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ABSTRACT

This investigation of the radar cross-section of & finite cone
can be divided into three areas. First, the exact solution for the
scattering of a plane electromagnetic wave by a finite cone is pre-
sented. Rigorous electromagnetic tneory 1s used in the solution, and
no ay ximations ere made. Secondly, methods of obtaining numerical
regults for the radar cross-section from the analytic solution by using
a digital computer are discussed. The third area is a presentation

and discussion of the numerical results obtained.
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THE THEORETICAL AND NUMERICAL DETERMINATION

OF THE RADAR CROSS-SECTION OF A FINITE CONE

l. Statement of the Problem

The problem undertaken is the exact solution for the scattering
of a plane electromagnetic wave by a finite perfectly conducting cone.
We consider only "nose-on" incidence (Figure 1). In order that the
entire surface of the cone can be expressed as a constant co-ordinate
surface in spherical co-ordinates, tlie end cap of the cone is taken to
be e segment of a spherical surface with center at the apex of the

cone. Time variations are assumed to be given by ewt

and MKS units
are used.

A considerable amount of effort, both theoretical and experimentel,
has been devoted to the cone scattering problem by many workers. No
attempt is made here to summarize the work, in view of the very excellent
sumary which appears in the report by Kleimman and Senior (1963). It
should be noted that the present work is an extension of that done
earlier by Rogers and Schultz (1960), and by Rogers, Schindler, and
“:hultz (1962).

This scattering problem is treated herein as a boundary-value
prublem in electramagnetic theory and no physical approximations are
meC-., The partial differential equation is, of course, the vector

Helmholtz equation,

v26+k2'c‘-o, (1)

where k = 2x/\ eand C may be either the electric field vector E or



Fig. 1. Cone Configuration



the magnetic field vector H. Solutions of (1) are obtained in the
form of infinite series containing unknown constants. To camplete the
solution of the problem, these constants are determined by satisfying
the necessary boundary conditions for E and H on the surface of
the perfectly conducting cone, the radiation condition at infinity,
and the finite energy condition.

Numerical results have been obtained, and these are compared with
experimental results obtained elsewhere, as well as with theoretical

results obtained with the use of approximate methods.

2. Solution of Vector Helmholtz Equation

The procedure used here for obtaining the solutions of the vector
Helmholtz equation is well known (Stratton, 1941).

Solutions of (1) are

1

i
Q
L

(2)

n
q
]
—
L]
4
~—

-9
m
;-%Vx; ,

where r 1is the radial vector in spherical co-ordinates and & 1is the

solution of the scalar Helmholtz equation
we+xlo-=o0. (3)

In the region surrounding the cone, V . E-9 - -1H- 0. Since 9 - £ ¢ 0,

we use only the m and n solutions to represent E and H.



It is also well known that the solution of (3) is

o (5,0:9) = 2i(xr) Flcon o) [ & ) (%)
&)

wvhere n can have the values 1, 2, 3, or 4 to represent Bessel functions
of the first kind (Jn( kr)), Bessel functions of the second kind
(nn(kr)), Hankel functions of the first kind (hl]_'l(kr)), and Hankel
functions of the second kind (hi(kr)), respectively. I}:(coa 8) 1is
an associated Legendre function of degree Vv and order m, and we
let e signify "even" and o signify "odd" for cos mZ end sin md,
respectively.

The desired solutions of the vector Helmholtz equation are then

obtained from (2) and (4):

;:mv’ * T 2u(kr) Pilcos 0) [ con ﬁ ] 5
(o}
: kr)d"“[gggw]: (5)

- _ M wl n [ cos mg ] -
nemv = zv(kr) I—J:(cos 9) sin ng J °r
o

o) B[ =3,

sin mg
+ —_ sin o '(kr) Pn (cos 6) [ :é: W’] oy (6)
. d n - - - .
vhere z (xr) = TG' T [ r zv(kr) ] , and e, 8, and 8, are the

spherical unit vectors.



3. Opace Sectionalization

One of the most important characteristics of the solution of this
problem is that of dividing the space surrounding the cone into two
regions to facilitate the field expansions and application of the
boundary conditions. The E and H fields are then expanded in
terms of the radial and spherical functions appropriate to each region.

Since the scattered fields must be spherically diverging waves
for large values of the co-ordinate r, the use of Hankel functions is
obvious since they possess the desired wave behavior es - == . 1In
part/cular, since we assume a time veriation of the form eiwt, the
use of zl:l(kr) = hi( kr) functions is necessary to achieve an outward
traveling wave., At the tip of the cone, however, the Hankel functions
possess a singularity the order of which is too large to satisfy the
finite energy condition. This characteristic of the radial functions
suggests a division of the two regions at a finite value of r.

The behavior of the associated Legendre functions indicates a
division of the two regions at r = b. This is then the gurface that
we use to separate regions I and II (Figure 2). In region II, the
fields exist and are bounded everywhere in the complete 6 domain of
6 =0 to i1, requiring the use of only assocliated Legendre functions
of integral degree. In region I, however, 6 = n 18 not in the damein
of interest, allowing the use of sssociated Legendre tunctions of non-
integral degree. It will be seen that the boundary conditions will

determine the non-integrel degree of each associated Legendre function

to be used in region I.
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The reader may wish to refer to Rogers and Schultz (1960) for s
more camplete discussion of the selection of the various space divisions

possible.

4. Field Expansions

In region I the total flelds are designated by E; and ﬁ;. In

region II we wish to keep the incident and scattered fields separate,

and designate the incident fields by E;I and H;I and the scattered

fields by E and HII

In region II the incident electric field may be expressed (Stratton,

1941) as

@™

gl _ Jdkz g _ tkr cos 6 2 4 =1 =1 )
Elr=¢ 8- SR *pn eln
n=1
(7)
vhere
n 2n+l .l Zn+l
ek n{n+l) 0 rn = ¥ n{n+l) °’ (8)

and ;x is a unit vector in the x direction. The J variation in the
incident field requires that m=1 and forces us to use odd ; fanctions
end even n functions in all expansions of the electric field.

The scattered field in region II 18 written as

-

2. \\ n oln * dn neln ) ’ (9)

where L and dn are expansion coefficients to be determined fram

bo BN QN

L
the boundary :onditions. Here we have selected zn(kr) = h (kr) and

the m and n functions as previously discussed.



