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SUMMARY 

The purpose of this  paper Iß to dlscuoB the application of 

dynamic programming techniques to a class of problems which for 

want of a better term we call combinatorial.  The essential 

difficulty of these problems, from the standpoint of the 

analyst, lies In their apparent lack of complexity.  Usually, 

It Is either a question of performing a finite set of arith- 

metic operations or determining the largest of a finite set of 

numbers. 

If there are one hundred elements In the finite set, we 

can classify the problem as trivial.  If, however, the finite 

set possesses a million members, or a hundred million, It Is 

worthwhile to ask whether or not there are more efficient tech- 

niques than Just an element—ty—element examination. 

Problemj of this nature arise in the following ways: 

1. Solving linear systems of equations of t-'ie fbrm 

N 

2 aiixi   • bi '     1-1,2,....   N. 
J-l   1J   J 

N 
2. Maximization  of a   linear form    L(x)   ■    5 c.x.     suhject 

1-1   1   1 

to  constraints  of  the   form 

N 
2 aljxJ   < V     1-1,2,...,  M. 

3. Maximization of functions over finite sets, such as 

permutations, paths along a grid, and so on. 
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At the present  time,  there  1B no syateiratlc  theory of 

problems of this genre, nor Is  It  likely that  there ever will 

b«,  considering the many varieties and sources.    There are, 

however,  some categories of problems  recognized as  tractable. 

Sons are soluble explicitly In traditional analytic  terns,  some 

by neans of algorithms that can be carried out by hand,  and 

•oat  require the most powerful computers available. 

In what follows,  we shall discuss various ways  In which 

the functional equation technique of dynamic programming can be 

applied.    We shall use only those portions of the general 

theory reqalred for our present purposes,   referring  the  rearier 

interested in further aspectn to our book. 

Although we shall not present any specific numerical 

results here,  we shall  furnish  references  to extensive  compu- 

tational studies carried out by S.   Dreyfus and  the  author. 

• 
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COMBINATORIAL PROCESSES AND DYNAMIC PROORAMMINO 

Richard Bellman 

1. Introduction 

The purpose of this paper la to dlecusa the application of 

dynamic programming techniques to a clasa of problems which for 

want of a better term we call combinatorial. The essential 

difficulty of these problems, from the standpoint of the 

analyst, lies In their apparent lack of complexity.  Usually, 

It Is either a question of performing a finite set of arlth- 

■•tic operations or determining the largest of a flnlto set of 

numbars. 

If there are one hundred elements In the finite set, we 

can classify the problem as trivial.  If, however, the finite 

sat possesses a million members, or a hundred million. It is 

worthwhile to ask whether or not there are more efficient tech- 

nlques than just an element—by—element examination. 

Problems of this nature arise in the following ways: 

1. Solving linear systems of equations of the form 

N 
2*4txj   "  ^i»      1   ■   1»   2,    ...,   K. 

N 
2. Maximization of a  linear form    L(x)  -    ^ c.x.     subject 

1-1   1   1 

to constraints of the form 

£' lixl £^1»     ^  * ^'   ^'   •••'  "• 
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).  Maximization of functions over finite sets, such as 

permutations, paths along a grid, and so on. 

At the present time, there Is no systematic theory of 

problems of this genre, nor is It likely that there ever will 

be, considering the many varieties and sources,  TTiere are, 

however, some categories of problems recognized as tractable. 

Some are soluble explicitly In traditional analytic terms, some 

by means of algorithms that can be carried out by hand, and 

some requiring the most powerful computers available. 

In what follows, we shall discuss various ways In which 

the functional equation technique of dynamic programnlng can be 

applied.  We shall use only those portions of the general 

theory required for our present purposes, referring the reader 

Interested In further aspects to our book, [l] . 

Although we shall not present any specific numerical 

results here, we shall furnish references to extensive compu- 

tational studies carried out by S. Dreyfus and the author. 

2.     An Allocation Problem 

Let us begin with the following Pimple allocation problem. 

Suppose that we have a quantity x of a resource which we are 

going to subdivide Into N parts,  x, , x«, ..., x^.,  corres- 

ponding to N different activities.  To make a mathematical 

problem of this, let us suppose that we are given functions 

gjCx.)  which measure the return from the 1—th activity due to 

an allocation x.. 

The question of most efficient allocation of resource? 



P-12Ö4 
2-24-58 

l«ad8 to the analytic problem of maximizing the function 

(1) Fjf(x1,x2f,..,xN) - g1(x1) ^ g2(x2) -f ••• ♦ gN(3cN) 

•ubject to the constraints 

(2) (a) *! ♦ x2 ^ ■" * *!* - x' 

(b) x1 > 0. 

Although this may seem like a most prosaic problem, and 

hardly worth any attention at this late date In the history of 

calculus, as we shall see It has Its hidden pitfalls. 

The run—of—the-mlll approach to this problem converts It 

by way of a Lagrange multiplier Into that of maximizing the new 

function 

N N 
(5)     0N(x1,x2,...,xllI) - 2 8i^xi) " x 2 xi' 

where X la a parameter that will be detemlned from (2a). 

The variatlonal equations are 

(4) J5r - 0 * «iK) -x'  1-1,2, ....N. 

Solving these N equations for the x.  In terms of x, 

jr. • Xj(x),  the parameter  X Is determined by means of the 

rtlation 

N 
(5) Ix^x) - x. 
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Although this approach Is infallible in textbook problema, 

a number of difficulties arise in applications.    Let us 

enumerate them. 

In the first place,  the functions    g-Cx)    may not have a 

derivative.    Although,  as we shall see below, we do possess t\n 

efficient technique  for solving a maximization problem of  this 

type, we shall not insist upon this point.     It is, however, 

reasonable to expect  that the Individual  functions need not 

possess derivatives at various points. 

Let us ignore the^e bizarre possibilities and assume  that 

it  is sufficient to examine the solutions of  (4) and (5)«     If 

eaoh of the functions    gMx.)    Is monotone, which is to say 

that    g^x)     is either convex or concave,   then the  Inverse 

function    x.lx)    is uniquely defined and it becomes relatively 

easy to study the solutions of  (^). 

