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COMBINATORIAL PRCCZSSES AND DYUANIC PROGRAITIING

g 1. Introduction
g e
—— The purpose of th#s paper 1t ©o ciscuss the application of

dynamic programming techniqucs o a class of problems which for

want of a better terr-uﬁAca 1 ecmoinatorial. Theessential
difficulty of these problems, from tne o andpdint of the

\

flnalyst, lies in their apparent lack of'complexiyy. Usually,

4t 18 either a question of perform_ng & finite set o

metic operations or determining the larzest of a finite set of
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ques than Jjust an element—by—clement examination.
Problems of this naturc ariczc iIn thc following ways:

1. Solving linear systems ol equctlons of the form

N
Jzaaijxj = b, 1 =1, 2, .0, N

. Maximization of a lincar fora Lix)
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SUMMARY

The purpose of this paper 18 to discuss the application of
dynamic programming techniques to a claas of problems which for
want of a better term we call combinatorial. The essential
difficulty of these problems, from the standpoint of tre
analyst, lies in their apparent lack of complexity. Usually,
1t 1s eilther a Question of performing a finite set of arith-
metic operations or determining the largest of a finite set of
numbers.

If there are one hundred elements in the finite set, we
can classify the problem as trivial. If, however, the finite
set possesses a million members, or a hundred million, 1t 1s
worthwhile to ask whether or not there are more efficient tech—
niques than Jjust an element-by—element examination.

Problems of tiils nature arise in the followlng ways:

1. Solving linear systems of eqQquations of the form

N
Ja, x, =b, 1=1,2, ..., N,
PR 1
N
2. Maximization of a linear form L(x) = 3 c X, sutject
i=]

to constraints of the form

N

ZlauxJ < bi’ O B L

J

3. Maximization of functions over finite sets, suc! as

rermutations, paths along a grid, and so on.
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At the present time, there is no systeratic theory of
problems of this genre, nor is it likely that there ever will
be, considering the many varieties and sources. There are,
however, some categories of problems recognized as tractatle.
Some are soluble explicitly in traditional analytic terms, some
by means of algorithms that can e carried out by hand, and
sOme require the most powerful computers availahle.

In what follows, we shall discuss various ways in which
the functional equation technique of dynamic programming can be
applied. VWe shall use only those portions of the general
theory required for our present purposes, referring the reader
interested in further aspects to our book.

Although we shall not present any specific numerical
results here, we shall furnish refer~nces to extensive compu-

tational studies carried out by S. Dreyfus and the author.
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COMBINATORIAL PROCESSES AND DYNAMIC PROGRAMMING
Richard Bellman

1. Introduction

The purpose of thie paper 1s to discuss the application of
dynamic programming techniques to a class of problems which for
want of a better term we call comtinatorial. The essential
difficulty of these problems, from the standpoint of the
analyst, lies in their apparent lack of complexity. Usually,
it is either a question of performing a finite set of arith—
metic operations or determining the largest of a f'initye set of
numbers.

If there are one hundred elements in the finite set, we
can classify the problem as trivial. If, however, the finite
set possesses a million memters, or a hundred million, it 1s
worthwhile to ask whether or not there are more efficient tech—
niques than Just an element-by—element examination.

Problems of this nature arise in the f{ollowing ways:

1. Solving linear systems of equations of the form

N
Jggaiij - bi' 1i=1,2, ..., N,

N
2. Maximization of a l'near form L(x) = S cyXx, subject
1=}

to constraints of the form

N
Jgﬂ'inJ < bi’ 1 =1, 2, ..., M,
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3. Maximization of functions over finite sets, such as
permutations, paths along a grid, and so on,

At the present time, there is no systematic theory of
problems of this genre, nor 1s it likely that there ever will
be, considering the many varieties and sources. There are,
however, some categories of problems recognized as tractable.
Some are soluble explicitly in traditional analytic terms, some
by means of algorithms that can be carried out by hand, and
some requir’ng the most powerful computers available.

In what follows, we shall discuss various ways in which
the functional equation technique of dynamic programming can be
applied. We shall use only those portions of the general
theory required for our present purposes, referring the reader
interested in further aspects to our book, [1].

Although we shall not present any specific numerical
results here, we shall furnish references to extensive compu—

tational studies carried out by S. Dreyfus and the author.

2. An Allocation Problem

Let us begin with the following simple allocation problem.
Suppose that we have a quantity x of a resource which we are
going to subdivide into N parts, Xy» Xpy eeoy Xy, COrres—
ponding to N different activities. To make a mathematical
problem of this, let us suppose that we are given functions
gi(xi) which measure the return from the 1—th activity due to
an allocation Xy

The question of most efficient allocation of resourcee
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leads to the analytic protlem of maximizing the function

¢
(1) Pu(xyoxp,0cixy) = gy(xy) + goix,) + + gy (xy)
subject to the constraints

(2) (a) Xy 4 Xy #cer b Xy =X,
(b) Xy 2 0.

Although this may seem like a most prosaic problem, and
hardly worth any attention at this late date in the history of
calculus, as we shall see it has its hidden pitfalls.

The run—of-the-mill approach to this problem converts it
by way of a Lagrange multiplier into that of maximizing the new
function

N N
(3) Ou(xl,xe,...,x“) - 12131(;(1) - xiaxi,
where )\ 18 a parameter that will be determined from (2a).

The variational equations are

20
(») ﬁ%-o-gi(xi)-)" 1«1, 2, ..., N.

Solving these N equations for the x, in terms of 1,

X, = xi(k), the parameter A 1s determined by means of the

relation

N
(5) iglxi(k) - Xx.
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Although this approach is infallible in textbook problems,
a number of difficulties arise in applications. Let us
enumerate them.

In the first place, the functions gi(x) may not have a
derivative. Although, as we shall see below, we 4o possess an
efficient technique for solving a maximization problem of this
type, we shall not insist upon this point. It 1is, however,
reasonable to expect that the individual functions need not
possess derivatives at various points.

Let us ignore these bizarre possibilities and zssume that
it 1s sufficient to examine the solutions of (4) and (5). 1If
each of the functions gi(xi) is monotone, which is to say
that gi(x) is either convex or concave, then the inverse
function xi(A) is uniquely defined and it becomes relatively
easy to study the sclutions of (5).

Since it 18 quite common for utility functions gi(x) to
have points of inflection, i1f we wish to resolve general prob—
lems of this nature we must consider situations in which the
equations in (4) have a multiplicity of solutions. Assuming,
for the sake of moderate complication, that each equation of
the form gi(ﬁ) = A possesses twc 3oiuticns for any particular
value of A, we see that the solution of any equation such as
(5) leads to a consideration of 2N cases.

This number 2N arises by counting all possible cases.
The problem thus appears to have unpleasant combinatorial

overtones.
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We can amplify these overtones in a numter of ways. In
the first place, we can insist that the endpoints of the
xi-intervala be tested. The value X, = 0 has a very impor-
tant interpretation. It means that the i-th activity is not
engaged in at all. The problem of taking into account all
possibilities of end—point extrema greatly complicates the
enumeration of cases.

Secondly, we can impose additional constraints of the type
(6) XgX341 = O

The meaning of a constraint of this type 18 that the use of one
activity effectually prevents the use of another.

So far, we have been complaining about the limitations of
an approach based on calculus. Let us further curtail this
technique by allowing the Xy to range only over the elements

of a discrete set. Thus, we may impose the restriction

(7) x, =0,1,2, ..., 1 =1,2, ..., N.
1

At this point the analyst is tempted to feel that the
cards have been too thoroughly stacked against him. Let the
computing machines take over; let them solve the problem ty the
trivial method of examining all possibilities.