1n region I the total electric field is expressed as

Bl = ) o Bgy+ ) b, Ay, - (10)
v b
Here a,, and bu are expansion coefficients to be determined, and
4 and Vv are the non-integral degrees of the associated Legendre
functions, which are also yet to be determined.
The analogous representations for the magnetic field are obtained

from Maxwell's equations,

VxE=-twu H , "xH=1we E , (11)

-

km . (12)

=
]

me=k-r;, ?x

By using (7) through (10), in addition to (11) and (12), and noting

that k = d)/;OCO , one obtains the expressions for the magnetic fields:

= 17\ 7= - J

HII h ’n LZ S Yn no].n ! I-n meln) ¢ (13)
n=1

=5 { 4 -4 - h

o | [Z e S e 2 (14)
n=1

A B =1 1 ]

Ry = 1 ;2. v "o1v ¥ 2. b Tels | (15)
v o

where T 1s the i{ntrinsic impedance of free space, J;;/a .

For future reference, the field quantities are now expanded in

their entirety:
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. [ I, 5(3%12 .L(kr)Pi'(cos 6) ] cos ¢ 'Er

Pl( 6) . apt 7 -
+ [ 5 a,d, (kr) 5:289 + E buj“(kr) '55&' | cos g a,
d-Pl Pl © 0 -
[ §auJu(kr) E b ,j (kr) 21:89 J sin ¢ ay -
(16)
Z {[ nn+ l J (kr)Pl(cos 6) coz;;lﬁ'é.r
P (cos 6) , apt -
+ [ Yan(kr) __:_1_;_0:___ + T Jn(kr) _ae_n_ ] cos # ag
[y 3 (kr)dPrlu r3:(kr) Pl(COS 0) ] sm;a?a'g} .
a6 sin 6
(17)
ﬁ;l = { [ d Eﬁ—r-l-k;—ll hn(kr)P}I(cos 0) ] cos @ 'z;r
n=1
P cos 6 , AP -
+ [ ch (kr) Ez:se + dnhn(kr) ?152] cos ¢ ag
apt Pl( 0) -
- [ cnhn(kr) _de_n +d h (kr) sizso ] sin ¢ 8, } .
(18)
H; = % { [ g a, zﬁgr;_ll Ju(kr)P\];(cos o) ] sin ¢ -a'r
2 r ' dPl ) Pl(cos 6) ~
| T a 3 (kr) =0 I b 4, (kr) Al ] otn 9 &
(xp) Pr(cos 6) apt -
+ [ 5 aUJU(k r) 82:56 E bu‘ju»(kr) EE' ] cos ¢ ag }

(19)



1
@®

ﬁiI =n|iT 2 { [ Yo, ﬁ(nk;rlz Jn(kr)Pln(cos ) ] sin ¢ E’r
n=1

+ [ YnJr'l(kr) :_:13 - I'n Jn(kr) Pﬁiz:see) ] sin ¢ ?9

+ [ Ynd;l(kr) Prll(cos 0) I'n Jn(kr) ﬁ_:’ cos g &, } .

sin 6 ae g
s (20)
K(];II =‘|'11 2 { r c. Eﬁlk;—l—) hn(kr)P:;(cos 6) ] sin Q;r
n=1
' ar* P e) -
+ [ cnhn(kr) d_e_xl = dnhn(kr) 21:0: ] sin @ 8,
' Pl( 9) dPl =
+ [ cnhn(kr) :1:10: . dnhn(kr) ae_n ] cos @ ay } .
(21)

Equations (16) through (21) contain six sets of unknown constants, u,
v, a_, bu’ c and dn' These are to be determined by sutisfying the

boundary conditions.

5. Boundary Conditions

We have already satisfied the finite energy condition at the tip
of the cone and the radiation condition at infinity by the proper choice
of radial functions in each region. The following boundary conditions

remain to be satisfied:

(a)[ﬁi’} =0 for 6=6, r<b (22a)
r,d
.
['E';] for 0<0<6
(b)['ﬁ111+i:°§1]9¢=< i r=b
’ 0 for 6< 6 < x (22v)
? -




(c) [%I+@I]9¢-[ﬁ;]eg for r=Db, 0<6<86, (22¢)
’ , c

(d) The finite energy condition at the edge of the cone
(r=v, e~oo), (224)
where b is the radius of the spherical cap and 90 is

half of the exterior apex angle.

6. The Solution

To satisfy boundary condition (22a) we first equate the r-component

of -ﬁ; to zero at Ozeo,

2‘ b“ &E;—l-l ‘h(kr) Pi'(cos 90) cos g =0, (23)
n

and thus set
Pi‘(cos 90) =0 . (24)

This equation determines the values of u. Equating the g-camponent of

E;‘ to zero at 6 = 60 gives

: 1
), a4 (kr) ar, |+ ) aen) Rloos 8) 0. (a9)

v dé 9:90 s sin 90
Since P:(cos 90) = 0 by (24), we set
e,
i =0 (26)

6=6
o

and thus the values of VvV are determined.
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Next, the boundary conditions (22b) and (22c) are applied to
determine the four sets of unknown expansion co-efficients a,, bu,

c,and d . For the 6 camponent of (22b) there results

Y [ v.g (e Falcos 8) r, (ke o ] e

nel sin 6

*2 [ ch (kb) Pl(cos 6) + dn hr'l(kb) ﬁ_] c%g

n=1 sin @0 de
o
D. 8,J,(kb) _v <% 7/ Pl(°°° 6) Z kb) 7!;5, 0<eo<e,
. “sin 6 %
=J \27)
o 5 6 <8<nx ,
- °=- -

and for the ¢ camponent,

[ v,9,(x0)

ElE5E
[3+)
e}

b Ty (kb) Pl(cos 6) ] /ﬂ

“8in 6

-Z[ch(kb)

2y
DD
=

+ a_b!(Kkb) Pl(c“e)] /ﬂ

sin 6

l
(— aa(kb) v+zba(kb)"1(°°” /¢,0<9<9

de sin 6

(28)
o 86 <x .