Since it  is quite common for utility functions    gi(x)     to 

have points of inflection,  if we wish  to resolve general  prob- 

lems of this nature we must consider situations in which  the 

equations In  (4) have  a multiplicity of solutions.     Assuming, 

for the sake of moderate complication,   that each equation of 

the  form    gJW  " x    possesses  two joiutions for any particular 

value of    X,     we see  that the solution  of any equation auch as 

(5)   leads to a consideration of    2      cases. 

This number    2       arises by counting all possible cases. 

The  problem thus appears  to have unpleasant combinatorial 

overtones. 
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We can amplify these overtones in a number of ways.    In 

the first place, we can Insist  that the endpolnts of  the 

x.-lntervals be  tested.    The value    x.  - 0    has a very Impor- 

tant interpretation.     It means  that the  1-th activity Is not 

engaged in at all.    The problem of taking Into account all 

possibilities of end-point extrema greatly complicates the 

enumeration of cases. 

Secondly,  we can Impose additional  constraints  of the  type 

(6) xixiH-l - 0* 

The meaning of a constraint of  this type  Is  that  the use of one 

activity effectually prevents  the use of another. 

So far,  we have been complaining about  the   limitations of 

an approach based on calculus.     Let us further curtail this 

technique by allowing the    x.     to range only over the elements 

of a discrete  set.    Thus, we may Impose the  restriction 

(7) x1 - 0,  1,  2,   ...,     1  -  1,  2,   ...,  N. 

At this point the analyst Is tempted to feel that the 

cards have been too thoroughly stacked against him.  Let the 

computing machines take over; let them solve the proMem by the 

trivial method of examining all possibilities. 

The people in charge of the computers, however, may become 

a bit aggrieved at this attitude.  They will concede that they 

possess fantastic machines operating at phenomenal speeds that 

can resolve in a matter of hours problems that would have con- 
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aumed  lifetimes even  twenty years ago.     But  these problems must 

be  carefully chosen.     Even  rudimentary protlems of other  types 

cannot  be solved by enumeration of cases. 

?lnce this statement may come as a  shock to anyone who has 

not  taken the trouble  to  compute  the  total numter of possible 

cases arising from simple combinatorial  problems,  let us 

Illustrate this  point  by meano of a question  Involving permu- 

tations. 

Take the protlem of placing    N    objects  In    N    pigeonholes, 

assuming that we are given a function which measures the  value 

of each  assignment  of  objects.    To resolve  the problem by 

examining all cases,  we must evaluate    NI     different cases, 

corresponding to all  different permutations. 

Accustomed as we  are  to the  familiar function    NI,     we 

seldom  realize  Its  rapidity of growth.     For    N ■ 10,    we  have 

5,628,000 possibilities,   a  formidable  but not  Incredible number. 

For    N - 20,     It will  amuse  the  reader to  calculate  how long  It 

would  take a computing machine which  could evaluate  one permu- 

tation  a microsecond   to  examine  all   cases.* 

It  follows  that  the  mathematician  cannot abdicate.     He  Is 

obligated  to develop algorithms which  can  handle  these  strange, 

new  problems.     Our aim will  be  to  present   some  simple  algorithms 

which  are particularly  suited to  digital   computers.     This   Is not 

to be  considered our ultimate objective,   but merely a preliminary 

step on   the way  to understanding. 

A   simple   lower bound  Is half a million  yearsl 
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},    Functional Bquations 

Let us now present an approach  to these proMema quite 

different  from that of the  calculus.     Introduce   the function 

f||(x),     defined for    x >  0    and    N - 1,   2,   ...,     by the 

relation 

(1) fN(x) - Max g1(x1)   -f g2(x2)   +  ...   -f «N(xN)j 

where    PL.    la  the region  In     (x. »x«,... ,x-.)-epace  defined Ly 

the relations 

(2)    (a)    *1 + *2 *  '"  * *}* ' x' 

(b)    x1 > 0. 

The only assumption we need make concerning  the    g^x)     Is 

that they are continuous  for    x«   > O-     In  the  cases we shall 

treat below where the    x1    assume only a finite  set of values, 

even this restriction will not be necessary. 

Let us write* 

(3) ^(x) - Max        Max g1(x1)  ^ g2(x2)   ♦ •••  + gN(xN)   , 

Where    R«, ^(XJJ)    Is defined by  the inequalities 

(%)    (a)    x1 -f x2 + ••• 4 xN_1  - x - x^, 

This Is a particular application  of the   "principle of 
optiaallty,  see  [l]. P-   83. 



(b)    x1  > 0. 

Hence,   for    N  -  2,   . . ., 

(5) fN(x) Max 
0<XN<X 

8N(xU) 

Max 
R N-l S' 

-1 

Thus,   referring  to  the  original  definition of the  sequence 

(6) f  (x)  - Max 
Opc^x 2NS)   *  fN~l(x-X>J) N  -  2,   3, 

Por     N-l,     we  have 

(7) f^x)  - g^x) 

k.     Dlscuaslon 

The  preceding  formalism redudee   the   original  multidimen- 

sional  maximization  problem to a  sequence  of one—dimensional 

problems.     The  practical   significance  of   this  fact  Is   that  we 

now  do  poßsess  a  feasible  technique  for  solving  these  prot 1ems 

by  direct  search  methods  using digital   computers. 

In  this way,   we   can  treat  a  numter  of problems  arising   In 

mathematical  economics,   engineering,   and   operations   research. 

The  computational  solutions of  these  questions,   Joint   work  with 

S.   Dreyfus,  will  appear  In  book  form  In   the near futurr. 
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If we attribute  some  structure  to  the   functions,  such  as 

linearity,  quadratic  character,   convexity  or concavity,   the 

recurrence relations  in   (3.5)  can be used  to determiDe  the 

analytic  character of  the  sequence     If^x)       and  the maximizing 

x^    as funcdons of    x;     of.   []] ,   [2],  Karush,   [^ . 

