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ABSTRACT 

This  Investigation of the  radar cross-section of a finite cone 

can be divided Into three areas.    First,   the exact solution for the 

scattering of a   plane electromagnetic wave by a finite cone  is pre- 

sented.     Rigorous  electromagnetic  tneory Is ased In  the solution, and 

no aj      ocimations are made.     Secondly,   methods of obtaining numerical 

results for the  radar cross-section from the analytic solution by u^ing 

a digital computer arc discussed.     The  third area  is a  presentation 

and discussion of  the numerical  results  obtained. 
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THE THEORETICAL AND NUMERICAL DETERMINATION 

OF THE RADAR CROSS-SECTION OF A FINITE CONE 

1.    Statenent of the Problem 

The problem undertaken Is the exact solution for the scattering 

of a plane electromagnetic wave by a finite perfectly conducting cone. 

We consider only "nose-on" incidence (Figure l).    In order that the 

entire surface of the cone can be expressed as a constant co-ordinate 

surface in spherical co-ordinates»  the end cap of the cone is taken to 

be e segment of a spherical surface with center at the apex of the 
4/nfr 

cone.    Time variations are assumed to be given by   e and MKS units 

are used. 

A considerable amount of effort,  both theoretical and experimental, 

has been devoted to the cone scattering problem by many workers     No 

attempt is made here to sumnarlze the work, in view of the very excellent 

summary which appears in the report by Kleinman ind Senior (1963).    It 

should be noted that the present work is an extension of that done 

earlier by Rogers and Schultz (i960), and by Rogers, Schindler, and 

".-hultz (1962). 

This scattering problem is treated herein as a boundary-value 

problem in electromagnetic theory and no physical approximations are 

tceC  .    The partial differential equation is, of course, the vector 

Heimholtz equation, 

V2 C ♦ k2 C » 0    , (1) 

where   k ■ 2K/X   and    C   may be either the electric field vector   E or 



Flg.  1.    Cone Configuration 



the magnetic field vector H.    Solutions of (l) are obtained in the 

form of infinite series containing unknown constants.    To complete the 

solution of the problem,   these constants are determined by satisfying 

the necessary boundary conditions for   E   and    H    on the surface of 

the perfectly conducting cone,   the radiation condition at infinity, 

and the finite energy condition. 

Numerical results have been obtained, and these are compered with 

experimental results obtained elsewhere,  as well as with theoretical 

results obtained with the use of approximate methods. 

2.    Solution of Vector Helmholtz Equation 

The procedure used here for obtaining the solutions of the vector 

Helmholtz equation is well known (Stratton,  19^1). 

Solutions of (l) are 

7=7*, 

m « V x (♦  r) , (2) 

n » ^ V x m      , 

where    r    is the radial vector in spherical co-ordinates and    ♦    is the 

solution of the scalar Helmholtz equation 

V2 ♦ + k2 * = 0 . (3) 

In the region surrounding the cone,  V  .  E = 7   •  if = 0.    Since V  • 7 / 0 

-• -• -• -• 
we use only the    m    and    n    solutions to represent   E    and    H. 



It Is also veil known thot the solution of (3) Is 

mv 
0 

where n can have the values 1,  2,  3, or h to represent Besscl functions 

of the first kind (j (icr)),  Bessel functions of the second kind 

(n (kr)),  Hsnkel functions of the first kind (h^kr)), and Hankel 

functions of the second kind (h (kr)),   respectively.     I^(cos 6) Is 

an associated Legendre function of degree    v   and order   m, and we 

let    e    signify "even" and    o    signify "odd" for   cos 00   snd    sin w0t 

respectively. 

The desired solutions of the vector Helmholtz equation are then 

obtained fron (2) and (U): 

*'-   ^-^      ^r)^co.e)[^^]: e   " * slrTe    'vv"' 'v^"' "" L co« ««» J °e 
o 

-  l^T) j^l sln^Ja0 (5) 

?   .   ±011    2n(kr)  ^(c08 0) (" cos »0 1 - 
e_v       kr vv     '    vN ' L sin n0 J    r 

n'(kr) ^ f C08 "^ 1 
v ^Kr; —I L sin «2J J 

mv 
o 

iTTe <'M ^ «) ['£%] V (6) 

where    zv,(kr^ 3 y^ dr L r zv^lcr^ J ' and "r'  "0' and a0 are th- 

apherlcal unit vectors. 



3.    Gpoce 3ectionalizctlon 

One of  the most  importnnt characterlstlcB of the eolation of this 

problem 13  that of dividing the space surrounding the cone  into two 

regions  to facilitate the field expansions and application of the 

boundary conditions.     The    E    and    H    fields are then expended in 

terms of the radial and spherical functions appropriate  to each  region. 