Similiarly, for the 6-camponent of (22c) there results

A



b0 [ vatgt) T rp ) Talo0 9 ] ud g

sin 6

+% Z [cnhr'l(kb)g_‘;lg-dh(kb) P(°°B 9)] 81/95

=] -

=%[Z aj(kb)i’]: Z b J, (kb) P:(°°56)] sif g, 0<6<6 ,
93

sin 6
(29)

and for the g-camponent,

5L [ vpaiom Fycos 0) - T3 (kb) ﬁ] c?éﬁ

sl sin 6 dae
a
i P (coa 8) dPl
+ %) [ e n(kv) -an (k) Fn | cof g
ﬂ o —————— nn —
nel sin 6 d6

1 P(cose) d.I"~
. i J(kb) b, J,(kb) g, 026286, -
H[Za sin 6 2’ d—u 71 )
(30

v

These four equations, (27), (28), (29), and (30), are functions
of 6, (27) and (28) over the interval 0< 6 < n and (29) and (30) over
the interval O < 6 5'00 . In the solution of Rogers and Schultz (1960)
these four equations were manipulated in a process that involved
differentiation with respect to 6. It is weli known that an infinite
series can be integrated term-by-term with non-stringent requirements

on the nature of convergence, w.iereas term-by-tem differentiation of
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an infinite series is valid only with strict requirements on the
convergence of the series. Since the exact nature of the convergence
of the infinite series expansions in (27) through (30) is unknown,

we here use an integration process, in order to avoid the problems

encountered with differentistion.

—

dp

First we multiply (27) by P;(cos ), multiply (28) by sin@_
d

“lg

and subtract the two results. We then integrate the resulting

equation with respect to 6 over the interval O to n. It it necessary

to evaluate two integrals with limits of O to n and two integrals

with 1limits O to 90. The integrals sre cammon to boundary value

problems of this type and can be evaluated by using the associated

Legendre differential equation, and (24) and (26). The integral

that appears as a factor in the e sumiation fortunately involves

the Kronecker delta, 6mn , enabling the coefficient n to be separated.
The coefficient dm is separated in exactly the same manner except

that (27) is multiplied by sin 6 dP; and (28) by Pi(cos 8).

To separate &, (29) is mudtiiiied by sin 8 ;{;_Pé and (30) by
Pé and the results added. The subscript @ denotes a particular
value of the infinite set v. This equation is then integrated with
respect to 6 over the interval O to 90. Again the integrals can be
evaluated by using the associated Legendre differential equation, and
(24) and (26). Here the integrel associated with the a  sumation
involves the Kronecker delta, 5va » enabling the cocfficient 8, to be

separated.



The coefficient bB i1s separated in the same manner as is 8y

except that (29) is multiplied by Pé

The subscript B denotes a particular value of the infinite set u.

d.Pl
and (30) by sin 6 8.
dé

If the values of v_ and I'n given by (8) are then substituted {n the

four separated equations, there result:

-1 (2m+1) J_(kb)

“n " m(m+1) h_(kb)
(2m+1) sin 6, d.P;' Z a, V(Wl)JV(kb)Pt(cos 90)
Z[m(m'rl)]z h_(kb) & 6=0_ T W(v1) - m(m1) ()
1 .
. (2m+1) §:(kb)
o m(m+1) h'(kb)
(2m+1) PY(cos 6 )
5 m2 © z a,J (kb)P:\",(cos 6 )
;[;(ml)] hi(kb) 5 v ©
(2m+l) sin 6, P;(cos 90) 2‘ buJL;(kb) u| o
2n(m+1) h'(kb) = m(m1) - u(usl) ¥ lo-0_
sin 6 _ Pl(cos ] ) i {[ b (kD) + (2ml)J (kb)] 15 |9=6
aa - B J (xb) nn n(n+1) a(a+1)-n(n+1)
Pl(cos 6 ) > n+l (2m1)
g o 2 {[ a h (kb) - Jn(kb)] P:;(coe 6.) }
a(a+1) Ba,j&(kb) 01 n(ml)

(33)



1 16

dp
Sl 67 552|9=9 - n+l n(n+L)P1( 8 6 )
o i (2n+1) n' €% %
by = Y11 an (kv) - 3 (kD)
B(B+1) ByJa(kb) 7 n(n+1) n(n+1) - u(u+l)
(34)
where the quantities qa and BB are defined by
0
0 2
1
B, = J sin 6 (Px) as . (35)
0

The reader may wish to refer to Appendix A for the analytic details of
the derivation of (31) thru (35).

Equations (31) through (3%) could be man.pulated intc four equations
with each set of coefficlents appearing in only one equation, but the
form of the end result would be less convenient for numerical computation.
Therefore, (31) through (34), together with (16) through (21), (24), (26),
and (35) represent the formal solution of the problem.

We have completed the solution without the necessity of satisfying
boundary condition (22d), the finite energy condition at the edge of the
cone. Rogers and Schultz (1960) used numerical results to show that this
finite energy condition app.ars to be satisfied at the edge of the coae.

One of the primary objectives of the solution of this problem is
to investigate the radar cross-section of the cone. The radar cross-

section, 0, is defined to be

g2
0= lim hura :%I| , (36)
r = ® SII

-t -t —o"‘
wvhere S = 5 Re { ExH J , the average Poynting vector. For our co-

ordinate system, the radar cross-section evaluated at 6 = O {8 more
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precisely termed the back scattering radar cross-section, OBS' By
using some simple algebra, OBS can be shown to be expressed by
2 2
A \ n
% =13 | L 1" n(n+1) (cn-idn) 2 (31)
n

where A 1is the wavelength of the incident plane wave. In order to
determine the back-scattering radar cross-section, then, we must

first determine the sets of cn and dn'

7. The Numerical Solution

Equations (31) through (34) represent an infinite number of
equations in an infinite number of unknown expansion coelficients.
The expansion coefficlents, therefore, do not enjoy the property of
finality. It is important, then, to calculate as many of the co-
efficients as possible in order to insure that the values of the
lowest order coefficients are reasonably accurate. The number of
coefficients calculated in each set is designated by ng- All
numerical work was done for 60 = 165° (a cone apex angle of 30°).
The calculations have been carried out for & rather large number of
values of ka in order to determine rather well the details of the
graph of Opg V8- ka, a being the radius of the base of the cone.

An examination of (31) through (34) indicates that the following

gsets of constanta need to be determined: u, v, B, B Pi(cos 165°),

1 1 CHEA
P (cos 165°) P s (kb), J (kb), 3 (kb)
v T30 lgoig50 90 Mg 1gc0 g 502 I GBI BBy
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Jr'l(kb), JL;(kb), Jo(kb), hn(kb), and hr'l(kb). The first thirty values,
each, of u and v, as determined from (24) and (26), were taken fram
Waterman's paper (1963), and these have seven-place precision. With
the exception of the radial functions, the remaining sets of constants
were calculated by Schultz, Bolle, and Schindler (1963), using a
Burroughs Datatron 205 computer. The reader may wish to refer to
their work for a detailed presentation of the methods used in calcu-
lating these constants. Appendix B herein lists the first fifty-one
valuecs in each set of these constants along with the given sets u and
v. The radial function constants were calculated by uasing the infinite
series representations for the spheri~al Bessel functions.

when these constants are substituted into (31) through (3%), hno
equations in hno unknowns result. These hno equations must then be
solved for the four sets of n, expansion coefficients. Two different
methods were used to accomplish this. First, an iterative method was
used for values of ka in the Rayl:igh region. Secondly, a more
complicated method, but one that is usable for any value of ka (a
standard matrix solution), was used for the higher values of ka.