The people in charge of the computers, however, may tecome
8 bit aggrieved at this attitude. They will concede that trey
possess fantastic machines operating at phenomenal speeds that

can resolve in a matter of hours protlems that would have con-—
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sumed lifetimes even twenty years ago. But these problems must
be carefully chosen. Even rudimentary problems of other types
cannot be solved by enumeration of cases.

Since this statement may come as a shock to anyone who has
not taken the trouble to compute the total numter of possible
cases arising from simple comtinatorial problems, let us
illustrate this point by means of a question involving permu—
tations.

Take the probtlem of placing N obJects in N pigeontoles,
assuming that we are given a function which measures the value
of each assignment of objects. To resolve the problem by
examining all cases, we must evaluate N! different cases,
corresponding to all different permutations.

Accustomed as we are to the familiar function N!, we
seldom realize its rapidity of growth. PFor N = 10, we rave
3,628,000 possibilities, a formidable but not incredible number,.
For N = 20, 1t will amuse the reader to calculate how long 1t
would take a computing machine which could evaluate one permu—
tation a microsecend to examine all cases.®

It follows that the mathematiclan cannot abdicate. He 1is
obligated to develop algorithms which can handle tliese strange,
new problems. Our aim will be to present some simple algorithms
which are particularly suited to digital computers. This is not
to be considered our ultimate objective, but merely a preliminary

step on the way to understanding.

——
A simple lower bound is half a million years!
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3. Punctional Equations

Let us now present an approach to these problems quite

different from that of the calculus. Introduce the function

fy(x), defined for x > O and Ne1, 2, ..., by the
relation

s B
(1) fy(x) = Max g, (x)) + gy(x,) + -0+ gyl ),

where R, 1s the region in (xl,xg,...,xn)—epace defined Ly

the relations

(2) (a) x; +x, ¢ .- 4 xy = x,

(b) x, > 0.

1

The only assumption we need make concerning the gi(x) is

that they are continuous for Xy 2 0. In the cases we shall

treat below where the x assume orly a finite set of values,

1
even this restriction will not be necessary.

Let us write*

(3) fy(x) = Max  Max [gl(xl) +g(x,) + o 4 sN(xN):i.

Ooxy<x Ry (xy)
vhere RN—J(xN) is defined by the inequalities

(l) (.) 11+12+...+XN_1.X_XN,

-—
T™his 18 a particular application of the "principle of
optimality, see (1], p. 83.
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(b) x > 0.

1

Hence, for N = 2, ...,

r - Ma
(5) N{x) OS;NSX [gN(xN)

r 3
+ ganil("n) 8y (X)) + oo 4 gN—l(xN—l)L"

Thus, referring to the original definition of the sequence

fr, (x),

(6) f.(x) = Ma (xy) + £, (x=xy )|, N=2, 3, ...
N X OS" B [SN N N-1 "NJ
Por N =1, we have

(7) r,(x) = g,(x).

L, Discussion

The preceding formalism reducdes the original multidimen—
sional maximization protbtlem to a sequence of one—~dimensional
problems. The practical significance of this fact is that we
now do possess a feasible tectnique for solving these protlems
by direct search methods using digital computers.

In this way, we can treat a numter of problems arisirg in
mathematical economics, engineering, and operations research.
Tr.e computational solutions of these Qquestions, joint work with

S. Dreyfus, will appear in book form in the near future.
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If we attribute some structure to the functions, such as
linearity, quadratic character, convexity or concavity, the
recurrence relations in (3.5) can be used to determipe the
analytic character of the sequence iri(x) and the maximizing
x, as funcctions of x; cf. (1], [2], Karush, (3.

Alternatively, a structural feature such as concavity can
be used to accelerate greatly the mact.ine search for a maximum,
cf. Kiefer, [4], Johnson, [3], Johnson and Gross, [*%, Kiefer,

[@. Applications of the technique are contained in 18, 77 .

5. An InboddiggT?roceas

It is important to point out what we have accomplished by
means of the functional equation technique. We have taken a
particular problem with a specific value of x and N and
made it a member of a family of protlems, continuous in x and
discrete in N.

In other words, we have imbtedded a particular process with—
in a family of processes. Oddly, 1t 18 easier to treat the
particular process by consideration of the whole family of
processes, than it 1s to treat the process by itself.

Purther discussion of this point will be found in [1], 727 .

6. Constraints

Let us now examine the effect of constraints upon the
method outlines in §h. Suppose that we impose the additional

constraints

(1) 0<ai<x1$b1’ i1 =1, 2, ...,N,
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in addition to those of (2.2).

It 18 easy to see that the relations of (4.5) are replaced

by

(2) fy(x) = Max|gy(x) + ¢ v o)

N

where S is the x,~region determined by the new conditions

N N
(3) (a) ay < xy < by
(b) Xy < X - (a +a, 4+ +‘N-1

In the definition of fN(x), x 18 restricted by the lower
bound ay ta, + -0 +ay.
The interesting thing to note is that whereas in the usual
approach to maximization probtlems additional constraints cause
difficulties, here the more constraints, the simpler the compu—
tational task. Additional constraints restrict the region over

wt.ich each variable can roam, and thus simplify the search for

a maximum. We shall mention this again telow.

7. Constraints—Discreteness

As an example of a nastier type of constraint, consider

the problem of maximizing

N
(1) F(xl'xevttopxn) - i:ilgi(xi)

sub ject to the constraints
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(2) (a) x, =0 or 1,

N
(b) 1glx1 0 ;

As before, we obtain the recurrence relation
(3) fy(x) = Max (g (xy) + £ (x—x,)

-~

- Max (gy(1) + £ (x-1), gy(0) + £ (x)]

]
-

The computation can now be carried out by hand in a very
simple fashion. Observe that this 13 the simplest type of

maximization problem that a machine can perform.

8. Mutually Exclusive Activities

Let us now complicate matters still further. In addition
to the restrictions in the preceding section, let us impose the

constraint

(1) XyXgo9 =0, 1=1,2, ..., N-1.

To treat this protlem, introduce the sequence of functions

of two variables, fN(x,y), defined Ly the relations

-~

-
(2) fy(x,y) = Mﬁ; By x) + ap(xg) + e+ eylxg)
where Ry 18 now the region in (xl,x?,...,xN)—epace defined

by
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(b) x, =0, 1,
(¢) xy% =0, 1=1,2, ..., N=1,

(d) x\Y = 0.

The quantity y 18 allowed to take only two values, O or 1.

(4)

where

(<)

Then we 1.ave the recurrence relation

ryx,y) = Mix [gN(xN) + fN_l(X—xN,xN)].
N

X is sul ject to the conditions

N

(a) Xy =0, 1,

(c) xyy = 0.

In order to resolve the original problem we must compute

the two sequences f. (x,0), FN(x,l).

N
It 1s easily seen that

-

£,(%,0) = Max [gN(l) b0y (x=1,1), gy(0) + £y, (x,0)

|
rN(X,l) - 8N(O) + FN—I(X'O)"

The two sequences {fN(x,O)R, {fN(x,l) , can thus te

determined quite simply.

’
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9. More Constraints

Returning to the simpler protlem discussed in {2, let us

consider the problem of maximizing
(1) P(x %y 0c0xy) = g (x)) + g,(x,) + -0+ gylxy),
subject to the constraints
(2) (a) Xp 4+ Xy 4ot 4 xy <X,
(v) 8yX) 4+ 85X, + o0 +auxy <y, a >0,
(c) x, > 0.

Observe that we have replaced equality signs "y inequali-
ties, since this avoids some unimportant consistency require—
ments.

