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ON A LINEAR PROGRAMMING—-COMBINATORIAL
APPROACH TO THE TRAVELING SALESMAN PROELEM
G. B. Dantzig

D. R. Fulkerson
S. M. Johnson

1. Introduction

In our paper published in JORSA in November, 1954, entitled

)

"Solution of a Large Scale Traveling Salesman Provlem," [1], we
chose the well known example of finding the btest way to tour a
set of cities, one selected from each of the 48 states, in order
to indicate the power of a linear programming approach to the
traveling salesman problem. A way of using linear programminc
in conjunction with combinatorial methods was also mentioned
briefly 1in [i]. However, Jjudging from the number of qQueries we
have received from readers of our previous paper, this metrod
was not elaborated sufficiently to make the proposal clear.
Since 1t 1is our belief that a linear programming-comtinatoris:’
approach affords a practical way of solving traveling—salesman
problems, we shall attempt, in this note, to explain this
approach in more detail.

To 1llustrate the method we have chosen the example dis—
cussed by L. L. Berachet [2] in the December 19457 issue of JOSSA,

In that note he describes a procedure of successively improvin-

& solution by using certain necessary conditions for optimality.

~ He points out that there 1s no guarantee that tre final tou:
w'@@llﬂod by his approach 1s optimal. In contrast, we shall
‘f?trt with his initial tour, improve 1t, and give a proof t!at
his final solution 1s indeed optimal.



P-1281
2-14-58
—

2. Barachet!'s Example and its Solution

We shall assume that the reader is familiar with our
earlier paper [1]. See also [3] for a general discussion. The
linear programming approach suggested in [1] is to start with a
tour and a small number of linear eqQuality and inequality con-
straints that are satisfied by all tours, then use the simplex
method to move to a new basic solution. If the new solution is
not a tour, impose an additional constraint on the problem that
cuts out this solution but no tours, and again, in the new
convex set thus defined, move to an adjacent solution. At a
suitable stage in the process, it is usually advantageous to
use the estimation procedure described in [1] in conjunction
with a combinatorial analysis of undominated tours.

In Barachet's ten—city example, we shall find that in

addition to the starting conditions on the nonnegative variables

xiJ (1 < J)n

(1) 1%(x1k + 3\2‘1«1 -2 (ke=0o0,1,...,9),

only upper bounds on certain variables will take us to a stage

where the estimation procedure and combinatorial analysis suffice

to solve the problem., Thus we will not need the additional loop
constraints descritved in [1], or any constraints of a more
complicated nature. Indeed, our experience indicates that (1)

and

(2) X35 $ 1

in conjunction with combinatorial arguments, often suffice for small

problems.
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Por example, T. Robacker, while at RAND, was able to sclve a
series of ten 9—<ity problems, each having a "random distance"
matrix, by the use of (1) and (2) only. More recently an experiment
was run by Leola Cutler on the RAND electronic computer JOHNNIAC.
One hundred 10-city problems, each having a "random distance" matrix,
were solved assuming agaln only conditions (1) and (2). In 56 % of
the cases the optimal solution was a tour®.

Distances between the ten citlies 0,1,...,9 for Barachet's
problem are given in Table 1. PFigure 1 1s his map of the cities
relative to each other, the heavy line being his starting tour. To
get a starting set of conditions with respect to which this tour is
a basic solution, we impose, in addition to (1), an upper bound on
X,,» 8nd add the basic variable xgg (with value 0). The presence
of an upper bound on X5 is depicted in Pigure 1 by a bar on link
12. Alternatively, we may think of all upper bound relations (2)
as being present in the problem, and view x,, ag a "non—basic
variable" at its upper bound value of unity (instead of zero).
Since we shall use only upper bounds to sclve this problem, the
latter point of view will simplify our description of the soluticn
process, and we therefore adopt 1t.

The first step 18 to compute "potentials"” LAY (simplex multi-
pliers or prices) satisfying
’()) T+ vy =dy
corresponding to basic varlables le' These are shown adjacent
ﬁo the cities in Pigure 1. Next compute

{'11 + 7, - diJ (for zero non—basic variables)

) 5

-
1] 1'_.(11 * 2y~ le) (for positive non-basic variables).

‘3! the 100 cases, 56 were tours, 40 were loops, 4 were fractlonal.
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If 613 < 0 for all non-basic variables, the tour 1s established
as optimal. Otherwise, we select some non-basic variable corres-—
ponding to 513 > 0 for entry into the basic set. Throughout
this problem we shall use the standard criterion used in the
simplex method for this selection, i.e. we take the largest 61J
and attempt to increase the corresponding non-basic variable

x1J if it has value zero, or decrease it if its value is unity,
thereby obtaining a new basic set of variables.

Using the valuesof T, as shown in Figure 1, we find that
617 « 35 18 maximal and thus introduce X17 into the basic set
(this 1s symbolized in Pigure 1 by the arrowheads on link 1,7).
Adjustments in the values of hasic variables corresponding to
X7 = §> O are shown in brackets next to the appropriate links
in Figure 1. Since X0 = 1+6>1, we determine that &= O
and drop X09 from the basic set.