For the iterative solution we first assume initial values of the
c and d_in (33) and (34) and obtain initial values of the a, and b, -
These values of a and bu are then substituted into (31) and (32) and
new values for the ch and dn are obtained. The process is then
repcated, and continued until the values of the coefficients approach
a final value. This method did not converge for values ~f ka greater

than 0.518.



The second method is more complicated but more useful since it

is applicable for higher values of ka. This method involves a

straightforward metrix multiplication. If n,

coefficlients are ‘o be

calculated, (31) through (34) car be written in the form

where

0l

o]

-t
c

)

B )

ol

.l

E =&
F2 a
+02
+H2
d
t

(43)
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El’ Fl, Gz, Gh’ and }{2 are no-by-l matrices, and E2’ Fz, F3, Gl’ G

and H, are no-by-no matrices. Since only C and d are needed to

3)

calculate 0., we substitute (40) and (41) into (38) and (39) to

eliminate a and b. The two resulting relations can then be written

in the fom

[I - E, Gl] o+ [- E, G3] d - [El + E, (c2 + Gu)} (44)

[- F, ol] c o+ [I - F, 03 - F3 Hl] d = [Fl + F, (G2 + Gu) + F3 HZ],

(45)
vhere I is the identity matrix. If we define
<
; = ’ (1‘6)
d
then (44) and (45) can be expressed as
Ax=b , (47)
and so tae desired solution is
- -1 =
x=A"b . (48)
We then have the values of Cyr Cpy =ve Coy dl’ dz, drl , enabling
o) o
0.. to be calculated by using (37).

BS
All calculations were accomplished by using en IBM-7090 digital

computer programmed in FORTRAN. The quantities kb and n, were input
rerameters which could be changed at will. The sets of constants u,
v, Bu’ Bv, and the values of the associated Legendre functions were

read into the maechine as input data, whereas the values of the radial
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functions were calculated at the beginning of the program, since the
latter are dependent upon kb. In the case ol the iterative method

of solution, the values of a,, bu’ Ch and dn were printed out, either
after every iteration or after every fifth iteration, depending upon
the speed of convergence to the final values. A subroutine for ns
was included at the end of the program, and the value of OBS was 8lso

printed. 1In the case of the matrix method, only the values of Co

dn’ and o__. were printed, as the a, and bu wvere not computed in this

BS
latter method. Also, in the matrix method an additional input
parameter 5 was used, 8y being the number of terms retained in the

summa tions in the elements of the matrices Gz, Gu, and H2 (see

Appendix C).

8. The Numerical Results

Table 1 lists 60 calculated values of oBS/ﬂa2 for 50 different
values of ka. For same values of ka, oBS/na2 wvas calculated for
several values of D with ka fixed, in order to determine the sensi-
tivity of aBs/na2 to ny Dy being the number of expansion coefficients
calculated in each set. Nine values of oBS/na2 were calculated by
using the iteration method. As mentioned previously, it was found
that the iterations wo..d not converge for values of ka above 0.518.
The matrix method was then used for all calculations for ka > 0.518.

Two different programs were written using the matrix method. A
maximum of only 30 coefficients (no = 30) could be calculated by using

the first program, and the maximum value of 8, was also limited to 30.
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TABLE 1

Calculated Values of the Normaiized Back-Scattering Radar Cross-Section, oBs/na2

kb(1) ka(2) n‘(3) Iteration method Matrix method
° o /xa2 number of o /na2 8 (4)

= iterations — °
0.10 0.0259 5 3.362 x 10'6 50
0.10 0.0259 10 3.956 x 10'6 50
0.10 0.0259 15 4.035 x 10'6 50
0.10 0.0259 15 3.931 x 1o'6 15
0.20  0.0518 20 6.395 x 1072 50
0.20  0.0518 20 6.411 x 107 20
0.50 0.130 10 2.398 x 1073 50
0.50  0.130 20 2.439 x 1073 50
0.50 0.130 20 2.447 x 1073 20
1.00 0.259 25 3.618 x 107% 125
1.0C 0.259 25 3.614 x 107° 25
1.50 0.389 25 1.591 x 107t 25
2.00 0.518 25 0.4132 50
2.00 0.518 30 0.4153 85

(1) b 18 the slant height of the cone
(2)

(3)

a is the base radius of the cone

n_1s the number of expansion coefficients calculated in each of
the sets a_, b, c , and d
v w’ "n n
(%) s 18 the number of terms retained in the summations in the
elements of the matrices GZ, Gh’ and Hz



kb( 1) k3(2) 0 (3) Iteration method Matrix method
° chS/m2 number of % o s (4)
iterations 2
2.00 0.518 30 0.4130 30
2.25 0.583 30 0.581k 30
2.50 0.648 30 0.7716 30
2.75 0.713 30 0.9723 20
3.00 0.777 30 1,104 30
3.30 0.855 30 1.363 20
3.60 0.933 30 1.520 30
3.60 0.933 33 1.537 36
4.00 1.04 30 1.7% 30
4.50 1.17 30 2.050 30
5.00 1.30 30 2.371 30
5.40 1.40 30 2.L76 30
6.00 1.55 30 2.405 30
6.40 1.66 30 2.297 30
6.70 1.74 30 2.152 3C
7.17 1.86 Ls 1.841 50
7.50 1.94 Ls L.977 5O
7.75 2.01 bs 1.460 50
8.00 2.07 Ls 1.412 50
8.50 2.20 4s 1.462 50
9.00 2.33 bs 1.495 50
9.50 2.46 4s 1.367 50
10.00 2.59 Lsg 1 X077 50
10.50 28l Ls 0.8452 50
11.00 2.85 Ls 0.8243 50
11.50 2.98 Ls 0.7746 50
12.00 S ks 0.5292 50
12.25 3.17 45 0.40473 50
12.50 3.204 bs 0.3273 50
13.00 3.36 4s 0.3636 50
13.25 3.43 Lsg 0.4176 50
13.50 3.50 Ls 0.4491 50
13.75 3.56 Ls 0.4505 50
14.00 3.62 Ls 0.4L30 50
14.25 3.69 Ls 0.5056 50
14.50 3.76 Ls 0.6738 50
15.00 3.88 Ls 1.178 50
15.30 3.96 Ls 1. 304 50
15.50 L.o1 Ls 1.181 50
16.00 L.k Ls 0.70%9 50
16.50 L.27 bs 0.8850 50
17.00 L.bo Ls 1.273 50
17.50 L.53 Ls 0.8129 50
18.00 b.66 ks 0.7309 50
15.00 L.g2 Lsg 1.495 50
20.00 5.18 Ls 1.664 50