Int~oducing the sequence of functions, FN(x,y), defined

by
(3) ry(x,y) = Mg: P(x vxp0 o0 ixy)
for N=1,2, ..., x,y >0, 1t is easy to see that, as In

the preceding sections, we obtain the recurrence relation

(») fN(X,y) - lgx [gN(xN) + f'N_l(x—xN,y—yN);],
N
H>2, with
r' -
(5) fl(x,)') = Max lg_gl(xl)_! '
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for 0 ¢ x; ¢ Hin[x,y/alj.

10. General Formulation
There 18 no difficulty in formulating the problem cf
maximizing

N
(1) MO LIC IR SR
subject to the constraints

N

(2) (a) 121R1J(x§1)’x§2)"“’xik)) <Y Iml2, N,
(o) xgj) >0,
in the same fashion. Setting
(3) Ly i¥oseeiyy) = fax Fy(x),
we see that
() £y(¥y ¥pr-no¥py) = H§: [‘g(xr(‘l)’x’(‘?),,..,x_&k))
vty (ymg () xRy )

[ C— ]

Prior to any discussion
of an algorithm of this type
turn to a particular problem

of M

of the computational feasitility
for general values of M, let us

of this type in which large values

enter {in a most natural way.
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11. The Hitchcock—Xoopmans Transportation Protlem

t us now discuss one of the most intere3ting models in
mathematical economics, the Hitchcock—Koopmans model of the
flow of commodities.

Suppose that at N different locations, which we shall
call sources, there are quantities of an item which must be
transported to M other locations which we shall call. sinks.

Let x, denote the quantity of the item at the i-th

1
source, yJ denote the demand for this item at the j—th sink,
and ‘13 denote the cost of transporting a unit quantity from
the i—th source to the j—th source. PFurthermore, assume that
the total supply at the sinks is equal to the total demand from
the sources.

The problem is to determine a shipping policy which mini-
mizes the cost of supplying the demand. To reduce this problem

to analytic form, let

(1) X4 ® the quantity sent from the i—th source to

the J—th source.

Then we are required to minimize the linear function

over all «x satisfying the linear constraints

1J
N
(3) (a) J%xij - Xy,
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M
(b) 1Zﬁx1~’ =Yy
(e) Xy > 0.

This problem is one that can be treated very successfully
by the "simplex technique" of G. Dantzig, (7], or by the newer
methods of Pulkerson and Pord, [3d; cf. also Prager, [¥]. Both
of these methods depend strongly upon the linearity of the
various equations.

It can easily be shown that the linearity of all the
functions involved prevents the existence of any internal
maximum. The region defined by the relations f (3) is the
interior of a multi-dimensional polyhedron. To determine the
maximum of L(x), 1t 1s sufficient to examine the values of
L(x) at the vertices of this region.

It follows that we have a problem of combinatorial type.
The methods described above furnish efficlent search techniques..

These methods fail in general if we introduce nonlinear

cost functions. We shall employ functional equation techniques.

12. The Nonlinear Transportation Problem

Let us examine the protlem of minimizing
()= 3 Sl
(1) SX)-§1 8y (x4 )
4 Sy

over all Xy satisfying the constraints of (10.3), where the

gij(x) are not necessarily linear.
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To treat the question ty means of functional equations, we

can proceed in one of two ways. To tegin wit),6 assume that we
satisfy the total demand in the following fashion: first, the

demand of the M-—-th sink, then, having satisfied thris, the

demand of tre (M-1)—st sink, and so on.

w0 - oxm O vy
For fixed demands, Yy let

(2) fn(xl,x2,...,xN) = the minimum cost to satisfy tte
demands of M remaining sinks,
starting with quantities

S LEREEE XN at the N 3inks.

Then the same reasoning as we have used atove ylelds tre

equation

)

(3) fn(xl,xg,...,xN = Min

S
|

Xy Xym)

—

o1 (XXM XX o -

where the XyM ‘ary over the region determined ty
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The function fl(xl,xz,...,xN) 1s given by

N
(9) Cy{xyoxpeixy) = 1Zlgn("n)'

We have thus transformed the original prr lem into that of
computing tre sequence lt’M(xl,x2,...,xN)}.

It 18 clear that we could ottain an alte:native formu—
lation by using first a3ll the resources of the N—th source to

satisfy some of the demands at the M sinks, and so on.

13. Feasitility

Let us now see wrether or not the recurrence relations pre—
sented 1n (12.3) actually lead to a fezsitle computational
acheme. At eaclh stage of the computation we have to tatulate a
function o' N variatles, and perform a minimization over an
N—dimensional reglion.

Although both of trese are formidatle procedures if M
and N are large, the tabulation protlem is at the moment the

most difficult. Suppose that we allow each X4 to assume one

hundred values, say Xy = 0,4, ..., 634. Then the total
numt er of grid-points required to tatulate rM(xl’XQ""’xN)
will be 102N. If Ne 1, this {8 100, a trivial numter;

1f N =2, trhis 18 10,000, a respectatle numter; and 1if
N=23 this 13 1,000,000, an impossible numiter at the present

time.
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It fellows that the foregoing method in 1ts stralg! tfor—
ward form cannot te used to handle pr-ot lems of ti.18 nature
unless N or M ¢ 2.

Two facts save this from teing an academic exercise. In
the first place, there are a numter of important situations in
which N or M 135 one, two or three. In the second place, as
we shall see below, there are a numter of devices we can com—
bine with the functional equation technique in order to treat

higher dimensional protlems.

These are

(1) (a) Lagrange multipliers,
(b) Punctional approximation,

(¢) Successive approximations.
We shall discuss these ideas in turn.

14, Reduction by One Variable

In view of the tremendous differenc~ ‘etween the memory
requirements for functions of two variatles and functions of
three variables, it is of interest to point out that trans-—
portation processes involving N sources can he treated ty
means of functions of N — 1 variatles. Hence, protlems
involving two sources are easily resclved, while protlems
involving three sources can te treated witX the test of current

machines.

To obtain this reduction in dimensionality, we o!serve
that a8 ye!{ we have made no use of the fact trat supply 1is

equal to demand,
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(1) in- ZYJ'
=] Je=1
Prom trhis 1t follows that the values of X1 x2, RS SYIR\

determine the 'alue of YN+ Once we Fave specified the Yq-

Hence

\
(=h) fM(xl'XQ""'xN) L rM(xl'XQ""'xN—l"

In muct. of analysis, dimensionality rlays an i{nessentlial

role. In computational work, it 18 a tasic consideration.

1. lagrange Multipliers and Dynamic Programming*

We have another very powerful way of evading the curse of
dimensionality. Returning to the allocation protlem discussed

initially, consider the protlem of maximizing
N

sub ject to the constraints
N

(2) (a) Zx, <x,
1=1 * 7

Observe that we 'ave kept one constraint an equality, one an

d 1
First presented in [*.
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inequality. Again there are some reasons of convenlen:e.

As we know, this problem can be treated !y means of
functions of two variablem. However, tiere 1s a great incen-—
tive for reducing the protlem to one that can 'e handled by
functions of one variatle.

What we do is comiine t'.e functional equation technique
with the classical Lagrange multiplier formalism. Consider the

problem of maximizing the new function

N N
(3) G(Xy ,Xnyenn,Xy) = 2. (x.) =2 S a, x
1' %2 N 121 $4% (2 17

subject to the constraints

N
h ( ’
(3) (a) 121x1 < x

(b) x, >0,

1

where A 18 an as yet undetermined parameter.

For fixed X, 1introduce the sequence of functions

B (x,) g
g, (x,) = 2SS a,x,,
k1§1 17 8 11

(5) £y(x) = Max
RN

where RN 1s defined only by (4). Then, as tefore, we readily

compute the sequence ffk(x) by means of tre relations

(6) f . (x) = Max ré (xy) — Axy, + ( x--x. )‘
N Ocxycx NN N N—1 N

-

‘et xl(x), x2(X), Ty xN(k) ‘e a set of values yielding
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tt.e maximum of O(xl,x2,...,xN). Then we assert that these
values yleld tie solution to the problem of maximi-

zing (1) sut fect to the constraint in (2) wtere y 1s

determined by

(7) y = a,x, ().