This brings the computation to Figure 2, where new potentials
are computed as shown there, and XOS' with 605 = 33, 18 to be
introduced. This time the value of Xos can be increased to
# = 1 without violating any of the conditions (1) and (2), at
which point we obtain a new tour (1,2,3,4,5,0,9,8,6,7), which
is therefore 33 units shorter than the original one. This
leads to Figure 3, where the 80lid lines now correspond to the
new tour, and link O,1 has been dropped from the figure, i.e.
Xoy has become a zero non-basic variable (alternatively, we
could have dropped x56 or x78). The variable x.,3 is then

selected to enter the basic set, and xus becomes a non-tasic

variable having value 1.
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Two more iterations produce Figures 4 and 5. At this stage
of the computation (Figure 5) we note after calculating potentials

(see Table 2) that the maximum 5 1s 6, = 6, and that the

1) LA

only other positive & 1s © = 1, From the discussion of

iJ 36
the estimation procedure in [i], it follows that any zero non—

basic var able whose 1s less than - 7 =6, + 0

o]
*14 1 3
must stay at zero value in any optimal tour, wnhile any positive
non-basic variable x1J whose 61J is less than — 7 must

stay at value 1 in any optimal tour.

In Table 2 we have tabulated all and from the table

bij’
we see that, in addition to the tasic set, the only links which

might be used to better the tour of Figure 5 are those corres—

ponding to
(5) 60'4 = 0, 627 =1, 63: =1, 514.". = Oy- 61_*8 = - 2,
6"9 B — 6’ 6‘36 B - 2, 6"9 = — ‘:

Moreover, the aij corresponding to positive non—-basic varialles

are
(6) bog = = 2, Byp = =23, B, . =—3, 6. ==2,

and hence 1t follows that links 1,2 and (,3 must be in an:

1l tour.

In essence, the search for a tetter tour has teen reduced
the following problem. Add the links corresponding to tie

of (5) to the network shown in Figure © to obtain Figure
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Any better tour must use only links of Figure 6. To compare
the length of any tour of this network with our present tour,
use the 513‘ a 513 > 0 of (5) represents the decrease in
tour length by that amount if 1ink 41,J 418 used; =& 613 <0
of (5) represents the increase in tour length (by the amount

= biJ) if 41,3 18 used; on the 6ther hand, a 61J <0 of (6)
represents the increase in tour length (by "°1J) ir 1,3

is not used.

It 1s now a simple matter to deduce that the tour
(1,2,3,4,5,0,9,8,6,7) 1s optimal. We proceed to give the
argument :

(a) Links 6,8 and 1,2 must be in (as asserted before),
since, e.g.» O¢g = — 24 < - (536 + °h6) - -7,

(b) Link 1,7 must be in, since there are only two links
at city 1. Hence also 2,3 1s in, since otherwise we would have
a subloop (1,2,7). Thus 3,7 1s out, since otherwise the sub-—
loop (1,2,3,7) would result,

(c) Next look at cities 7 and 3. There are only two
more links from 7, namely 6,7 and 7,8, one of which must
be in. Thus 1ink 3,6 18 out, since 6,7 and 3,5 1in results
in a subloop (1,2,3,6,7), whereas 7,8 and 3,6 in ylelds
the subloop (1,2,3,6,8,7). It follows that 1ink 3,4 must be 1in.

(d) Similarly 1link 4,6 is out, as otherwise we would have
either the subloop (1,2,3,4,6,7) or (1,2,3,4,6,8,7).

(e) There 1s no better tour than (1,2,3,4,5,0,9,8,6,7),
since to better it, we must use at least one of the links 3,6

or 4,6, both of which have now been eliminated from consideration.
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One can go on to show that this tour is uniquely optimal,
and that a next best tour is (1,:(,8,6,5,9,0,1&,3,2), of length
3 units greater than the optimal tour (since, from the ©&'s,
the only loss incurred is in not using link 4,5 for which
b~5 = — 3), The fact that this tour 1s second best can not he
deduced merely from Figure 6 and its corresponding ©0's, how—
ever, since, for example, the tour (1,7,8,6,4,5,9,0,3,2) 1is
also 3 units longer than %the optimal one, but uses 1link 0,3,
miéh 1s not in Figure 6 (603 = — g). The increase in length
from optimal for thie latter tour 1s given vy -— 603 + 51&6 o

9-6-30
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Fig. 4




(4)

-1l- ‘
(2)
(o
(4)
(s)
o . ()
- 31 0 (7)
-2 -24 O | 8)
o -5 -38 O (9)
0 -8 -3 -9 -2 (0)

(s) (8) (7) (8) (9)
Table 2
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3. PracticaliQx_of the Method

We hope that our primary intent, to shed more light on bhow
one can use the simplex multipliers in a combinatorilal analysis
of undominated toure at some stage of the linear programming
approach, has been fulfilled hy our discusasion of the example.

It 15 our feeling, based on our experience in solving some
thirty or more problemz of various sizes, that the suggested
metrod affords a practical means of computing optimal tours for
problems that are not too huge. Certainly, we do not clainm to
have proved that the impocition of simple conditions like (1)
and (2) will, in every problem, make the subsequent combinatorial
analycic significant2y easier than a direct examination of a1l
tours. 2ut then, of course, no one has yet proved that the
simplex method, for example, cuts down the job of computing linear
programc significantly—compared to the crude method of examining
all basic solutions, say. Nonetheless, people do use the cimplex
method tecause of successful experience with many hundreds of

nractical problems.
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