24

The second program offered greater flexibility, the maximum values of

ng and 5, being 45 and 50, respectively. These latter maximum values

of ng and s were limited by the memory capacity of the IEM-7090 digital
computer. Both of the matrix programs were used to calculate oBS/ﬂa2
for ka = 0.933, and the values obtained were the same, 1.530, for the
samc nunmber of temms, n, This was reassuring, considering the
completely dissimiliar nature of the sequence of calculations in the
two matlrix prograus.

Fig. 3 shows a graph of cBS/na2 vs. ka, where a 1s the radius of
the base of the cone (a = b sin 15°). For those velues of GBS/na2
calculated for several different values of ng, with ka fixed, the value
of oBs/na2 corresyonding to the largest ng is used in Fig. 3.

The values of chfnaZ in the Rayleigh regior (ka < 0.4) are not
shown in Fig. 3, but 1t is important to note that cgs/na2 obeys
extremely well the X'u law predicted for this region. Furthermore, by
using an approximate method of Siegel (Siegel, 1959), applicable in the
Rayleigh region, it can be shown that at ka = 0.0259 the normalized
back-scattering radar cross-section is approximately 3.56 x 10'6. The
value for ka = 0.0259 from Table 1 is 3 93 x 10'6, which agrees with
the approximate value of Siegel rather well.

For higher values of ka the graph shows unexpectedly rapid
fluctuations. It is berieved that these are caused by convergence

difficulties, especielly since a curve obtained by using n, = 30 instead

of n_ = LS showed even wilder fluctuations for ka > 3.2.
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2

Also shown in Fig. 3 are values of OBS/“QL calculated by using
Keller's modified geometricel optics theory (Keller, 1763). Double
diffraction effects are inciuded.

Mr. John E. Keys of the Defence Research Telecormunications
Establishment, Ottawa, Ontario, very kindly supplied the prescnt authcrs
with detailed data from measurements similar to those on which he and
R. I. Primich reported in the Canadian Journal of Physics (1959).

Mr. Keys has given his permission for the inclusion of these measure-
nents in the present report, and they are plotted in Fig. 3. These
measurcments were made on flat-based cones but Mr. Keys has informed
the present authors that he has made weasurements on spherically-capped
cones, of the type analyzed in the present work, and these measurements
are indistinguishable from those made on flat-based cones.

Likewise included in Fig. 3 is the straight-line graph representing
the results obtained by using Siegel's modified Rayleigh theory (Siegel,
1959).

The conclusions to be drawn from Fig. 3 are rather obvious and will
not be discussed. It is of interest, however. to point out that the
irregularities appearing at ka values of about 1.0, 2.2, and 2.8 in the
curvce 1llustrating the present work, occur in & region where the cal-
culated results are believed to te accurate, so it is considered that
these are bona fide irregularities. It was thought that they might be
caused by diffraction from the tip of the cone, btut, when this effect
was included i:: the Keller-theory calculations, the changes in the

o-values were too minute to be noticeable.
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In order to look intoc possible resonance effects as the cause of

these {rregularities, the following table was made up.

ka 1.0 2.2 2.8

kb 3.86 8.49 10.82
%‘l 0.318 0.700 3.892
g 2.614 1.352 1.723
-’;‘3 0.5 1.10 1.49
‘-’{3 0.773 1.702 2.17

The values of na/\ make it appear that these irregularities may te
resonances in response caused by current paths {irom top to bottom of
the cone along the edge of the base. In view of the fact that the
buse edge of the cone is very important in determining the scattering
characteristics, it is not surprising that these resonance effects

occur.
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APPENDIX A

ANALYTIC SOLUTION FOR EXPANSION COEFFICIENTS

The solution for the expansion coefficients will now be presented

in {ts analytic detail.
dPl

First we multiply (27) by P;;(cos ©), multiply (28) by sin 6 3—62 5

and subtract the two results, obtaining,

}_ YJ(kb)[i’_lr_wsme
n=1 nn sin 6 ds 2]

e g e,

0, 6 <6<nx. (1-1)

By integrating both sides of (1-1) with respect to 6 over the interval

O to n and cambining terms, we obtain,



1l

® n
- 1 -
> y;(kb)*ch(kb)w rpi}n*sinOdedyrl)JdO
— - Aan i 4 sin 6 6 do
n=1 0
o n
v T , , TP o1 ettt apr 10
) F 2 (xb) + d h'(kb) ] P° "'n+ mPl de
L n J W -d—é—'n_4
n=1 0
2,
~ O 1 2 1l
r
= Z,avJv(kb) J Pi Pv +5in 6 _m Efg 1 a6
; 5 cin 6 a6 a6
Oo,- 1 1
+Z b 3'(kb) | Pldpu*rdpml’ljdo. (1-2)
[FRVY N . moe—— - 3
" o do a6

The first integral in (1-2) i{s & femiliar integrel of boundery value

problems,
n Z
R e " R
] P; n o+ sinOirlln_iP_n GolTme el e a0 (1-3)
o 8in® i dg - 2m+ 1 HED

where 6mn 1s the Kronecker delta. The secund and fourth i{ntegrels are

easily evaluated by using Pll =O,Pl| =O,andPl| = 0 .
n 50 T g ' 9-8
(o]
n [ ]
1 R n
J[Plﬂ+ﬁpl]de=JdrP1Pn=rPlP”| = 0
. mde a0 n - m nJ . m nJO
0
(1-4)
i art  apt % g
J TR e lw. | "dee]-TRR] %0
_mﬁ d——uJ . m m o
0 0 0
(1-5)

The third integrsl is eval iated by utilizing “he associated Legendre

equation,



3C

a s 4
= \sin 6 ae_q/ + n(n+l) sin 6 P‘r]; - i =0 . (1-6)
in

pl ¢! ! ap!
L S R 1
sine‘Bl a6 46 = do \.,inGPm__n n(ml)sinGPmPi.