To prove t!i1s, proceed by contradiction. Suppose tl.at

trere existed values (21’22""'ZN) satisfying (2) sucht that

(-) F(zl,zg,...,yN) N F(x](k),xg(k)....,xN(x)).
Ti.en
)
(%) F(ZI'ZQ' ,zN\ - xiélaizi - P(zl,zﬂ, ,zN) — Ay
2 F(Xl()\),x?()\), va()‘)) - )\J
N
- P(xl(x),xg()«), ,XN(A)) = xiglaixi(x)

Tr. i3, however, vields a contradiction, since the xi(x) were
ot.tained as a solution to ('), sut'ect to t'e constraints of
(47.

Alttoug! there 18 no 4ifficulty in letting tre results
Justify tre met!ol in any particular application, there are a

numter of {mportant facts which remain to ‘e verified. We

uspect ttat as A varles from -~ o to + oo trat the value
N

of 5 aixi()) will vary 'etween 1ts maximum and minimum, and,
{=]

furthermo:e {t.at *' 1« variation will be monotorie and continuous,.
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The monotonicity 18 not only of theoretical importarce,
but of practical significance {n determining the value of A
N
for which z;aixi(x) = y; <°f. Gross and Jot.nscn, _*3. Some
{=

applications of this tectnique will te found 1n 117, NA.

16. Discussion

The importance of tte procedure outlined atove resides in
the fact trat 1t ena! les us to partition a pro!lem origlinally
requiring a sequence of functions of two varlatles into a se-
quence of problems requiring functions of one varliatle.

Trere is no difficulty in extending these tecr.niques to
treat the case where there are M constraints. What we galin
in reducing dimensionality on one ifand, we must pay for in
multi—dimensional search on the otter,

As we know, tte introduction of Lagrange multipliers 1is
equivalent to introducing dual variatles; cf. Kuhn and Tucker,
|}i. What we have done atove is to operate vartially in thre
original space and partially in the dual space; partly 1in tle

space of "resources” and partly in the sjace of "prices."”

17. Punctional Approximation

In the previous sections, when we l.ave dis-ussed tte
computational solution of functional equations, we lave tacitly
equated the concept of a function f(») defined over an inter—
val [0,a] with a set of values (f(kl) , wrere N.L = 2, ani
A 18 some grid size. The finer the zrid, t'e more values trat
must be computed. Similarly, a function of two vartatles,

r(x)’)l 18 GQU1V81ent to a sequence of values r(‘_a‘l:)\’
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As we increase the nurter of independent variatles, the
number of grid—points goes up at an exponential rate. It is
th'is fact trat defeats the effective use of the algoritims
nregented atove in a numter of significant processes.
I* follows trat one way to defeat this exponential growtt
in tte {nformation required to specify a function i1s to use a
different description.

Consider, for example, a power series expansion

convergent for O < x ¢ a. If we truncate the series and use

N
the polynomial > anxn as an approximation to tte function,
n=0 '
we see that £(x) 1s determined for all x in [O,a] by the

N +1 coefficients, a 1 =«0,1, ..., N, and thus by

4’
(N+1) quantities,

Power se. -3 expansions have the drawtack of ‘teing
associated wit! analyticity and, in addition, of not providing
uniformly good approximation over the entire interval. let us
then use instead an orthonormal expansion

o)
(2) £x) ~ Z 8,8, (x)
where the functions ¢1(x) are elements of a complete ortho—
normal system. For a finite interval, two particularly
important choices are those of trigonometric functions,

'sin kx, cos kx., and of Legendre polynomials.

We write
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(3) f(x) = nzoanﬁn(X).
where
(&) a_ -véna f(x)ﬁn(x)dx.

In evaluating ti.18 integral, we don't wist to use a

Riemann sum, say

(5) a_ & 3 r(ksle (L)L,

since this will involve tte calculation of (kA for all ¥k,
precisely the type of computation we wished to avoid.

Consequently, we employ a numeri-al integration formula of

the form
M
(6) (4” g(x)dx & 1glc,g(xi).

where x1 are fixed points ir [Q,a], inderendent of ¢(x)
but dependent on M, and tre cy are lixewise fixed r~oeffi-

cients independent of g(x), tut dependent on M,

Thus
M M
(7) a = 1glcif(xi)ﬂ!n(xi) - 1'éldmf(xi).

since the quantities ﬁ%(xi) can te calculated on-ce and for

all.

Observe the interesting facl atout t'is formula that tie
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value of a_, and thus of f(x) 1s made to depend upon the

values of f(x at a fixed set of points . x,|.

1)
let us see then how the calculation proceeds. Tuming Lo
ttie recurrence relation
’ )
- I C
(8) fy(x) = Max gy(xy) + Oy (=xy) 0y

OSxNSx -

suppose that x 18 restricted to an interval [0,a_. Starting
with the function fl(x) - g](x), ». reduce fl(x) to a

sequ:nce of coefficients

We see from tre atove discussion that to determine fz(x), we
need only calculate tte values fe(xi). Hence, we compute
these from the relations

(10) f.(.,) = Max lgu(x,) + £ (x,—x )1.
ST e, N 11Xy %o) |

The values of fl(xi—x are determined from (7).

5)
Having computed fQ(xi), f 1,2, ..., M, 1in this

fashion, we determine tlie new coefficients a§2) using (7).

Tre function F?(x) 18 thus reduced to a sequence of coeffi-

clents

(11) £.(x) ’;é PR

p]
«

We now repeat this process to determine as many elements

of tie sequence ,fN(x)- as desired.



B —
p_124
2—2u=—tr
27—

A numter of questions remaln hefore tii1s technique can te
applied. We muat determine N in (3) and M in (7), and the
type of orthonormal sequence. The ctoice of N and M depend
upon the accuracy desired and the facilities available.

Both the trigonometric functions, .sin Nx, cos Nx}, and
the Legendre jolynomials possess simple recurrence relations
which permit the N-th member of the sequence to he computed
from the values of the first members.

As far as quadratic formulas are concerned, it 18 protably
best to use Qaussian quadrature, whicrn, as we xnow, 18 exact

for polynomials up to degree 2M — 1 1f M points are used in

(6). Por an application of this tec.nique, see X .

18. Cebycev Approximation

The approximation

N
(1) f(x) = a g (x)

2 %
is equivalent to choosing the coefficient~ ay according to
mean—square approximation. If the ti are determined so as to
minimize the mean—-square deviation

a ( N 12
(2) / If(x) - Ztrﬁn(X), dx,
o) L ne0 B

we find that bi - al.

However, mean-square deviation 1s less desirable than

Cebycev approximation,

N
b l'in Max |f - b
(3) S ok (x) ngo L2, (x)



S EEEE————————————————————————————————

P=1254

=453

24—

Unfortunately, no simple representation for the minimizing ti,
corresponding to (17.4) exists. Nevertieless, there are

available feasiile computational tec'.niques for determining the

minimizing b, 1in (3).

