paths already selected, ylelds PS’ and so on.

If there are N stations in the network, this procedure vill result
in solution after at most 1 + 2 + (N-1) = %—l N comperisons. This
assumes that for each node in the network the remaining ones have
been arranged in order according to the times of transit from the

given node t0 cach of the ethers.



8. m»—"—‘imnmm.

It has been noted by Bellman that the n- ghortest paths can aleo
be eonveniently determined through use of funetional equations. The
impertanes ¢f this resides in the fact that this enadles us %o ses how
sensitive to change the times of tranait are for paths in neighborhoods
of optimal paths. This has implications for the general theory of multi-
stage decisiom processes vhich will be discussed eslsevhere, [5] .

\buﬁm‘i,iol, 2, <.+, N, as in the previous section and

introduce the quantities
(1) v, = time of transit of a second shortest path fram 1 to N,

for 1 = 1, 2’ s 00y N’l-

Next we observe that if the first link in a second shortest route is
the link (1,)) then the ocontinuation from J to K must be along either
a path vhieh miniwises the time of transit fram j to N or vhich is e
second shortest path frem ) %0 N, no others being possible. These
lead to total duwrmntiems of the routes frem i to Nof t,, + u, and

1 J

'1 + vy respectively. Kenee vy 18 equal to the smaller of the

J
following two valuss: 4be seeomd smallest valus of tiJ + uy, Jpt,
and the smallest valus of t“ + Yy L. 1r Min, refers to the
operstion of taking the k-"—hi amallest valus of a given set, with

nul = Min, the resulting equations are

linl m.n2
(2) '1""“‘{:,‘1 (tij*vJ)’in (tu#-uj)} ;

for 1 - 1, 2, co 0y N‘lo
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The gensralitation to the calculation of the DEE shortest paths

is evident, though various questions econeerning the numerieal solution

of the equations arise.

9. 3olutions by Analogus Camputation.
The problem of determining the shortest path between two points

in a netwvork may also bs solved by constructing a string model, [3&} , in
vhich inextensible strings of lengths proportional to the times of
trangit are ennnected bstween all pairs of nodes in & network. A

" path of minimal time of transit between tvo nodes 18 then determined

by separating the selected pair of nodes to the grectest extent
possible. The links in chains vhich are stretched taut form optimal
peths, and the distance of separation of the points measures the

time of trrnsit over an optimal peth.

Electrical analogues can also be employed. Easch branah of the
netvork 1is replaced Ly gas tubes vhose dreakdown voltage is propor.ional
to the times of t:ansit, and the terminals of a current source are
comnected to points under consideration. The paths over wvhich
currest flews are optimal.

Bee also [26] for a discussion of related matters, including use

of scap-film models.

10. Bome Stochastic Problems.

We now turn our attention to some extensions in vhich various
probabilistic elements are introduced. Consider a svitching netvork
in vhieh the probability tbat & link from m to n is available for serviece

is p

- The problem is to determine a path from i to N vhich
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has the grestest predadility of being available for service (1i.e.,
unblocked ).
We imtroduse a set of variables P,, 1 = 1, 2, ..., N, dafined by

the relatiom

I"1 = the probadbility of mo bloeking on an optimml path

(1) from i to the point N.

This leads to the relations

Max
(2)

Py = 1,

vhieh, similarly to the equations discussed earlier, can be resolved

through use of the suceessive approximations

(P(;‘*l) . :';’1‘ P Pgh), 1al, 2, ..., N-1,
(3) } (

| o(k+1

\Pﬂ )-l,

for x =0, 1, 2, ..., along wvith the initial approximation

The sequence is clearly monotons inereasing.
Nov let us s\uypose that the time to traverse the link frem i to

is a random variable t,, vith probadility density function pid(.)' 1y, 820,

1J
and that the times of transit of the various links are independant. The



treatment of the problem in vhich we seek a path from 1 to X for vhigh
the average tine of transit is minimm 1is evident. Let us therefore
turn to the problem in vhich we require a path connecting the point 1§
t0 the point N vhich maximites the probability that the time of

transit is no greater than a given time t. Again using the principal
of optimality, after introduscing the functions ui(t), {el,2, ..., 0N,
t0 be the probability that the time of transit from { to N is no

greater than t,using an optimal path, ve find
t

ui(t) - ;‘é Spu(t -8) uJ(c)d:, 1 =1,2, ..., N-1,
0

uN(t) - 1.

Once again ve may resort to the method of sucosssive approximationms

to resolve this nonlinear system:

t
(k+1) Max (x)
ut, () = 41 SO p“(t -8) us (s)ds, Xx = 0, 1, 2,
(6)
u(:*l)(t) =y

As initial approximations ve take

t

uio)(t) - g pm(a)ds, i«1,2, ..., R-1,
0

(7)

“éO)(t) « 1,

vhich yields appraximations that are monotone increasing. The initial

approximation



t
n’(.O)(t) r m S pij(.)d.' {i l, 2, e ey N'l)
0

(8)
‘ﬁ(IO)(t) -1,

yields monotone decreasing approximations.