Alternatively,   a   structural  feature  such ao  concavity  can 

be used  to accelerate  greatly the  machine   search   for a maximum, 

cf.   Kiefer,   M ,   Johnson,   63,  Johnson  and  Oross,   [3^,  Kiefer, 

M•     Applications  of  the  technique  are  contained  In   Jft] ,   ^Qj . 

3«     An  Imbedding Process 

It  Is important   to point out what  we  have accomplished  by 

Means  of the functional equation  technique.     We have  taken a 

particular problem with a specific  value  of    x    and    N    and 

made  it a member of a  family of problems,   continuous  In    x    and 

discrete in    N. 

In other words,   we  have  Imbedded  a  particular process  with- 

in a family of processes.     Oddly,   It  Is  easier to treat  the 

particular process  by  consideration of  the whole family of 

processes,  than  it  Is  to  treat  the process  by Itself. 

Further discussion  of  this  point will   be  found  In   [lj , [j?V] . 

6.    Constraints 

Let us now examine  the effect  of constraints upon  the 

■ethod outlines  in 64.     Suppose  that we   Impose the additional 

constraints 

(1) 0 < ai < xi  < bi'    1 - 1,  2.   ..•,  N, 
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In addition  to  those of (2.2). 

It  Is easy  to  see that  the  relations of  (4.5)  are   replaced 

by 

(2) fN(x)   - Max gN(xN)   -f  fj4_i(x-x
N)   » 

SN 

where SN  Is the  x^-reglon detennlned by the new conditions 

(3) (a)  aN < *N < bN, 

(b)      ^ -^ x ~ ^i^?^* * ,4,aN-.l^ 

In the definition  of    fj.(x),     x    Is   restricted by  the  lower 

bound    a,   ^ a?  -f   • • •   ■♦• a^. 

TTie  Interesting thing to note   Is  that whereas   In  the usual 

approach  to maximization problems  additional  constraints  cause 

difficulties,   here  the more  constraints,   the  simpler the compu- 

tational  task.     Additional  constraints  restrict  the  region over 

which each variable  can roam,  and  thus simplify  the  s?arch for 

a maximum.     We  shall mention  this  again lelow. 

7.    Constraints—Discreteness 

As  an example  of a nastier  type  of constraint,   consider 

the problem of maximizing 

N 
(1) P(x1fx2, . .. ,xN)   -    2 g1(x1) 

subject   to  the   constraints 
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(2) (a)     x1   -  0     or    1, 

N 
(b)       ? *!   <  x. 

AB  before,  we  obtain  the  recurrence  relation 

r 1 

(3) fN^X^   "  Max       lgN^XN^   ^  rN~l^x~xN^ x^-0,1 

- Max    gN(l)   +  ^^(x-D,  gN(0)   4  ^(x)]. 

The  computation can now be  carried out  by hand  In  a very 

Blmple  fashion.     Observe  that  this  la  the simplest  type of 

»axlral£atlon  problem that a machine  can perform. 

8.    Mutually Exclusive Activities 

Let us now complicate matters  still  further.     In  addition 

to the  restrictions  In the  preceding  section,   let  us  Impose  the 

constraint 

(1) xixi4i  " 0'    1 - 1.  2.   .••,  K - l. 

To  treat   this  prollem,   Introduce   the  sequence  of   functions 

of two variables,     fN(x,y),     defined  by the  relations 

(2) fN(x,y)   - Kax   lg1(x1)   ♦ g2(x2)  ♦   •••   ^ KN(*N)l» 

where    TL.    Is  now  the  region  In     (x   ,x   ,.. . ,x   )-epace  defined 

by 
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(3)     (a)     x1   -f x2  •♦■•••♦  xN   <  x, 

(b)     x1  - 0,   1, 

(c)     x1xl4l  - 0,     1   -  1,   2,   ...,   N - 1 

(d)     xNy - 0. 

The quantity  y  Is allowed to take only two values,  0 or  1 

Then we uave the recurrence relation 

m r 
fN(x>y) - Max IK^X^,) + f N_I ( X-XN ' XN ^ 

N 

where     xN     Is sutject  to  the  conditions 

(5)     (a)     xN - 0,  1, 

(t)     xN  < x, 

(c)     xNy  - 0 

In  order  to  resolve   the  original  problem we  must  compute 

the   two  sequences     fN(x(0),     fN(x,l). 

It   Is  easily  seen  that 

(6) fN(x,0)   - Max gN(l)   +  ^V-l^-1'1^   8N(0)   *  rN-l(x'0)i • 

rN(x,i)  - gN(0)  ♦ f^^x.O) 

The   two  sequences      |fN(x,0)^ ,   ffN(x,l)i ,     can  thus  te 

determined   qiilte  simply. 



9. More Constraints 

Returning to the simpler problem discussed In ^2, let us 

ooneider the problem of maximizing 

(1) P(x1,x2,...,xN) - g1(x1) + g?(
x^ 4 '" ■*" gN^x>J^ 

subject to the constraints 

(2)  (a)  Xj ♦ x2 ♦ ••• ♦ xN < x, 

(b) a1x1 ♦ a2x2 -►...> aNxN < y, a1 > 0, 

(c) x1 > 0. 

Observe  that we have  replaced equality signs  vy  Inequali- 

ties,  since  this avoids some unimportant  consistency  require— 

Muts. 

Introducing  the sequence  of  functions,     fN(xfy),    defined 

by 

(5) fN(x,y)  - Max P(x1,x2,. . . ,xN) 

for H • 1, 2,   ...,    x,y > 0,  It Is easy to gee that, as In 

the preceding sections, we obtain the recurrence relation 

(*) fM(*#y^ - Max 
S  L «N

(xN) + fN-l(x-X^'y-yN) 

II > 2,  with 

(5) 
r f

1(x,y) - Max ig^x^J f 
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for    0  < x.   < Mln^y/a-j] . 