(1-7)
Integmting fram O to 60, there results

6 8
J F*’l 51 dPl dpl]de - [etn ot _dixlu]l 2 _[ On(ml)sin 6 Pl]!; P:; 46.

o “sin e d9 a6 ' "% 0 ‘o
(1-8)

The integral in (1-8) can easily be evaluated by using (1-7). If m and
n are interchanged in (1-7) and the result subtracted fram (1-7), the

ensuing equation {s

[m(ml)-n(ml)}sin 6 Pi ph - @ [sin 6 Pl d.P‘:; - sin 6 Pl d'Pl]

n

(1-9)
The integral in (1-8) may now be evaluated.
6
)
Jo n(n+1) sin 6 Pi P‘i do = (”;E'Bli( =7 | Msin 6 (Pl d.Pl _ ﬁ]l
(1-10)

Substituting (1-10) in (1-8) and cambining tems, there results

I °l' n + sin dP dPl ]de . oml) sin 6 P; ;‘z_xlu ]|z°

m(mtl)-n(n+l)

sin 6 dO dO
~ n( 41) dPl 60
COYEIEY ["i" ¢ Prlm o ]'o - (1-11)

The third {ntegral in (1-2) {s then obtained by letting n = v in (1-11)

and making use of the condition (26).



4 <
o

O ~ 1 - - = ,l-\
o Py sin 0 dpi ff; Jds = ° e R Py iig['o
5 sing a6 46 m{m+1)-v(w1) ° A9 ~ o
(1-12)
Upon substituting the integral results, (1-3), (1-4), (1-5), and
(1-12), into (1-2), we obtain-
r 7 L’Fm(ml).h )
Z LYan(kb) ! Cnhn(kb)J’ —_— °nn
n=1 cortl
_ -> . (xb) v(v+l) sin 00 ['pl dP;;WI (1-1%)
VR VAV m{mtl,-v(wl) L'V — 0 "’ =
N a6 o)
which can be solved for o
ch =t Y Jm(kb) + (2m+*1l) sin 9 dPrJ;l' \ a, V(Wl)jv(kb)Pi(cos Oo)
N e . L,
"W 2 m(me) “n (ko) 9090 T (wel)em(me1)

(1-14)
The separation of dm 15 accamplished in a similar manner by

ok
multiplying (27) by sin 6 de , multiplying (28) by P; , and subtracting
9

the two results, obtaining,

\ roooA
2.4 Yn‘jt'l(kb) PI;

n=1




-
) et [ Fa e B ]
- a6 0
v
, VP art art
B *Z bu‘ju(kb)[sin;+51n9d—92_9&]’O§e<ao
M
0 6§05, (1-15)

Integrating both sides of (1-15) with respect to 6 over the interval

O to n and cambining terms, we obtain,

2‘ r Y J (kb) + cnhn(kb)] J T P dpi + ff; P ]de

1 m == n
nel 0 de de
Cod n
) [ r3/(kb) + an’(xv)] | [ e NS ff;‘ff; Jao
0 “Fin 6 T

n=1

2]
=Z qvjv(kb) Jf' O[SP]‘+P;_:‘L1]

v 0 de

b %L(kb) J [ ¥, + sin e ]de . (1-16)

d9 d9
o

The values of the first and second integrals in (1-16) are given by

(1-4) and (1-3), respe:tively. The third integrzl is easily evaluated.
O ap ’
o I
J [ m Pi + 45 ]de = f dLPl Pl] - P (cos 6 ) P (cos 8 )
— m — m Vv m (o] AY (o}
0 (o (3] a6 0
(1-17)

The fourth integral is evaluated by using (1-11) with n replaced by u.

j [ PP d.Pl dPl ]de _ m(m+1) sin 6 | Pt dPi‘:”

m u+ 8in 6 TS ETI (TP

O L =
0 sin 6 T W ¥ gog

(1-18)
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By substituting these results into (1-16), we obtain

@™

) [Tnjé(kb) ’ dnhi-{kb)] 2[:“‘(“”1)]2 5

2m+l e

n=1
=) 8,3,(kb) Pi(cos 0_) Pi(cos 6.)
\}

m(m+1l) sin 83 bl

\ ‘ dp
* Z buJu(kb) m{m+1)-u(u+l) [P;}x Eei ]|9=9 ! (1-19)
Y (0]

which can be solved for dm:

0 1
a = -T Jm(kb) R (2m+1) Pm (cos 60)

S MO ON Z[m(ml)]z h'(kb)

i av,jv(kb) Pi (cos 60)

(em+l) sin @ Pi (cos ao) b_‘Ju:(kb) de '
2rm(m+l) h;(kb) Z o(mtl)-u(u+l) d6 =
b (o]}
(1-20)

The separaticn of a  is accomplished by multiplying (29) by

dPl

sin 6 _a
do

, multiplying (30) by P; and adding the results, obtaining,

a n + sin 6 o
sin 6 de 46

ZvJ'(kb)[PlPl ‘”’ld”i]

n“n
n=1

%r-'

Y}

'Z Fan(kb) [ P:l ]

n=1

o

a6

2

8

apt
a
3%

ety [ B
n%l cnhn(kb) [ sgn

5

+ sin 6

8.5

D

=3
—

3+



-ibj(kb)[l’;ﬁ*ﬁl’i], 0<e<e . (1-21)

where the subscript o denotes a particular value of the infinite set
of v. Integrating both sides of (1-21) with respect to 6 over the

interval O to 90 and cambining temms, we obtain,

., 6
Z [Ynjr;(kb) + cnhl;(kb)] j ° [ _ﬁ + 8in 6 ﬁ;‘fl_n_] de
) o ~5in 6 5 36
® e
- [+ ap )] [ (72 S a2
oy . 5 I
] o
—% a,J (kD) JO o[ :%npg + sin @ _:;;:_:13 ] a6
6
-2 b, 4, (kb) j,o[%§+?§pi]de . (1-22)
4 0

The first integral in (1-22) is evaluated by using (1-11), replacing

m bty o and noting that o is a particular value of the set of v.

e

jorplPl d.Pld.Pi]de‘a(ml)sineo[PldPl:ll

L a n+ 8in 6 a_n 0—2
8in 0 de d6 a(o+1)-n(n+1) T 6=6

0
(1-23)
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The second and fourth integrals are easily evaluated.