19. PFunctions of Several Variables

In the previous sections, we have slown how a function
defined over [0,{] may e described by a relatively small set
of parameters. The same process can tYe applied to a function
of two variables, f(x,y), defined over 0 < x,y < a,

N
(1) f(x,y) = 2 a & (xig (y).
m,n=0
We see that functions of two variables will require
(N+1)(N+2)/2 coefficients, wi.1le those of three variatles will

}’w coefficients.

require roughly N
Take N = 10, we have functions of two variables deter-—
mined by £t quantities, and functions of three variables
determined 'y approximately 200 quantities. These numbers
compare vary favorably with 10 and 10" arising from

10° x 10° 2 2 . 10° grids.

grids and 10° x 10
In any particular problem, a certain amount of experi-
mentation will be required.
Again an important point to stress is that these techniques
allow us to treat protlems which cannot! bte treated ty straight—

forward tabulation of functional values at grid—points.
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20. Successive Approximations

Let us now discuss an approach of entirely different *ype
to the problem of solving multi—dimensional problems in terms
of functions of a small nurber of variatles. We wish *o employ

the classical method of successive approximations.

To {llustrate the workings of the method, let us glve two
examples of its use, one in connection with the allocation
problem described above, and one in connection with the
Hitcr.cock—Koopmans protlem.

Consider the problem of maximizing

N
(1) 16 SRR W T kglsk(xk.yk)

subject to the constraints
N
(2) (a) k_zlxk =-x, x >0,

0.

v

: N
) Yo =Y, ¥
k?ﬁ- k K

As we know, this problem can te treated ty means of sequences
of functione of two variatles, ?U, and !y means of sequen:es of
functions of one variable using Lagrange multiplier tectniques,

Let us now treat it !y means of successive approximations.

Let (y§o),yéo),...,yﬁo))

the choice of the Yy and conslider the rrotlem of maximizing

bhe an initial guess ~on-erning

the function
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N
(3) h(xlp..,xN;y§0)...uy£O)) - 2 sk(xk.yéo))

subject to the constraint of (2a). This problem can, as we

know, be resolved via functions of one varliatle.

Call a maximizing set of X, {xio)\. Now consider thre
problem of maximizing
(4) n(x{0) L X0, r) = 5 (00 )
L I T g Bt e e

suv ject to the constraints of {2%). This again 18 a one—dimen-—

(1)

sional protlem in our terms. Call a maximizing set {yk )

/

The pattern of pro-edure is now set. We obt:in alternately

‘ | \
maximizing sequences {yii)i and ]xﬁi- , wWith currespondling

/

approximations to trie desired maxirmum value,

(1) (1) (1) (1))’

(¢) h(x1 RS NEET ST 2
e (1) (1+1) (1+1).
h(..1 DS N N RN ).

We have thus once again reduced 2 protlem originally
requir'ng functions of two variatles to one requiring sequences

of functions of one variable.

21. Monotoni~ity of A _proximation

Let
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It 48 clear that

(2) uy () <uglx,y) <

Hence, the sequence {uk(x,y)] converges monotonically. It
is, however, not clear t'at it converges to ti.e atsolute maxi-
mum. This requires a separate discussion which we shall

present elsewhere.

22. Approximation in Policy Space

This monotonicity of approximation 138 not ac - identel. Tre
type of approximation we have teen employing 18 a particular
type of approximation in "poli:y space," wt i1 necessarily

yields monotonicity.

In place of approximating to t'e return functions, tne
tk(x,y) as defined 1in @Q, the usual mett.od of suc:essive
approximation, we operate partlally in tle space of policy

functions.

Por a furthier discussion of arproximation in policy space,
see [i], Chapter 3, and for some furtier applications of

successive approximations, see 4, 2k,

23. Application to Hitchcock-Koopmans Transportation Protlem

One way of applying these icdeas to either tre linear or
nonlinear transportation 18 the following. Let tre shipments
from the 3rd to N-th source te assigned ar:!trarily, and
consider the problem of determining the shipments from the
first two sources which will minimize the cost of supplying tie

remaining demand.
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This, as we know, can be done using functions of one
variable. Having obtained the optimal shipments from the first
and second sources, we use this shipping policy from the first
source, retain the shipments previously used from the fourth
to N—th source, and consider the new problem of determining the
shipments from the second and third sources which will minimize
the cost of supplying the remaining demand.

Continuing in this way, 1t 1is clear that we obtain a
sequence of costs which decrease monotonically and thus con—
verge. Again it is necessary to determine when there 1s
convergence to the actual minimum.

The process can be speeded up, by considering three
sources at a time and one Lagrange multiplier to retain the use

of functions of one variable.

24, The Harris Transportation Problem

Consider the following network which can be used to
describe certain types of flow of information or flow of

commodities.

g - e
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As the arrows indicate, the only permissitle flows are

from P1 to P1+1' P1 to Q1+1, Q1 to P1+1, and Q1 to

Ya-
We introduce quantities, which we can call capacities,

defined as follows:

(1) a, = maximum rate of flow over the link between P,
and Fygyo
b1 = the same quantity for P1 and Q1+1,
cy = the same quantity for Q1 and P1+1,
d1 = the same quantity for Q1 and Q1+1.

Assuming that we are given fixed rates of flow, x and
¥y, 1into Pl and Ql’ we wish to maximize a prescribed
function of the rate of flow into Py and Q. At each of
the terminals, we have a choice of dividing the input flows
into two output flows.

To treat this problem, we introduce the sequence of

functions,

(2) fl(x,y) = the maximum of the prescribed function of
the flow into PN and QN, given rates
of flow x and y 1into P1 and Q1
respectively,

for 1=1,2, ..., N-1, x,y > O.

Then, as above, we obtain the recurrence relations

(3) r,(x,y) = Ng: £y 41 (X1¥%5,¥,%Y,),
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where R, = Ri(xl'x2’y1'y2) 1s determined by the constraints

(4) (a) xy +y; <x, x,+y, <V,

———
o
(@)
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o
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25. General Network Probtlems

Networks of general type, where the points are irregularly
arranged with great freedom of intercommunication cannot te
treated in the foregoing fashion. The problem of determining
optimal flow over systems of this type was first posed by
Harris, [3@, and has given rise to a good deal of research.

The general problem has teen most successfully attacked by
Ford and Fulkerson, {3@, who have developed techniques for the
treatment of this specific process which have proved to have
much wider applicability.

On the other hand, stimulated by the same process,
Boldyreff, [?E, has developed a very interesting and flexiule

relaxation te:chnique, the "flooding technique," which also has

a wide range of applications.
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26. A Routing Problem

Let us now consider the following jprotlem. Suppose that

we have a set of N points in the plane or in space, wit}h tre

property that every two points, P1 and P,, have an assoclated
number, diJ‘ which we can call tt.e tire required to travel
f rom P1 to PJ. It 18 not necessary to assure that diJ - d11‘

To take account of the fact trat in any jparticular situation
two points may not be mutually accessi!le, we can let dij - (0.

Given the matrix (dij)' where d,, = 0, thte protlem is
to trace a route of minimum time from P, to PN‘

A

To treat this, introdure the N — 1 quantities, fi,

defined by

(1) f, = the minimun time to travel from P, to Py.

It is easy to see that

(2) f, = Min [d,, +].
i 1
2 S
Since this system of non-linear equations does not deter—
mine the sequence {fi} recurrently, we must use some met!.od
of successive approximations to ot tain tie fi.

Perhaps the simplest is one tased upon approximation in

policy space. Let

(0
(3) £, ) . dyN»

and
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(4) r§") = Min [d,, + rg“"l)],
I¥1
for k=1, 2,

Since this process corresponds to examining first all
direct routes from 1 to N, then all that make one step, and
8o on, it 1s clear that we will have monotone decreasing con—
vergence. Further discussion concerning the equations will be

found in [5].

27. The Traveling Salesman Problem

As an example of a problem of closely related type where
the direct functional equation technique fails, consider the
problem of drawing a polygonal path of minimum length through
N given points in the plane, Pl’ P2, "% oy PN.

It 18 clear that the principle of optimality 1is still
valid. No matter what part of the path has already been tra—
versed, the remainder of the path must be of minimum length.
What prevents a simple application of recurrence relations is
the fact that we must keep track of where we have been. The
problem thus has certain features in common with a variety of
"excluded volume" problems arising in mathematical physics.