10.     General Formulation 

There  Is no difficulty  In formulating  the problem cf 

maximizing 

(i)      p (x) - 2g{4l)A2) x[k)y> N 1-1        ^ ■L 

subject  to the constraints 

N 
(?)     (a)      2ki^x[l)'*[2) "-'A*^ ±yy     J  -  1.  2,   ...,  M, 

(b)     x[j)>0. 

In  the  same fashion.     Setting 

(3) r^yl'y2p" ' ^M^   " Max PN^X^ 

we  see   that 

(4) N1'^2'***'^M    * wax    g^x«.     ,Xy,     ,. , ,,X||     j 

'N 

■*■ * j^ i \ y i  ^jij i v ^jg    »• • •» ^»J    /»• • • J i 

Prior to any discussion  of  the  computational   feasll lllty 

of an  algorithm of  this  type  for general   values  of    M,     let  us 

turn  to a  particular problem of this  type  In which  large  values 

of    M    enter In a most natural  way. 
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11.     l^ic Hitchcock—Koopmane Transportation  Problem 

Let us now dlscuaa one of the most  Interesting modele  In 

mathematical  economics,   the Hltchcock-Koopmans model  of the 

floik  of comnodltles. 

Suppose that at    N    different locations,  vrtilch we shall 

call  sources,  there are quantities of an  Item which must he 

transported to    M    other  locations which we  shall  call sinks. 

Let    x.     denote the  quantity of the  Item at  the 1-th 

source,    y1    denote the demand for this  Item at  the J-th sink, 

and    a--    denote the cost  of  transporting a unit quantity from 

the 1—th source to the  J—th source.    Furthermore,  assume  that 

the  total  supply at the sinks  Is equal  to the  total demand  from 

the sources. 

T^e problem Is  to determine a shipping policy which mini- 

mizes  the cost of supplying the demand.     To  reduce this problem 

to analytic  form,  let 

(l) x. . ■ the quantity sent from the  1—th  source  to 

the  j—th source. 

Then we are required to minimize the linear function 

N  M 

1-1 J-l 1J 1J 

over all    x.       satisfying  the   linear constraints 

N 
(3)     (a)    jll*1* ' Xl' 



(b) ^u m*y 

(c) x1j > 0. 

This problem Is one that can be treated very successfully 

by the "simplex technique" of 0. Dantzlg, fcf] ,  or by the newer 

methods of Rulkerson and Pord, [xi; cf. also Prager, \^ .    Both 

of these methods depend strongly upon the linearity of the 

various equations. 

It can easily be shown that the linearity of all the 

functions Involved prevents the existence of any Internal 

maximum. The region defined by the relations f (3) 1» the 

Interior of a rauItl—dimensional polyhedron. To decermlne the 

maximum of L(x),  It Is sufficient to examine the values of 

L(x)  at the vertices of this region. 

It follows that we have a problem of combinatorial type. 

The methods described above furnish efficient search techniques. 

These methods fall in general If we Introduce nonlinear 

cost functions.  We shall employ functional equation techniques. 

12.  The Nonlinear Transportation Problem 

Let us examine the prol lem of minimizing 

(1)       g(x)' il JUJ'V 
over all x   satisfying the constraints of (10.3), where the 

g..(x)  are not necessarily linear. 
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To treat the question ty means of functional equations, we 

can proceed In one of two ways.  To begin with, assume that we 

satisfy the total demand In the following fashion:  first, the 

demand of the M-th sink, then, having satisfied this, the 

demand of the (M-l)-ot sink, and so on. 

0 yl 

Xl   0 0   y2 

X2   0     X1K 

:    X2M   : 

^  0 --^^   0 yM- 

Por fixed demands,  y. ,  let 

(2) fj||(x, ,x-, .. . .x^) ■ the minimum cost to satisfy the 

demands of M remaining sinks, 

starting with quantities 

x-, x_, . . . , xN at the  N  sinks. 

Then  the  sarnie  reasoning as we  have  used aVove  yields  the 

aquation 

(3) fjl((x1,x2,....xN^   -  Mln      2 ^iM^iM^ 
X1M   ^1"1 

+   fM-l^l   X1M'X2   X2M" * • 'XN~XNM^ 

where the  x.,- \«iry over the region determined ty 



N 

^)  <a>  ^^M-^M' 

(b)  0 < x1M < x1,  1 - 1, 2, ..., N. 

Th e   function  f, (x, ,Xp, . . . ,x».)  Is given by 

N 
('))      f1(x1,x2 xN) - 2 gii^xii^ 

We have thus transformed the original pr  lem Into that of 

computing the sequence  (fM(x,,Xp,...,xN)j . 

It Is clear that we could obtain an alteinative formu- 

lation by using first all the resources of the N—th source to 

satisfy some of the demands at the M sinks, and so on. 

1^.  FeasUlllty 

Let us now see whether or not the recurrence relations pre- 

sented In (12.3) actually lead to a fecSltle computational 

scheme.  At each stage of the computation we have to tabulate a 

function of N variables, and perfonn a minimization over an 

N—dimensional region. 

Although both of these are formldal le procedures If M 

and  N are large, the tabulation problem la at the moment the 

most difficult.  Suppose that we allow each  x.  to assume one 

hundred values, say  x. - 0,A   99^«  Then the total 

number of grid—points required to tabulate  fj^x, ,Xp, . . . , xN) 

will be  10  .  If N - 1,  this la  100,  a trivial numtrer; 

If  N - 2,  this Is  10,000,  a respectaMe numter; and if 

N - 3,  this Is  1,000,000,  an Impoaelbl« number at the present 

time . 
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It followa that the foregoing method In Its Btralghtfor- 

ward form cannot ^e uaed to handle p-^oMems of this nature 

unless N or M < 2. 

Two  facts save this from helng an academic exercise.  In 

the first place, there are a numter of Important situations in 

which N or M iü one, two or three.  In the second place, as 

we shall see below, there are a numter of devices we can conv- 

blne with the functional equation technique In order to treat 

higher dljnenslonal prohlems. 