Since the scattered fields munt be spherically diverging waves 

for large values  of  the co-ordinate    r,   the use of HanXel functions is 

obvious  since they possess the desired wave behavior as  ■- - 00  .     In 

part'cular,   since we assume a  time variation of the form    e l    ,   the 

h, 2 
use of    z (kr)  = h (kr)    functions  is necessary to achieve an outward n nv J 

traveling wave.    At the tip of the cone,   however,   the Hank^l functions 

possess a singularity the order of which is too large to satisfy the 

finite energy condition.    This characteristic of the radial  functions 

suggests a division of the two regions at a  finite value of    r. 

The behavior of  the associated Legendre functions  indicates a 

division of  the  two regions at r =  b.     This  is  then  the  surface that 

we use to separate regions I and II  (Figure 2).    In  region II,   the 

fields exist and are bounded everywhere  in the coeplete    0    dcnain of 

0 = 0    to    A,   requiring the use of only associated Legendre functions 

of integral degree.     In region I,   however,   0  =  n    is not in the donain 

of interest,  allowing  the use  of associated Legendre lunctions of non- 

integral degree.     It will be seen that the boundary conditions will 

determine the non-integral degree of each associated Legendre function 

to be used in  region I. 
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The  reader may wish  to refer to Rogers und Schultz (i960)  for u 

more complete discussion of the selection of the various  space divisions 

possible. 

k.    Field Expansions 

-•t -t In region I the total fields are designated by    EL    and    H-.     In 

region II we wish to keep the incident and scattered fields separate, 

-•i —1 and designate the incident fields by   ZL-    and    H        and the scattered 

fields by    E^    and    H^. 

In region II  the incident electric field may be expressed (Strntton, 

19^1) as 

rri ikz -• ikr cos  0 - E__ = e        a    =  e II x a    =    )      (   Y    m        +rn,      J , x       L     K 'n    0iv        n    ein S 
n=l 

(7) 

where 

.n   2n+l - .n+1    2n+l /Q\ 
Yn =  1     HT^l) ' rn ^  ^ HT^l)     ' (8) 

and    a       Is a  unit vector in the x direction.     The    0    variation in  the x 

incident field requires  that    m=l    and forces us  to use odd   m    functions 

and even    n    functions  in all  expansions of  the electric field. 

The  scattered field in region II  is written as 
OD 

ES
Tr=)(ct,    + d    ^    )   , (9) II       L   ^    n    oln        n    ein y    ' v 

n=l 

where    c      and    d      are expansion coefficients  to be determined frcn n n ^ 

the boundary   .ondltlons.    Here we have selected    z (kr)   =  h^kr)    and J n n 

the    m    and    n    functions as  prevloaßly discusned. 



in region I the total electric field is expressed as 

^T =   )    Q    ai,    +    )     b    n1,     . (10) I        Z^      v    olv        U      nk     elu v     ' 
v u 

Here    a      and    b     are expansion coefficients to be determined, and 

u    and    v   are the non-integral degrees of the associated Legendre 

functions, which are also yet to be determined. 

The analogous representations for the magnetic field are obtained 

from Maxwell's equations, 

VxE=-iaju    H    , VxH=iuJe    E    , (ll) o ' o 

and the relations, 

7xm=kn, Vxn = km. (12) 

By using  (?)   through (10),   in addition to (ll) and (12),  and noting 

that    k = ova t     ,  one obtains  the expressions for the magnetic fields: 
o o 

H1 

U-\[l   Cv„"oln'  r„:eln)]' ^ 
n-1 

Hn^[lC=D%Xn^n^)j. d") 
n=l 

H^    . i D    a    n1.     +    )     b   m1, , (15) I "I L L      v    olv        ^     u    eki  J  ' v   y/ 

u 

where    T)    is  the intrinsic  impedance of free space,    ^J* 

For future reference,   the field quantities are now expanded in 

their entirety: 



*i - [ S V ^^TT11 ^(xw^cos o) ] cos 0 rr 

* [ 5 «AC"-) ^!L61 * E b J^Ckr) ^ ] cos 0 ?e 
sin 6 dO 

- T I a  J (kr) ^   + I b J'(kr) ^(c08 0) 1 sin 0 a.   . 