IV. OPTIMAL ROUTING PROBLEMS

A problem of considerable importances in the operution of ccammuni -
cation systems is that of the determination of the routing doctrine to
be used in handling the messages. Large systems frequently emplcy a
central traffic ecomtrol unit for this purpose. Information concerming
backlogs of messages are periodically sent to this control unit, as is
information congerning the state of the communication system itself
(vires may be dowvn, equipment may be malfunctioning, etc.). On the
basis of this informstion plus predictions concerning the new demands
for service, decisions are made eoncerning the vay the messages are to
be routed through the network. Inefficiencies in the routing of the
messages are refiected in the need for greater quantities of equipment
for a fixed greds of servies.

The peapers referred to in the introduction, some of vhieh contain
extensive bibliographies, indiocate a mathematical treatment of these
problems besed on probadility theory. Interest centers on fluctuations
ip the traffic. Here wve shall consider a steady state formulation for
these problems vhich lesads to a linsar programming setting. A further
discussion can be found in {201 .

Even for moderately sisged networks of about thirty stations the
problems beccms 00 largs that solution 18 not feasible through use of
the geperal simplex method of George Dantzig, Lu] . Instead we
resort to use of a modification of the simplex method vhich was

originally proposed for multi-commodity flow problems and vhiach is

- =

due to Ford and Fulkersom, l16 IE First the general approact is

sketched and then a simple optimal routing problem is vorked in



detail for illustrative purpcees.

1ll. Probdlem Formulation and Msthod _q_f_ Solution.

wWe nov reduce this versiom of the problem of the routing of

messages in a network to mathematical Yorm. Introduce the quantities

(1) diJ = the number of messages available at 1 vhich are
destined for J,
(2) 4, " the nusber of messages vhich can be sent cver the

diree¢t link from { to J.

All action is assumed to take place during a given time interval. Next
1abel all the directed links in the netvork 11, 1.2, "o, Iﬁ, and label
all the Adirected routes in the netvork vhieh lead fram a souroce to a
dastination Rl’ RQ, ST % We describe the composition of the
routsas in tems of the links through use of the m-n insidence matrix

(a“), vhere

1, 1f 1link i lies in route J

(3) 84y "

O, othsrwise.
If the 1ink fram 1 to J is labelled 5, we set
(4) c,. =G .

At each source 81 it {s convenient to modiry the original network by
introducing a set of fictitious sources, Sir), vhiech are eonnected to

81 by fietitious directed links, each fictitious eource Sir) corresponding
%0 messages originated at 1 vhieh are destined for the station r. The

eapacity of each fietitieus link (Sir), 1) de 4, If 4,, 1s sero,
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then the fictitious source and link are not introduced. In this way
"]l messages are conceived of ss arising at fictitious sources; the
meseages flov over the fictitiois links and then the actual links to
their destinations.

Hence all constraints, as in relations (£) and (7) selov. appear
as capacity constraints, including those that are dus to the limited
supplies of messages available for deslivery. All routes lead from
fiectitious sources to their destinations, and we shall assume that tne

ineidance matrix ) has reference to the modified network. In

particular m is the sum of the numbers of actual and fictitious links.

We shall henceforth not distinguish between fictitious stations and

actual stations. Lastly we let x, be the number of messages vhich flov

J
ovar the route ), J =1, 2,..., n.

The problem involves the maximiration of the number of deslivered

mnessages
n

(t) d = ZXJ;
J=1

subject to the construints

(0) >0, J=1.2, ..., 0D+,

*
n
Jgﬁ a'J xJ L SUPRE B

’

Here wve have denoted the amount of unused capacity in link s by xn+.

s = 1, 2, e.o, I,

If the problem is to maximize the revenue derived from the operstion

and rJ is the return {rom sending & message over the JEE route, then
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the objective form becomes

( n

5D re ) r,x,.
el Jd

As vas remarked earlier, n. tie number of routes bvecames so large,
even in moderately sired netvorks, that it i{s not poesible to determine
an optimal linear program through use of the simplex method in its
most general form, even if use of a high-speed digital camputer is
contemplated. The memory requirements for storage of the matrix (aij)
alone becares excessive. Hence ve resort to a modification of the
simplex method in vhich only m ecclums of the metrix, the basic
vectors, need be stored simultaneously. At each stage of the simplex
algorithm the nev vector to be brought into the basis is determined Ly
soveral applications of one of the algorithas described earlier for
determining a shorilest path connecting tvo points in e network.