These are 

(l)  (a)  Lagrange multipliers, 

(b) Functional approximation, 

(c) Successive approximations. 

We  shall  discuss  these  Ideas  In  turn. 

Ik,    Reduction by One Variable 

In  view  of  the  tremendous  difference  between   the memory 

requirements  for functions of  two varla^os  and  functions of 

three variables,  it Is of Interest  to point out  that  trans- 

portation  processes  Involving    N    sources  can  he  treated  ty 

■tans of functions of    N - 1     variables.     Hence,   problems 

involving  two sources  are  easily  resclved,   while  protlems 

involving three sources can  te  treated wlU   the   rest of current 

■aohines. 

To obtain   this  reduction   In  dimensionality,   we  oiserve 

that \B yet we have made no use of  the  fact  trat  supply  Is 

equal  to demand, 
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N      M 

1-1    J-l J 

Prom this It followe that the values of  x,, Xp, ..., x%i i 

determine the "alue of >:„,     on^-e we have specified the  y.. 

Hence 

In much of analyslR, dimensionality plays an Inessential 

role.  In computational work, It Is a basic consideration. 

If.  I>agrange Multipliers and Dynamic Programming* 

We have another very powerful way of evading the curse of 

dimensionality. Returning to the allocation problem discussed 

Initially, consider the problem of maximizing 

N 
(1) P(x1,x2 xN) - 2*i^xi^ 

subject to the constraints 

N 
(2) (a)  2 xi < x' 

1-1 1 

N 
(b)   2aixi ■ y-   ai > 0' 

i^i 1 1 1 - 

(c)  x1 > 0. 

Observe that we vave kept one constraint an equality, one an 

1  r 1 First presented In [JJ 
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Inequallty.     Again   there  are  some   reasona  of   convenlen.e. 

As  we  know,   this  problem can  be   treated  ty means  of 

functions  of  two  variablen.     However,   tf.ere   Is  a great   Incen- 

tive  for  reducing  the  problem to  one   that  can   ^e  handled  by 

functions of one  variable. 

What  we  do  Is  coml Ine   the  functional  equation   technique 

with   the   classical   Lagrange  multiplier  formalism.     Consider  the 

problem of maximizing  the  new  function 

N N 

(3) 0(x, ,x^ »x
w)
a    2Mxi^-x2aixi 

id IN ^     1        1 1-1     1     1 

subject to the constraints 

N 
(4)  (a)  2 x < x. 

1-1 1 

(b)  x1 > 0, 

»rhere     X     Is an as  yet  undetermined  parameter. 

Por fixed     X,     Introduce   the   sequence  of   functions 

N N 
(5) fN(x)   -Max   ll^i*,)  -   \1\^ 

rL,     1-1 1-1 

wh«re     Rj|    Is defined  only  by   (A).     Then,   as   before,   we   readily 

compute   the   sequence      [f, (x)       by means  of   the   relations 

r 1 

(6) fN^X^   ' MäX
        ^N^^  ~   XXN   "*"  rN_i^x"xN^   ' 

O^XjXx L 

'«t     x^Cx),   Xp(x),    ...,   xN(x)     re  a   set   of  values  yielding 
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the   maximum of     0(x,,x?,...,xN).     Then  we  assert   that   these 

values yield  the  solution  to   th«  problem of maximi- 

zing  (l)   subject   to  the  constraint   In   (2)  wfere     y     Is 

determined  by 

N 
(7) y   -      2aiXl^- 

1-1    1 

To  prove   tbls,   proreed   by   contradiction.     Suppose   that 

there existed   values     (z,,2?,...,z   )     satisfying   (2)   such   that 

(") P(z1,z2 ?.N)   >  Flx^ A) fx2( X) ,xN(x)). 

Then 

N 
(9) F(z1 ,z2> . . . ,r.N)  - x J a

1
z

1   - F(z1 ,z2 zN)   -  Xy 
1»1 

F(x1(x),x2(x) XN(X))   _   Xy 

N 
P(x1(x).x2(x) xN(x))   -   X 2 a^^X) 

This,   r.owever,   yields  a  contradiction,   since   the     x.(x)     were 

obtained  as   a   solution  to   (' ),   subject   to  the   constraints  of 

Although   there   Is no  difficulty   In   letting  the   results 

Justify   tne  method   In  any   particular  application,   there   are  a 

number of  Important   facts  which   remain  to  he  verified.     We 

suspect   that  as     X     varies  from    — oo   to    -f oo     that   the  value 
N 

of       "^a   x.(x)     will   vary   between   Its  maximum and  minimum,   and, 
1-1   1 

furthermore   that   this  variation will   be monotone  and   continuous 
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The monotonlclty la not only of theoretical Importarce, 

but of practical significance In determining the value of  A 
N 

for which  2Ä4X«(M " y;  -f. Orosa and Johnson, 33-  Some 

applications of this technique will be found In [l^ , [l^j . 

16. DlecusBlon 

The  Importance  of  the  procedure  outlined  atove  resides  in 

the  fact  that   It  enables us   to partition  a  pro! lern originally 

requiring a sequence  of functions of  two  varlaHes  into a  se- 

quence of  problems   requiting  funccions   of one  varialle. 

There  Is  no difficulty  in  extending   these  teobniques   to 

treat  the  case where   there are    M     constraints.     What  we  gain 

In  reducing dimensionality on one  hand,   we must pay  for In 

multl—dimensional  search on  the  other. 

As we know,   the   Introduction  of  Lagrange  multipliers   is 

equivalent  to  introducing dual  variables;   cf.   Kuhn  and Tucker, 

(^j .    What we have done above  Is  to operate partially  In  th.e 

original  space and  partially  in  the  dual   space;   partly  in   th.e 

space of  "resources"  and partly  in  thie  sj ace of  "prices." 