Furthermore, it 1s a very nice example of the virtual
impossibility of gauging the level of difficulty of a simply
stated combinatorial problem. Recently, linear programming
techniques plus ingenuity have proved successful in solving

particular questions of this nature, see Dantzig and Johnson, [?Q.

To treat this problem by means of functional equations and
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successive approximations, let us tegin with the question of

tracing a path through N given points wnich must start at P1
and end at PN.
Introduce to this end the sequence of functions

(1) f(Ql,Oe,...,Qk) = the minimum length of the remaining
path from Qk to PN’ having been
through Q,, Q) .-, Qk'

Here the Q1 are particular elements of the P —set.

J

It 1s easy to see that we obtain the following relations:

(2) f(P,) = Min rd + r(p,,P )7,
1 141 1914 L Ly

- Min | |
£(Py,Fy) :;g [dyp + F(BLL PP,

and sO on.

It remains to discuss the computational feasitility of a
solution based upon this algorithm. The tabulation of f(Pl,PJ)
requires (N-1) values; that of f(P,PJ,Pk) requires
(N~1)(N—2)/2. What is of great help is the fact that the order
of Q1 1n (1) 1s of no importance, so that the tabulation of
£(Q,,Q,,.--,9 ) requires (N-1)(N-2)---(N=k)/k! entries,
rather than (N=1)(N—2)...(N—k).

The maximum number of entries will be required when
k = [N/2]. To 1llustrate the order of magnitude of these

quantities, we have

(3) 10C; = 252, 16Cg = 12,970.
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It follows that with current machines i1t would be possible
to solve problems of this type in a direct fazhion for N < 17.
Let us note in passing that the same technique can be
applied to problems of optimal trajectory arising in rocket

problems, and in the study of general variational processes;

cf. Cartaino and Dreyfus, [25], and [6], [1].

28. Successive Approximations

To treat problems of larger magnitude, we can combine
functional equation techniques with the method of successive
approximations.

Let PIQQQB"'PN be a proposed route. To test this, let
us examine the sub—route PIQQQB"'Q9’ and pose the problem of
pursuing a path from P1 to Q9, going through the points
QQ’QB”"'QB’ and of minimal length.

This problem can easily be resolved computationally, using
the recurrence relation method of the preceding section. Let
P1R2R3...Q9 te the new path of minimum length Lhrough these
ten points, and let us test in this way the set of points
R5R6R7R8Q9P10P11P12P1}P1u. Continuing in this way we obtain a
monotone sequence of decreasing lengths. Again it will be

necessary to study whether or not this scheme of successive

approximations converges to the absolute minimum.

23. A Class of Scheduling Problems—The Book—binding Problem

Let us now turn to another class of problems which require

maximization over permutation.
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Suppose that we have N manuscripts which must oe printed
and bound, in that order, before bteing published. Suppose

further that we have one printing presc and one binding machine.

Given the quantities

(1) (a) a, = the time required to print the i-th book,
(v) b, = the time required to bind the i-th book,

the problem is to determine the order in which the N manu—
scripts should be processed so as to minimize the total time
required for their printing and binding.

This problem i1s representative of a large class of
questions of this nature which arise in scheduling theory. A
very simple solution of this problem was given by Johnson, 337,
and a derivation of this solution by functional equation tech—
niques was given in [7].

If we add a third operation, say typing, the problem
appears to enter the hopeless case. At the present time, we do

not even possess any reasonable approximate pol.cles.

20. The Caterer Problem

It 1s possible, in a number of cases, to reduce scheduling
problems to maximization problems of the type encountered in
the Hitchcock-Koopmans transportation probtlem. Having done
this, we can introduce functional equations by various artifices.
One example of this 1s in connection with "warehousing" problems,
ef. [g], Dreyfus, (], and, also, [13. Here, we shall discuss
another example, the "caterer" problem.
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Let us state the version of this problem given by Jacobs,
(3, or Prager, [4].

"A caterer knows that in connection with the meals he has
arranged to serve during the next n days, he will need rJ
fresh napkins on the J—th day, for J e 1, 2, ..., n. There
are two types of laundry service available. One type requires
p days and costs b cents per napkin; a faster service
requires q days, q < p, but costs ¢ cents per napkin,
¢ > b. Beginning with no usable napkins on hand or in the
laundry, the caterer meets the demands by purchasing napkins at
a cents per napkin. How does the caterer purchase and .aunder
napkins so as to minimize the total cost for n days?”

This problem can be resolved by linear programming tech—
niques in some cases, see the above references and also Gaddum,
Hoffman, and Sokolowsky, Bﬂ.

What 18 interesting about this problem from the standpoint
of dynamic programming and functional equations is that it
appears upon first glance to be a problem requiring functions of
q variables. As it turns out, however, the linearity of the
process permits us to make a certain type of preliminary trans—
formation which reveals the true dimensionality of the problem.
Surprisingly, this 18 p — q. The same type of transformation
has proved of great service in connection with a number of
variational problems arising in the theory of control processes
and elsewhere, see [4], [34.

In the present case, these transformations reduce the

problem to that of determining the maximum of the linear form
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(1) L(v) = v, ¢+ vo + *++ + v,

sub ject to tie constraints

v
<

I\
(@

(2) (a) r,

(b) v, < by,

1 2 2’
v1 + v2 + + vy < bk’
+ + .
Vo t Vg * Vel S by
Vo eyt bV < b

A t'urther surprising fact atout ttis problem 1= trat we
can exhibit an explicit analytic solution, a property that 1is

Quite rare !n this domain.

31. Bottlere « Problems

S e W ——

Let us, witlout going into any detail, mention a class of
protlems which we have called "tottleneck" problems !ecause tre
operation of t:e system depends at eac: stage upon the scarcest
resources,

The zene ul ;.estion 18 that utilizing a complex of inter—
dependar:. industrirs to produce one or two essential 1tems.
Using a "lumped" model of economic interaction we consider tie

state of the system at any time to be specified by a capacity
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vector x(t) and a stockplle vector y(t).

Considering (irst a continuous process, since these are
usually more amenable to solution, we meet the protlem of deter-—
mining vectors z(t) and w(t) so as to maximize the inner

product
(0 I(x,y) = (x(T),a) + (y(T),v),
where x and y are determined by linear equations

g% = Ax + Bly + Clz + Dyw, x(0) = ¢,

d A i}
3% = A+ B,y + Coz + D,w, y(0) = d,

under appropriate proportionality assumptions, and the vectors

z and w are subject to further feasi!ility constraints

(3) Ez + Fw < G + Hx + Iy

for 0 <t T,

The novel features of tre problem are introduced ty the
combination of linear equations and linear constraints. The
continuous version can te resolved explicitly in a numter of
cases, see (1), [ . In addition, Lehman has devised a con—
tinuous version of the simplex techniQue which seems Qquite
promising, L .

The discrete version can be simply treated ty computational
techniques 1f the numier of state varlialtles does not exceed 3.

A transformation of the protlem enables us to reduce t''e numier

of varialles by one, and simultaneously to keep all variatles
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within a uniformly bounded region; cf. (1], 19.

If the constraints in (3) are of the simpler form

(%) Eé + Pw <G,

the techniques sketched in @@ can be used to reduce drastically
the dimensionality of the problem.

A detailed discussion of problems of this type, together
with solutions of some special cases 1s given in _1]. Some

further results are found in Lehman, (49 .

22. Slightly Intertwined Matrices

The functional equation technique 18 designed to take
advantage of structural features of the process. In the pre—
ceding discussion we have utilized the multistage aspects in a
very natural way. Let us now indicate another way in which
functional equations can be employed. These results were
presented in [12].