6 6
9 apr  art T % ra
" lee | AR ) o) ey
(1-2k)
0, dPl Wl 0, _ A
| [pl s+ e lae- | AR ] (R R
G-E—' W v S o ZEN VY a v
0 0 0
(1-25)
The third integral is evaluated by using (1-11),
J%rplf ulul] J%[(#f /053
v + sin 6 v |d6 = & + sin 6 | a ,
L e mw o lame T w
(1-26)

vhere 8 . 18 the Kronecker delta. The integrel in (1-26) can be
evaluated by the use of (1-7). If (1-7) 1s re-vritten with m and n

replaced by o, there results

2

(Pl) Hﬂ,,g(‘”’l) sinOPiﬁ)*GMI)Sine(P:,)
a6

sin 6
(1-27)

he integral in (1-26) is then

2 2 e

8
J o[(_P_Q +sin9:ﬁ>]d =<sin6Pc]’"

0 sin 6 de

I
Q L
o

6
2
+ a(a+l) I osin ] (gi) a6, (1-28)
0

The first term on the right side of (1-28) is seen to vanish, and then,

if we define

6
(o}

2
B - J sin 6 (Pi) a6 , (1-29)
0



for (1-26) there results

e

)
J [ P; Pt + sin @ d'_Pcl_w_ d_Plz ] a9 = aa+l) B 5., - (1-30)
0 sin 6 a6 dso

Upon substituting these results in (1-22), we obtein

y 3°(kb) + ¢ h’'(xb) oa(a+l) sin 6 Pl dPl '
b Lo o] e 2 ]

n=1

-2 [ran(kb) + dnhn(kb)] P; (cos eo) 1='r11 (cos 90)
n=1

=Z‘ av,j;(kb) a(a+l) B, 5av , (1-31)
v

and solving for 8,

sin 6_ P;‘ (cos eo) 2. Yn,j;](kb) + cnh;(kb) d.Pln

a
& B, J (kb)) il “ala+tl) - n{ml) d6 | )
P (cos 6 ) >
- a o
ala+l) Ba"c;(kb) 2 [rnjn(kb) * dnhn(kb)] P;L: (cos 90) *
n=1l

(1-32)
The last coefficient to be separated is bu' This is accomplished

by multiplying (29) by P‘.BL , multiplying (30) by sin 6 d'_PlE , and adding
dé

the results, obtaining,

n; Y3/ (kb) [P; ﬁ . (_;‘;lg Pln]

a6

S g
-2‘1 I'an(kb) [EH sin 6 doTETeTn]



: ]
'Z bu‘)u(kb)[sLPi’smod_Plﬁﬁ}’ 0<e<6_, (1-33)

where the subscript B denotes s particular value of the infinite set
. Upon integrating both sides of (1-33) with respect to 6 over the

interval 0 to 60 and cambining terms, we obtain,

S T PO 1 a
P Ly e[ TR T
n=1 0

© 6
-n}:l [ rd,(kb) + d h (kb) ] fo ’ [ :l%npg + sin @ ;_:lﬁ g ] a6

- 90 M
=%avj:’(kb)_[o [p;:_:’l3+:_:gyt]de

9
Z bugu(kb)_[ O[M+sined_}éfi}d9 : (1-34)
" 0 sin 6 dé ae

The first integral in (1-34) is easily evaluated, noting that g is a

particular value of the set u.



Lo

9o dPl 9o 60
SRR TS P A R B )

0 0 (1-35)

The second integral is evaluated by using (1-11) and replacing m by

B, obtaining,

2]
jo[ﬁ*smi’lﬁﬁ]dh n(ml)sineo Fl:d_rlb]l
8in 6 36 a6 n(n+1)-B(p*1) - " @

6=0
o
(1-36)

The third integral in (1-34) also is elementary.

9O 90 90
[R5 Sn e | “dedhe-[Ra] %o

g
0 de deé 0
(1-37)
The fourth integral is evaluated by using (1-.1),
2] 8o 2 2
)
| [Bheone T ous, [ [ - me(;{;)]dc ,
0 sin 6 dé ds 0 sin 6 e
(1-38)
where 56» is the Kronecker delta. [he integral in (1-38) is evaluated
by using (1-28) with o replaced by B.
2] 2 2 e
A O p 0
J [(P]é) +sin6\\§>]de=<sinef’éipl§>l
0 sin 6 a6 de 0
90 2
+p(pe1) | stno (F) a8 (1-39)
0

The first term on the right side of (1-39) is seen to vanish, and then,

if we define
6

o 2
By = J sin 6 (Pé) a , (1-40)
0
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for (1-38) trere results

)

(o]
,[ [ﬁ*sinefﬁﬁ]w=s(&l)a 5. . (1-41)
5 sin 6 a6 do B B

Upon substituting the results of these integrations into (1-3k), we

obtain
= 1
. [ 3 (kb) + a h_(kb) n(n+l) sin 6 p 4P 7|
nél [ nn a n ] ﬂn*l)-ﬁ(&*l? [: n Eéﬁ ] 9=eo
- Z b 3, (kb) B(B41) By B, (1-42)
V3
and solving for bB ’
in 6 ar ® IT 35 (kb) + d h (kb)
b = S’ £ | 2‘ [ n’n' e ] n(n+l) Pl(cos 0 ).
- GV O R n{ o 1)-B(B7 1) n' % %

o n=1

(1-43)

Equations (1-1%), (1-20), (1-32), and (1-43) represent the formal
solution for the expansion co-efficients, and, when the values of Y,
and Fn are subetituted by using (8), are equivelent to (31) through
(34).
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APPENDIX B

LEGENDRE FUNCTION CONSTANTS

0 u(1)(2) J(1)(3) g (&) g (¥)
b v
1 1.031631 0.967140 1.310 1.35806
2 2.08kL3h 1.918899 2.346 2.42491
3 3.149929 2.887078 3.347 3. 37945
L L.223096 3.887853 L.3k1 L. 28564
5 5.301087 4.917100 5.330 5.18033
6 6.382249 5.965629 6.323 6.09038
T 7.465580 7.026428 7.168 7.03236
8 8.550454 8.095125 8.206 8.058
9 9.63645 9.169073 9.227 9.009
10 10.72329 10. 24665 10.2h 9.973
11 11.81078 11. 32681 11.25 10.95
12 12.89879 12.40890 12.25 11.93
13 13.98718 13.49242 13.26 12.91
1k 15.07592 14, 57706 14.26 13.89
15 16.16491 15.66258 15.26 14,
16 17.25414 16.74882 16.26 15.87
17 18. 34354 17.83562 17.26 16.86
18 19.43311 18.92291 18.26 17.86
19 27.52280 20.01059 19.26 18.85
20 21.61262 21.09860 20.2€ 19.24%
21 22.70252 22.18690 21.26 20.84
22 23.79253 23.27T545 22.26 21.83
23 2l . 88260 2k, 36421 23.26 22.83
2k 25.97275 25.45315 2L .26 23.83
25 27.0629% 26.54226 25.26 2L .82
26 28.15320 27.63151 26.26 25.82
27 29.24349 28.72088 27.26 26.82
28 30.33385 29.81037 28.26 27.82
29 31.42421 30.89995 29.26 28.81
30 32.51465 31.98963 30.26 29.81

(1) Donated by Dr. P. C. Waterman of AVCO.
(2) Determined from Pi(cos 1650) =0 .