17. Punctlonal Approximation 

In the previous sections, when we h.ave discussed the 

computational solution of functional equations, we have tacitly 

equated the concept of a function f(x) defined over an Inter- 

val [O.aJ with a set of values J'f(l<A) , where N£ ■= 2, and 

A la some grid size. The finer the grid, the more values that 

must be computed. Similarly, a function of two variables, 

f(x,y),  Is equivalent to a sequence of values  (fU/j./J») . 
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An  we   Increase   tie  nvunt er  of   Independent  varlallea,   the 

number of grid—points goes  up  at  an exponential   rate.     It   la 

this  fact   that   defeats   the  effective use  of  the  algorithms 

prepented  Move   In a  numler  of  significant  processes. 

It   follows   that  one  way   to  defeat   this  exponential  growth 

In   the   Information  required   to  sptclfy a  function   Is  to use  a 

different   description. 

Consider,   for example,   a  power series  expansion 

OD 

(1) f(x)   -    2a xn, 
n-0 

convergent for 0 < x v a.  If we truncate the series and use 

the polynomial  !> a x  a» an approximation to the function, 
n-0 

we see that  f(x)  Is determined for all  x  In  [0,a]  by the 

N ■♦■ l  coefficients,  a.,  1-0, 1, ..., N,  and thus by 

(N-fl)  quantities. 

Power sei cj expansions have the drawback of being 

associated with, analytlclty and, In addition, of not providing 

uniformly good approximation over the entire Interval.  Let us 

then use Instead an orthonormal expansion 

(?)      f(x) ~ ! an0n(x) 
n-0 

where the functions  ^(x)  are elements of a complete ortho- 

normal system.  For a finite Interval, two particularly 

Important choices are those of trigonometric functions, 

(sin kx, cos kx!,  and of Legendre polynomials. 

We write 
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(3) r{x) -   2nVn'''- 
n-0 

where 

(4) an   -/a  f(x)0n(x)dx 

In  evaluating  tMe  Integral,   we  don't  wish,  to  use  a 

Rlemann  sum,   say 

M 

n       k-0 n 

since this will Involve tie  calculation of f(kA)  for all  k, 

precisely the type of computation we wished to avoid. 

Consequently, we employ a numerical Integration formula of 

the form 

(6) /a g(x)dx  -    2c1g(x1), 

wh«re    x1     are  fixed  points   Ir     [p.al ,     Independent  of     g(x) 

but dependent  on    M,     and  the     c.     are   likewise  fixed  coeffi- 

cients Independent  of    g{x) ,     tut  dependent  on    M. 

Thus 

(7) tn = 1|1
Cir(xl),,n('<

1
)  ' X*1^- 

Since the quantities  0 (x.)  can be calculated on^e and for 

all. 

Observe the Interesting fact av. out this formula that tr.e 
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value of a , and thua of  r(x)  Is made to depend upon the 

values of  fCx.) at a fixed set of points •I'' 

Let  us  see  then how  the  calculation  proceeds.     Turning  to 

the   recurrence  relation 

(8) ,-^1 rN(x)   -^   „,    k^'   +   rN-l'X-XJf)J' 

suppose   that    x     Is   restricted to an   Interval     [O.a., •     Starting 

with-   the  function     f-.ix)   -  g,(x),     K.   reduce     f-.lx)     to a 

sequence  of  coefficients 

(9) f^x) % (1)     JD 
0 a. a N 

We see from the above discussion that to determine f?(x),  we 

need only calculate the values f^x.).  Hence, we compute 

these from the relations 

(10) f:(x1} - Max   |gN(x2) -»■ f1(x1-x2) 
0<x<x1 - 

The values of f,(x.-x?)  are determined from (7). 

Having computed  fp(x4).  i •» 1, 2, . . . , M,  In this 

(2) fashion, we determine the new coefficients  a^ '    using (7). 

TYe   function f0(x)  Is thus reduced to a sequence of coeffi- 

cients 

(11) fjx) \2)     a(2) 
0 ' ai a 

(2)- 
N 

We now repeat this process to determine as many elements 

of the sequence  |fN(x)   as desired. 



-?7- 

A numler of questions remain before Via   technique ca/i le 

applied.  We must determine  N  In (3) and  M  In (7), and the 

type of orthonormal sequence.  The choice of  N and M depend 

upon the accuracy desired and the facilities available. 

Both the trigonometric functions,  ,sln Nx, cos Nx .,  and 

the Legendre jolynomlals possess simple recurrence relations 

which permit the N—th member of the sequence to he computed 

from the values of the first members. 

As far as quadratic formulas are concerned, It Is protably 

best to use Oausslan quadrature, which, as we know, Is exact 

for polynomials up to degree  2M - 1  If M  points are used In 

(b).  For an application of this technique, see [l£ . 

18.  Cebycev Approximation 

The  approximation 

(1)     f(x) = 2 W (x) 
n-0 

la equivalent  to choosing  the  coefficient       ,a   .     according  to 

mean—equare approximation.     If  th.e    b.     are  determined  so as  to 

ittlnlnlze   the mean—square  deviation 

(a) ^ 
N ^2 

n-0 

we find that    b    ■ a4• 

However,   mean-square  deviation  Is   less  desirable   than 

Cebycev approximation, 

N 
(3) hin Max       lf(x) -    2 b  0  (x)   . 

b1  0<x<a n-0 n n 



Unfortunately,  no slmpl«»  representation  for the minimizing    t. , 

corresponding  to  (17,^)   exists.     Nevertheless,   there are 

available  fcasllle  computational  techniques for determining  the 

minimizing    b.     In   (5). 

19.     Punctlons of Several Variables 

In the previous  sections,  we have   shown how a  function 

defined over     [0,a1     may be  described  by a  relatively small   set 

of  parameters.     The   same process  can  \e applied to a function 

of  two variables,     f(x,y),     defined over    0 < x,y  < a, 

m,n«0 

We  see  that functions of two variables  will  require 

(N+l)(N+2)/2    coefficients,  while  those of  three  variables will 

require  roughly    N^/6     coefficients. 

Take    N - 10,     we have  functions  of  two variables  deter- 

mined by    6h    quantities,  and functions of  three variables 

determined by approximately    200    quantities.     These number» 
k 6 compare v^ry favorably with       10      and     10      arising from 

102 x   102    grids and     102  x  102  ^ 102    grids. 