From the general theory of linsar inequalities we know that there
is an optimal routing of the messages in vhich no more than m of the
activities of sending a message over a route or storing capacity on a
link are raised above the gero-level. Using this fact we can plaoce
the antire algoritim on quite an intuitive basis. We start by storing
all capacity on all links, so that X .6 "% 8" 1, 2 ..., m. We
then shov hov to improve the routing doctrine at any stage of the
process by raising some favorable activity fram rero-level to same
positive level which is high enough to drive the level of same other
formerly nonrero-level activity down to zero-level. To determine
which nev activity to introduce we consider the 'shadov' prices which

are induced on the capacities as a result of non-zero activities which
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are carried out at a particular stage. See :12; for a gerieral discussion
The prices that are assigned to the fictitious linke may be thought of

as beling franchise prices, that is, unit prices of the right to accept
messages at one station destined for anoctuer. Irices assigned to thne
actual links are unit prices for the equipment.

Let pJ be the value of each unit of capacity in link j. For each
edditional send ng of a message over a route J, S = 1, 2, ..., n, tha
number of messages delivered is increased by unity. The unit prioes
of the capacities ip the links along the routes used must theretore

sum to unity,

>0, J¢n.

o
(8) 321 a” P, = 1, ) such that xJ

On the other hand there is a zero return for storing oapacity so that
- N
(9) pJ_n 0, xJ>O, J»>n.

The equations (&) and (9) datermine the m prioces Py» Pyr oo Py
Let us now {mtroduce an ertrepreneur vho examines the systen

capacitiers, the users' demands and the price structure in an effort

to determine vhether or not it is possidle to buy capacity from the commu-

nicatior network operati: g company, acecording to the price schedule {pﬂ

and deliver messages himself at a profit, a delivered messsage

being vorth one wnit. That {8, the entrepreneur vishes to sscertain

viiether or not there i{s a route J for wvhieh
(10) Y a .,p.<l, Jel,2, ..., n.

If there is such e rouwte, though, it wvould be advantiugeous 7or the



operating campany to send messages over that route to the greatest

extent possible. In gesneral sending messages over route J vill use

capacity that vas being used for sending other messages, so that

some other activities may have to be curtailed, until finally at least one is
reduded to rero-level, and 80 is eliminated. In any event capacity
constraints prevent xJ from increasing indefinitely.

Should the price of & certain link be negative, then this may de
interpreted to mean that the cammunication system operating concern
would be villing to pay the entreprensur a subsidy to take this capacity
fram it. Rather than do this, this capacity should be sent to storage.
so that 1if pJ is negative it is advantageous to raise me above the
gero-level.

Assuming that all the prioces are positive, hov can the entrepreneur
determine a route for vhich condition (10) 4s fulfilled? Since each
unit of capaecity is assigned a priece, ineluding the capacity of the
fictitious links, he has mervly to determine a lowest-price route
from each source to destination. As soon as one {s found for vhich
the price is less than unity, as many messages as possidble should be
sent fram this source to destination. If there is no such route, then
ths routing doctrine deing employed is optimal, as one sees fram the
duality theorem of linsar programming. This idea comstitutes the
essence of the delightfully simple suggestion of Ford and Fulkerson.

To summarise, the steps in the algoritim are

1. Under the current price schedule determine a favorable
activity to introduce. If a price is negative, store as much as
possidble of the carresponding capacity; otherwise determine, ‘ia

one of the algorithms discussed in Fart IIT, a route having cost
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less than unity, and introduce % is activity. If there is nona, the
routing doctrine is optimal.

2. Increase the level of the favorable activity until some
activity vhich was previously at a nontero-level is driven to gero-
level. This dstermines the new routing doctrine and the number of
messages wvhiah are thereby dalivered.

3. Determine the new schedule of unit prices on the capacities
and return to Step 1.

An 1llustrative exnmple 18 pro.ided belov to illustrate this teciinique

If the total number of links, including the fictitious ones, is
of the order of 150, the steps of ths algorithm are possible for
implementation on a high-speed camputing machine. Tt s difficult
to try to estimate the rate 1t vhich the approximntions coverage to
an optional solution since the number of chains might be numbared
in the tens of thousands. Some numerical experimentation is undoubtedly
called for. In actual computations. great advantages might bLe
realized by being very selective vith regard to whlich favoreabdble

activity 1s to be introduced at each stage.

12. Solution of an Tllustrative Optional Routing Problem.

Consider the four-station network shown below in Fig. 1 1o whieh
the oapacities of the links are as shewn. Ve assume that the link
capagities are undirected rather than directed, a matter of no
importance insocfar as the method is concerned. Consider thuat

station 4 has 5 messages destined for station ? and station 1 has '
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Fig. 1 - A Cepacitated Four-Station Netwvork

messages destined for station 3. This is accounted for in Fig. 2 in
vhiech the appropriate artificial stations and links are introduced.
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