(3) Determined fraom d.Pt = 0.

36 '6-165°
165° 2
(4) Defined by B_ = J sin 6 (Pi) as .

o
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33.08
.17
35.26
36.35
37.44
38.53
39.62
Lo.71
4L1.80
42.89
4L3.98

L6.16
47.25
L8, 3

50.52
51.01
52.70
53.79
54 .88

31.26
32.26
33.26
.26
35.26
36.26
37.26
38.26
39.26
40.26
41.26
L2.26
43,26
L4, 26
45,26
L6.26
47.26
L8.26
49,26
50.26
51.26




Ly

1
ap

n Pi(cos 165°) Pi(cos 165°) E5E|9=165° Egil0=l6§o
1 -0.25881924 -0.52346792 0.96592579 1.886
2 0.750 1.4156256 -2.5980742 -5.177
3 -1.k228831 -2.3050079 L. 3396881 9.503
i 2.2069309 2.98087 -5.k575812 -14.65
5 -3.0177961 -3.505kL% 5.1518426 20.48
6 3. 7646396 3.92272 -2.6831313 -26.91
7 -4.3581639 -L.2774s -2.55661k4 22.93
8 4.748 4.603 11.19 -40.63
9 4. 797 -4.891 -22.08 L8.73
10 L.51k 5.159 35.26 -57.23
11 -3.884 -5.413 -49.72 66.12
12 2.922 5.655 64.10 -75.39
13 -1.675 -5.886 -76. 74 85.03
14 0.2149 6.109 85.84 -95.03
15 1.364 -6.323 -89.66 105.4
16 -2.953 6.530 86.71 -116.1
17 L.433 -6.732 -75.92 127.1
18 -5.690 6.927 56.81 -138.4
19 6.6.8 -7.117 -29.64 158.0
20 -7.133 7.302 -4.551 -162.0
2l 7.176 -7.483 43,92 174.2
22 -6.720 7.659 -85.90 -186.7
¢3 5.T75 -7.631 127.3 199.5
24 -4,388 8.000 -164.8 -212.6
2 2.637 -8.166 194.7 226.0
26 -0.6337 8.328 -213.6 -239.6
2 -1.491 -8.487 218.7 253.5
28 3.591 8.64L3 -208.2 -267.6
2G -5.516 -8.796 180.8 282.0
30 7.126 8.947 -137.1 -296.6
11 -8.296 -9.096 78.73 311.5
32 8.929 9.242 -8.613 -326.6
33 -8.964 -9.385 -68.98 #2.0
3 8.380 9.527 148.8 -357.5
35 -7.199 -9.666 -225.2 373.4
6 5.487 9.804 291.9 -389.4
37 -3.349 -9.940 -343.2 405.7
38 0.9210 10.07 374.0 -b22.1
39 1.634 -10.21 -380.2 438.8
Lo -4.142 10.34 359.5 455, 7
bl 6.427 -10.46 -311.2 472.9
b2 -8.324 10.59 237.0 -490.2
L3 9.693 -10.72 -140.3 507.7
Ly -10.42 10.84 26.61 -525.5
ks 10.k4s -10.96 96.96 5434
Lo -9.765 11.09 -222.1 -561.5
L7 8.388 -11.21 39.7 579.9
48 -6.404 11.33 -4k40.9 -598.4
L9 3.937 -11.44 517.1 617.1
50 -1.149 11.56 -561.4 -63v.0

51 -1.773 -11.68 568.5 655.1
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APYENDIX

C

CEFINITIONS OF MATHIX ELEMENTS

Tre e.enents ¢f e metrices {r (38) through (41) are given by

(31) through (3H). If we let [A]ij derote the Jt" element of the 1°

row of a matrix A, then the matrix elements are defined by

1" {(2me1) 3, (kD)

Y " m m(mi) n_(kb)
ar- | .
r q (2m*1) sin o I G VD (kb) P (cos 00)
Ez = C o\ r
e e ~
e e(m1)] ) Ty (v - m(ml,]
{™h (zmel) 30(kY)
rF] ~ m
! .
- 10 m(m1) n'(kt)
(2m1) F (cos v ) 3 (kL) P- (cos 6 )
r i . :
L&z .
M 2im{mel) nt (b,
L ) m
dPl
1 L‘n
Zr ) o '
(2m1) sin 6_ P (cos 0 ) 4 (kb) = '9:9
n o]
[F:J _
W o) (kY (1) - ow (w u)]
. - ! n
dP}]
v ~ [} —!
| Sin 6 P° (cos Or) hn(kb) TR
Mo } r 0
] l -

sir. 8 F' (cos 6 )
r C VY' O
!G,] = -
[

r. gy (kt) B

Y n=

™

h

(3-3)

(3-5)

(3-6)

(3-7)



46

. pt (cos eo) hn(kb) Prl1 (coe 60)

[03] - = : (3-8)
mn v (V1) By J\,m(kb)

1 n+l 1
P, (cos eo) 1 (2n+1) Jn(kb) Pn(cos eo)

[Gu] = )

m v (v+1) B. J' (kb) n(nm+l)
S S e (3-9)
dPl
um 1
sin 6 T'G-Oo hn(kb) n(n1) P (cos 90)

["1] - (3-10)
mn um(umﬂ) Bum Jum(kb) [n(n*l) - um(um+1)]

ap; .
m o ,n+l 1
[ ] - 8in goa.e..!ezeo 2' i (2n+1) Jn(kb) Pn(cos 60)
H =
2 _ N .
m .sm(umd) !3um Jum(kb) nel 'n(n 1) W (um+l)‘J e

b and vm represent the mth value of the sets u and v, respectively.
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