In any particular problem,   a certain  amount of experi- 

mentation will  be  required. 

Again an  Important point  to stress  Is  that  these  techniques 

allow us  to  treat  problems which  cannot be  treated ly  stralgbt— 

forward tabulation  of  functional  values at grid—points. 



2-2 k-^ 
-29- 

20,    Succeaaive  Approximations 

Let  us  now  discuea  an  approach  of entirely   dlfTerent   ^ype 

to the problem of solving multi—dimensional  protlema   in terms 

ol'  functions  of  a  small   nur.iber  of  variables.     We  wish   ♦:o employ 

the classical  method of  successive  approximations. 

To  Illustrate  the  workings  of  the method,   let  us give   two 

examples of  its  use,  one  in  connection with  the  allocation 

problem described above,  and one   in  connection with   the 

Hitchcock—Koopmans problem. 

Consider the  problem of maximizing 

N 
(1) h(x1, . ..,xN;y1,. . . ,yN)   =    2g^xk'yk^ 

k"l 

subject to the constraints 

N 
(2) (a) 2.\  " x' xk - 0' 

k«l 

N 
(b)  J/k '*'     y^0- 

As we  know,   this  problem  can   '; e   treated   ty   means   of  sequences 

of functions  of   two variables,   br-*,   and  ty  means   of  sequenjes  of 

functions  of  one  variable  using  Lagrange  multiplier   techniques. 

Let US now  treat   it  ly means  of  successive  approximations. 

Let     (y!      ,yi   ' y^     )     te  an  initial   guess   ':on:emlng 

the choice  of  the    y.     and  consider  the problem  of maximizing 

the function 
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(3) r,^ x, , . . . , x«,(y, (0) 
,y 

(o) 
N 

N 

) vl^v^0') k-1 

subject  to tr.e constraint  of  (2a).     This  problem can,  as we 

know,   be   resolved  via  functions of one  varlatle. 

Call  a maximizing  set  of    x.       )x^   '; .     Now  consider  the 

problem of maximizing 

N 

k'-l 
(M -{x(0) x(0)-y y   )   -    ^g   (x(0)   y   ) 

suuject   to  the  constraints  of   (2^).     This  again  Is a  one—dimen- 

sional   problem  In  our  terms.     Call  a maximizing  set (1) 

Tne pattfrn of procedure Is now set. We obtain alternately 

„(i)1 
maximizing  sequences    | y* and 

approxlmatlono  to  the  desired maxlnum value, 

with  corresponding 

(c) h(x (1) 
y(l)) 'yN      } ' 

h ( v (1) 
1 

(l).v(l+l) 
'N      ^1 ' ^w    • y'i       »• • • > YIJ       / - 

(i^D 
N 

We  yave tr.us once  again  reduced a  problem originally 

re^ulrtng  functions  of  two  variables  to  one   requiring sequences 

of  functions  of  one  variable. 

21 

(1) 

Mono ton!'ity  of  Approximation 

Let 

u0.+,{x.y)   -  Max  h(x.y(l)), w I        i   ,        •   ■   .   , 

u21(x,y) Max hlx^^.y),     1-1,2,... 
y 
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It   la   clear that 

(2) u1(x,y)   < u2(x,y)   <   • ••   . 

Hence,   the   sequence      ju. (x,y)|      converges  monoton leal ly.     It 

Is,  however,   not clear U at   It  converges  to   tie  al solute maxi- 

mal.     This   requires  a  separate  discussion  which  we  shall 

present  elsewhere. 

22.     Approximation  in   Policy   Space 

This monotonlclty  of  approximation   Is  not  accldentel.     The 

type  of approximation  we   have   >een employing   la  a  particular 

type of approximation  in   "policy space," wf 1       necessarily 

yields monotonlclty. 

In  place of approximating  to the   return  functions,   the 

f. (x,y)     as  defined  in  69,   the  usual  method  of  successive 

approximation,  we operate  partially In  the  space  of policy 

functions. 

For a  further discussion   of approximation   In  policy  spa:e, 

see   Ll] »   Chapter 3.  and  for  some  further applications of 

successive  approximations,   see   [h] ,   [21* . 

23»     Application  to  Hitchcock—Koopmans  Transportation  Prol ler, 

One  way  of applying   these   laeas   to  either  the   linear'  or 

nonlinear transportation   Is   the  following.     Let   the  shipments 

fron the   >-rd  to N—th   source   he  assigned  arbitrarily,  and 

consider  the  problem of  determining  the  shipments   from  the 

first  two sources which  will   minimize   the   cost   of  supplying   the 

remaining demand. 









26.  A Routing Problem 

Let us now consider the followlnK r^oMerr.,  SVippose that 

we have a set of N points In the plane or In space, with tie 

property that every two points,  P  and P,, have an associated 

number,  ^4«»  which we can call the tire required to travel 

from  P*  to  P..  It is not necessary to assuire that  d. . • d ,. 

To take account of the fact that in any [articular situation 

two points may not be mutually accessible, we can let  d. . -co. 

Olven the matrix  (^«J»  where  d., - 0,  the problem is 

to trace a route of minimum time from  P.,  to Pu. 

To treat this, Introduce the  N — 1  quantities,  f., 

defined by 

(1)      f. - the minimum time to travel from  P.  to  PN. 

It Is easy to see that 

(2)      f. - Mln [d  4 f ] 
1  J/i   1J   J 

Since  this  system of non—linear  equations  doee  not  deter- 

mine  the sequence     [f.l     recurrently,   we  must use  some  method 

of successive approximations  to o: tain   the    f,. 
i 

Perhaps  the   simplest  Is  one  lased  upon approximation   In 

policy space.    Let 

(3) f[0) - dlN,     1 - 1,  2,   ...,   N - 1, 

and 
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(1) L(v) • V, + V« 4- • • ■ -f V , 12 r 

subject to the constraints 

(2) (a)  r^ > vi > 0. 