The general linear programming problem is that of maximi-
zing a linear form L(x) = (x,a) subject to linear constraints
of the form Ax < b.

If A 1s block—diagonal,

(
Ay |

A
e

the problem breaks up into a set of r 1independent problems of



smaller dimension. Once agaln we are concerned with dimension-—
ality in connection with computational feasibility.

Similarly, if A 1s block-—triangular, which is to say
that there are zeroes above or below the diagonal matrices,
the problem reduces to a sequence of problems of lesser
difficulty.

Here we wish to show how functional equation techniques can
be utilized to treat a class of problems in which A has
approximately a block—diagonal form.

Specifically, let us consider the qQquestion of determining

2 ’

subject to the constraints

(3) R12%; * Bup¥p T 813%s 5 e
a21x1 + 822X2 + 82}X} S C2,
831X1 + 332x2 + aB}x} + blxu < Cx»
84Xy + 8ycXg *+ ByeX. < Cy,
asuxl‘ + 355)(5 + 356x6 S 05,
a, X, + a65x5 + a8 cx. + b2x7 < Cgo

IA
(]

B3N—2,382"3N2 * B3N o 3N1%3n-1 t Ban_o anFay

+

N
(9]
\W
4
|
—

33N—1,3N-2%3N—2 * 23N 3N—1%3N-) Y B3nog  3nKaN <

TIN,IN-2X3y o * gy gy g Xay o 4 83N,3N%zN < Cay»
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— T

and

(%) X

v
o

It 1s assumed t!at 0, > 0, wit: sufficlently

k
1
many aij > 0 so that th>» maximum 18 not infinite.

8y, 2

Let us now define a sequence of functions of 2z,

(5) ry(z) = Max Ly (x),
X4

where the x1 are su! ject to tie constraints given arove, wit!

the exception that the last constraint is now

+ Z.

(6) 83N, 3N—2%3N2 * B3N, AN %ano Y 33y anTay S

Employing the principle of optimality, we see that tie

sequence [fN(z)i satisfies ti.e recurrence relation

—

" - IY
(7 fN(z) Ma x B STIPIR SR IR g 1

KN o TN XN

—

MR URLES VT IRE PRIPOIN
N > 1
Vot + ~ "
with the variables X}N-Q’ X}N—l’ X}N su! 'ect to thie constraints
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+ 4+ a

(8) 8aN2,3N-2%3N—2 * 23N_2,3N-1%3N-1 3N—2,3N%3N S C3N-2’

N

(o]
i
()
-

83N_1,3N—2%3N—2 * @an_1 3N-1%3N-1 T B3Ny, 3NN S

+

axn aN—2X3n—2 * B3N 3N_1¥3N-1 t 83N, aNTaN S %

ON-1%3N—2 £ C3N-3
X3n_2,%3n-1%3N 2 O-

The function fo(z) 1s identically zero.

33, Reduction in Dimensionalily

Let us write tne recurrence relation of (32.7) in the form

r n

(1) ry(z) = Max Max -]
X3n—2 [*3N-1"%3N

o

-

- :ax Mg) (XBN—1+X3N) + XaN 2
N2 | "N

+ Oy y(cay 3Py %3y o )J

where Ry 18 the reglon in (x}N—l’XBN) space defined by

(2) 21N 2,3N-1%3N-1 * @3n_2,3N%3N S C3n—2 T B3n—p,3N-2%3N-2°
BaN_1,3N=1%3N=1 * @3N—1,3N%3N S Canoy T Bano), aN-2%an-2¢
83N, 3N-1%3N-1 * 23N, 3N%3N S Z ~ 83y 3N %3N ¢
Xan_1 X3y 2 o.

Thus we can write
(3) ry(z) = Max {:gN(x}N_Q,l) + f‘N_l(CBN_}-bN_lx}N_?)]

XaN_2
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where x)N—Q is constrained by

P IN-% CaN_2 €3N_1 z ]
(3) 0«< Xan p < Minlg——, {

Bno1 7 B3no,3n—2” Ban-1,3N-2 23N, 3N-2

The function gN(y,z) 18 readily determined, since the

maximum over RN is attained at a vertex of the region.

34, Slightly Intertwined Symmetric “atrices

Let us now consider the problem of resolving a set of

linear equations of the forms

(1) 811X + 85X, + 815Xy = Oy,

blx} +oa,,Xx, + aquS +a,X; = Cy,

&5“)(“*& X + a_ X, = ¢C

+ a + a

P 1 Xan_3 * 83y o 3N oX3ND IN-2, 3N—1%3N-1 IN-2 , 3N 3N T CaN_p’

+

8xn1,3N-2%3N—2 * 231, 3N %an-1 T Baney  3NTaN T Caney

+

83N, 3827382 * %3N, %3t %3N, anTaN T Cane

A matrix of the type appearing atove, we shall call

slightly intertwined. It arises in a varilety of physical,

engineering, and economic protlems involving multicomponent

systems with weak coupling.
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let us introduce the matrices

for k=1, 2, ..., N, and the vectors

3€ o |le

k
(3) x" = (x 32 Capy Sy ) -

3k %301 ¥k

Since the matrix of coefficients 18, by assumption, positive
definite, the solution of the linear system (1) 1s equivalent to

determining the minimum of the inhomogeneous qQuadratic form

(4) (x ,Alx]) + (x JASX ) + e 4 (xN,ANxN

2 o

- 2(c,x l N)

. = 2(c,

+ 2L1x3x + 2b2xhx7 + . QbN—lx}N—}x}N—Q‘

For N=1,2, ..., and -0 <2 < oo, let us introduce

the 3equence of functions of the variatle 2z defined by

N
(5) fN(Z) - Minx i (xioAixl) - 2 Z (Cipxi)
1 Li.l 1.1

)

N-1 '
+ 2121t1x1+}1x}1 + 2zx3Nl.

—

We then rave the following recurrence relation:

-
(+) fy(z) = Min (xN,ANxN) + 2xz

3N
(eapXan_y %3 o)

-

(n_1¥an—o)

—2(-7,x7) + Cn_y



P10

2—2h=0r
40—

35. Computational Aspects—I

Since tre function fl(z) 1s read!ly determined, we ~an
compute the sequence {fp(z)» at the expense of a minimization
over a 3-dimensional region. This minimization may be greatly
speeded up upon using the -onvexity properties of the functions
involved. Althoug! no optimal met! ods are knowr for multi-
d:mensional problems, the one—dimensional met:od presented in
Bﬂ may be employed in an {terative manner,.

Writing (34.7) in tte form

—

(1) fN(z) = Min |Min l(xN,ANxN) + PZX}N
XN [ XN Xy T

- 2(CN xN)_] + f (b x )
! N—1""'N=1"3N-2" "

—

we B8ee that 1t reduces to

-—

(2) £(z) = Min lgy(z,y) + £y (1 v,
y — —
wh.ore
(3) gN(z,y) = Min LﬂxN,Axv) + PZX}N - 2(“’,xN)d,

X3no X3N]

upon identifying XaN o as y. Tris new relation 1: now well-
suited to the technique descrived in &_.

The computation of the functions {gN(z,yV 18 independent
of the computation of the sequence JFN(z)é. OLserve tlat ttis

computational approach involves no divisions.
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36, Computational Aspects—II

Another approach to the computational solution reposes
upon the easily established fact that rN(z) is a quadratic

in 2z for each N, 1.e.

2
(1) fN(z) = uy + 2vyz+ Wzt

where Uy, Yy and wy eére independent of z. This is the

same device used in connection with Jacobil matrices, see [iﬂ.