(b)  v1 < b^ 

Vl ^ v2 - b2' 

vl + v2 + •'• + vk < \> 

v  -fv  -f • • * + V     <    \, 

n—k+1        n - n 

A further surprising fact a^out this problem 1? tr.at we 

can exhibit an explicit analytic solution, a property that In 

quite rare !n this domain. 

31.  Bottlene k_^Prob^ems 

Let us, without going Into any detail, mention a class of 

problems which wo have called "lottieneck" problems because the 

operation of tue  system depends at eacn stage upon the scarcest 

resource». 

The gene-hl question la that utilizing a complex of Inter— 

dependan - Industries to produce one or two essential Items. 

Using a "lumped" model of economic Interaction we consider ti e 

state of the system at any time to be specified by a capacity 
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vector x(t) and a stockpile vector y(t). 

Considering first a continuous process, since these are 

usually more amenable to solution, we meet the problem of deter- 

mining vectors  i:(t)  and w(t)  so as to maximize tht Inner 

product 

(1)      I(x,y) - (x(T),a) ♦ (y(T),b), 

wb.ere  x and y are determined by linear equations 

ä^ -  A1x  ■♦■ By  >♦■  C.z  +  D1w,     x(0)   -  c, 

^ -   A.       r   B2y   ♦  C2z  +  D2w,      y(0)   -  d, 

under appropriate proportionality assumptions, and the vectors 

z  and w are subject to further feasllllity constraints 

(3)      Ez + Pw < 0 -f Hx + ly 

for 0 < t < T. 

The novel features of the problem are Introduced by the 

combination of linear equations and linear constraints. The 

continuous version can he resolved explicitly in a number of 

cases, see [l] , |jL • ^ addition, Lehman has devised a con- 

tinuous version of the simplex technique which seems quite 

promining, j^ . 

The discrete version can be simply treated by computational 

techniques if the number of state variables does not exceed 3. 

A transformation of the problem enables us to reduce the numt er 

of variables by one, and simultaneously to keep all variables 







2-2 4-5 ~ 
—4 

and 

(4)      x1 > 0, 

It Is assumed th.at a. . > 0, v.   > 0.  wit: sufficiently 

many  a. . > 0 so that th > maxlmuin Is not Infinite. 

Let us now define a sequence of functions of z, 

(5)      fN(z) - Max L^x), 
xl 

where  the     x.     are   sul Ject   to  the   :on8tralnt8  given  a: ove,   wit:. 

the  exception  that  the   last  constraint   Is now 

^ a3N,3N-2X3H-2  * a3N.3N-1X3N-:   + a3N,3NX3N - z* 

Employing  the   principle  of  optlmallty,   we  see  that   the 

sequence     /fj.(z)!      satisfies  the  recurrence   relation 

r- 

(7) fN(z)   - Max lx +  x ^  x 
I   „ „ Y \    *- 

'N-r   3N-3    N-l   5N-2;;' 3N-3   ^N-l   3N-2 j 

N   >   1, 

with  the   variables     ^^N_p'   X
^N_I'   

X
^W     sul Ject   to  the   constraint? 
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I-et   us   Introduce   the   matrices 

(2' Ak " (a1+5l<-J,J+5k-?''    i-J * l-  *■   5' 

for    k  -   1,   2 N,     £md   the  vectors 

(5) x    - (x,k_2(x;5k_1,x)k) ,    c    -  (c3k_2'c5k«i'c3k)- 

Since the matrix of ooefflclents Is, by assumption, positive 

definite, the solution of the linear system (1) Is equivalent to 

determining the minimum of the Inhomogeneous quadratic form 

(M      (x1^^1) ♦ (x2fA2x2) ♦ ... ♦ (xN,ANxN) 

- 2(c:i.x1) - 2(c2.x2) - ... - 2(cN,xN) 

> 2b1x:5x4  ♦ 2b2xtx7   +   ...   4 2bN_1x3N_3x)N_2. 

For    N  -  1,   2,   . . . ,     and    - oo   < z   < oo ,     let us  Introduce 

the  sequence  of  functions  of  th8 variable     z     defined by 

(5) fN(z)   - Mlnx     ,   2 (*   .'V   )  - 2 2 (c   .x1) 
N xl   Ll-1 1 1-1 

N-l 
+ ^S^i^oi^i " 2ZX3N!- 

WP then rave the following recurrence relation: 

(' )       fNU) - Mln r(x
N
>AMx

N) + 2xz,N 
(x   x    x   K    N        5N VÄ3N' 3N~1 , 3N-2; 

2(oN,xN) >rN_1('.N_1x,N_2)~ ■JN-?^ 



2-2 k-V 
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^3:     Computational   Aape-ta—I 

Since   Ue   fvinctlon     r,(z)     la   readily  determined,  we   -an 

compute  the   sequence     jf, (z)       at   the  expense  of  a  minimization 

over a  >-dlm0nBlonal   region.     Thla  minimization  may   be  greatly 

speeded up  upon  using  the   :onvexlty  properties  of   the  functions 

Involved.     Although no  optimal  methods  are  knowr   for multi- 

dimensional  problems,   the  one—dimensional   method  presented   In 

\y£   may  be  employed  In  an   Iterative  manner. 

Writing   {J>k,i )   In   the   form 

3N (1) fN(z)  - Mln     iMln (xN,ANxN)   ■»- ?zx 
X3N-2LX3N'X3N~1 ' 

-i 

- 2(cN,xN)'  + ^(Vi^N-a'!- 
J 

we see that It reduces to 

(2)      fN(z) -Mln gN(z.y) 4 f^O^y) . 
y  ^ 

»rh,»re 

(3)      gN(z.y) - Mln      l(xN,AxN) + ?zx  - 2(.:N.xN) , 

^N'^N-l 

upon Identifying  x,» ^ as y.  This new relation If now well- 

suited to the technique described In 3   . 

The computation of the functions  [gN(2,y)|  Is Independent 

Of the computation of the sequence  jfN(z) .  Observe that this 

computational approach Involves no divisions. 
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