Substituting in (34.6), we obtain the equation

(2) uy + vz o+ "sz = Min kaN,ANxN) + 2zX5y
(x50 % ) X )= 2
3N’ 7 3N—-1’"3N-2

- 2(MxM) + Uny @by XN oV

2 2

* bu-1x3u-e'n-i]°

Upon performing the minimization and determining the minimum
value of the right—-hand side, we obtain recurrence relations
connecting the triple (uN,vN,wN) with the triple
(uy_y Voo %) -

This affords an altermative computational technique.

The problem of determining the largest and smallest char—

acteristic values may be approached in a similar fashion, cf.

aal, B1.

37. Reliabllity of Multi-component Systems

A fundamental problem in tiie design of electronic systems,

switching networks, computing devices and automata, is that of



n
b
pr?
n
ax &

constructing more reliable devices from less reliable components.

Essentlally, it becomes a question of minimal duplication.

Some
general discussions of these problems may te found in a7 .

As a sample of the type of problem that can te treated
using functional equation techniques, let us consider the

following.
Let us suppose that the device we wish to design will

consist of a number of stages each of which feeds 1ts successor
Thus

Input — —> L_ ] — e ‘ - Output.

The reliability of the device will be Iinterpreted to be
the probability that 1t operates successfully, and this 1in turn

will be taken to be the product of the reliatilities of the
individual stages.

In many cases, the overall reliability 1s too low for 1its
intended use.

One way to increase the rellability 1s to intro—

duce a number of duplicate components 1in parallel at various
stages. Thus
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Input — |

We assume that we possess switching techniques which will auto—
matically introduce a new component into the circuit at any
stage 1f the first component used 18 faulty. The reliability
of the entire system can now be improved by duplication of com—
ponents in this fashion.

The process cannot be carried to any logical extreme be—
cause of physical constraints of size and cost. Consequently,
we have the protlem of determining optimal duplication subject
to given weight and size constraints. In addition to permit—
ting first choice of the number of components at each stage, we
shall subsequently also allow a choice of the type of component.
This latter feature introduces combinatorial aspects, although,
of course, these are already present in the condition of
discreteness.

Assuming that at least one component must be used at each

stage, let

(1) pJ(xJ) = the probability of successful performance of

the J—th stage 1f 1 4+ x components are

J
used at the J—th stage.



P-1254
2-24-58
—53—

Let the cost of a component at the j—th stage be and the

°J
weight be wJ. Due to the increase in complexity of switching
circuits as xJ is increased, there 1is no reason to assume
proportional cost. However, we shall do 8o here to simplify
the notation, since the method we present i1s equally applicable
to the general problem.

The variational problem is then that of determining the

maximum of
N
(2) I;IDJ(XJ),

subject to the constraints

N
(3) (a) Jg}lcjxJ £ e,
N

(v) lew'jxJ < w,

(c) Xy = o, 1,

It i8 clear that this problem may be transformed into that
of computing a sequence of functions of two variables, as out—
1lined in §9, and by use of the Lagrange multiplier technique
reduced to a problem involving a seQuence of functions of one
variable. The details, and the results of some computations,

may be found in [17].

38. Different Types of Components

Let us now suppose that at each stage we have a cholce of
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two types of components, those of an A—type and those of a
B-type. Let CJ(A)’ 'J(A)’ be respectively the costs and
weights f'or components of the A-type at the J—th stage, and
cJ(B), wJ(B) denote the corresponding quantities for B-types.
Given the overall restrictions on weight and cost, we wish,
as above, to determine the types of components, and the
quantities, which maximize the total reliability. We shall
suppose that the switching requirements are such that at any
particular stage it 1s impossible to combine any number of
A—components with any number of B—components.
Defining the sequence of functions, fi(c,w), in the
usual fashion, with the functions pJ(xJ,A), pJ(xJ,B) corres—
ponding to pJ(xJ), we obtain the relations
Max p.,(x,,A)
1'71
| X 1

1 £ (c,w) = Max| :
(1) 1(e,w) ax Max p, (x,,B)

x
i |

-

where 1 < x; < Min[tb/cl(A)], [ﬁ/hl(A)j] in the expression
containing A, and X, satisfies the analogous constraint

in the expression containing B.

Generally,
Tff: pN(xN.A)fN_l(c—cN(A)xN.w—uN(A)xNTI-
(2) rylc,w) = Max
l?t; pN(xN'B)rN—l(C_CN(B)XN"—“N(B)XN)}

where XN satisfles corresponding constraints,



(3) 1 < xy < Min [CC/CN(A)] , [w/wN(A)]] ,

IA

M _
1< xy < Min ‘LLC/CN(B)j . [_w/wN(B):]] "
in the two maximizations.

39. Sequential Search

In the remainder of the paper we wish to discuss a number
of interesting protlems in which we encounter the general
question of finding in minimum time an element of a finite set
possessing certain distinguishing characteristics.

Considering the great importance of the problem and tre
fascinating nature of the questions that arise, it i1s amazing

how little work has been done 1in the field.

40, Determining the Maximum Value of a Function

Let us begin with a simple deterministic protlem. Given a
continuous function f(x) defined over tre interval [0,1],
we wish to determine the value of x which maximizes f(x).

For a variety of reasons, some of which we have discussed
above, we do not wish to use calculus, but wish rather to
employ a search method. To make the protlem of determining the
value of a maximizing x 1in an efficient fashion precise, let
us pose the following problem.

"G4ven the continuous function f(x) defined over [0,1],
determine the quantity N(d) and the associated search policy
80 that one can guarantee that a maximum value can bte located

within an interval of length d 1n at most N(d) steps."”
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If the function 18 taken merely to bte continuous, with no
additional properties, it is clear that N(d) = 1/d. If,
however, we add that f(x) 1s concave, then this number can be
considerably reduced, and the protlem possesses a very elegant
solution.

This solution was found first by Kiefer, [41, and then,
independently, and in a simpler fashion by Johnson, [, using
functional equations.

A similar protlem can be posed with reference to locating
the unique zero of a continuous, monotone, concave function.
This has been resolved, using functional equations, by Gross
and Johnson, Eﬂ.

A detalled discussion of this type of protlem wilil be
found in Kiefer, [igd.

41, Sequential Testing

The protlem we have discussed in the preceding section 1is
a particular case of the general problem of sequential testing.
Let us discuss two particular problems which will illustrate
the difficulties in this domain.

Suppose that we have a plece of equipment which has N
different parts to be examined if there 1s loss of function.
Giver a priori protability distributions assoclated with the
individual parts, and a set of testing devicee which furnish
various indications, how should we proceed so as to locate all
sources of malfunction in a minimum time?

One version of this problem arises in connection with de-—
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these protlems, we encounter very much the same difficulty that
we met in the traveling salesman protlem. As we proceed in our
testing, the information pattern tecomes tremendously complica—
ted, and it appears to te impossible to describe the state of

the system in any simple way.

43. Design of Experiments

The problems presented in the foregoing sections are in
turn special cases of what may te called the general problem of
the design of experiments.

We have considered initially the relatively simple case 1in
whichk the structure of the system 18 assumed known. If the
structure 1s taken to be partially unknown, we first encounter
situations in which we hypothesize a stochastic structure, and
then the very much more difficult situations in which we have
to determine the structure on the basis of observﬁtion as we
proceed.

The information we possess determines the decisions we
make, and the decisions we make determine the new information
pattern. The problem of determining optimal policies 1in
situations of this type is very much more difficult than any of
the problems we have previously diecussed.

Not only 1s the analysis much more intricate because of
the stochastic structure of the process, but it 1s no longer
easy to make precise what we mean bty an optimal policy.

For a detalled discussion of matters of this nature, we
refer to the papers by Robbins, [47], Bellman and Kalaba, [22],
Bellman, [14], and Karlin, [39], Karlin and Johnson, [38].
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