(16) 

^1=   I   ([^^^^^(cos^cos^ 
n= 

+      YnJnUr)    nv +  r    J'(kr) __n 
L-    n n —.     a         n    n -rr— sin 0 Q0 

cos 0 a 
8 

L    n n -^       n   n           sln g J              » 

OB 

ff    .   )     ( F d    n^V ^ h (kr)P1(cos  0) ^ COB 0 a II       zL    L L n        kr         nv     '  nv           ' J         ^    r 

(17) 

n=l 

cos 0 a r    . ,,  x ^(cos e)    . v.^1. N ^ 1 +      c h (kr)    rr ' + d h'(kr)       n   ! 
L    n n Sln0 n n dT J 

- F c h (kr) ^ + d h'(kr) ^1 0) 1 oin ^. }   ' 
1    nn W       nn sin 0      J 0 J 

^1 = H [ 5 % ^^^^ V^cos  Ö) ] 8ln ^r 

+ r 5 \^ ^ - J ^^(kr)  ^cos 0) ] sin 0 IT 
sin 0 

. [ § a^^Kr) ^_2 . J buVkr) ^ ] cos 0 ?0 } 

(19) 



1^ 

'ii'U  ([vn
i!i^  ^^(cosa)]^.? 

n=l 

t f       «i^   N  dT^      r     < /u  \  r (cos  0) 

do sin 6 
Bin 0 a 9 

+ [ Ynj:(kr) ^CO* ^ - r    Jjkr) ^    ] cos 0 ^ }  . 
L   n n       ^uTe—     n   n       de" J 0 J 

iff. . i  )    { f c   üilLUÜ h (kr)^^ e) 1 sin ^ a 
II      i|   t-.    I. L    n       kr n n ' J r 

(20) 

n=l 

* F c h'(kr) ^ - d h (kr) ^(cos e) 1 sin 0 ?fl 
L    nn'     'de-       nn sine        J 0 

* F c h'Ur) ^(c08 e) - dhjkr) ^ 1 coa 0 ?, } . 
L   n n       "TiTö—     n n       de" J 0J 

(21) 

Equations (l6)  through (2l)  contain six sets of unknown constants, u, 

v. a,,  b ,  c , and d  .    These are to be determined by eutisfyin« the 

boundary conditions. 

5.    Boundary Conditions 

We have already satisfied the finite energy condition at the tip 

of the cone and the radiation condition at infinity by the proper choice 

of radial functions in each region.    The following boundary conditions 

remain to be satisfied: 

(-)    [%] 
r,0 

0        for        6 = Ö    ,      r < b o — (22a) 

M ^ '^ U ■ < 
{[%] for   0 < e < 0 

"A 

0,0 
> r - b 

for   0 < 0 < K 
v. .J 

(22b) 
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9*0 &f0 (22c) 

(d)   The finite energy condition at the edge of the cone 

(r- b,  d - 0o), (22d) 

where b is the radius of the spherical cap and   0      is 

half of the exterior apex angle. 

6.    The Solution 

To satisfy boundary condition (22a) we first equate the r-conponent 

-•t of   E_    to zero at    0=0    , 

u kr 
ü 

u 

and thus set 

pJ(cos v- . 0  . 

^(Kr) I^(co8 eo)  cos 0 = 0 , (23) 

(2U) 

This equation determines the values of u.    Equating the 0-coniponent of 

E-    to zero at   0=0     gives I o   " 

)    VJ^r) ^ I        .   )    b r(Kr) F'(C0S eo)    = 0  .       (25) 
^     v v dT '    .      ^     ^ u sln e 0.0O     u 

Since   ^(cos 0 ) = 0    by (2U), we set 

dP1. 

de ' -  0 (26) 
0=0 o 

and thus the values of    v    are determined. 
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Next,  the boundary conditions (22b) and (22c) are applied to 

determine the four sets of unknown expansion co-efflclents   a.b. 

cn, and dn.    For the 0 component of (22b)  there results 

I [ vnJn(Kb) ^If). rn j-Ub) < ] c/0 
„ , sin 0           " d0            ' n«l 

m 

__, sin 0 d0           / 

[ I »vJvC"') ^(C08 9) * I bu J'(kb) < ]   co/tf, 0 < 9 < 9, 
T^ sin 0 ^    ^          d0   J     /                            0 

n=l 

-< 27) 

L. 
0    , 0    <  0 < «    , 

' o -      -        ' 

and for the 0 component, 

dP1 tv 
, a0 sin 0 ' n^l 

OB 

) r c h (kb) K * d h'dcb) ^^e) i si/0 
^ L    n n gg-        n   n Bin g      J      / 

'[I   \K^^L*i   b    JJ(kb) ^(coa d) ]    sl/0,  O<0<0o. 
V1 d0 ' sin 0 / 

n=l 

r 

-< (28) 

0 ,    0 < 0 < « . 
o —  — 

Slmlllarly, for the 0-component of (22c) there results 
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CO 

U [ V'Ub) < - rnJnUb) f^ü«) ] SJ0 
, dö sin 0 / n=l 

, d0 sin ö ' 

do sin 0 / 
(29) 

and for the 0-component.. 

, sin 0 d0 / n«l 

* u [ ^c*) P"1(:OV) - vnC"') ^ ] y^ 
M , sin 0 d0 / 

1 w sin 0 d0 / 
(30) 

These four equations, (27),   (28),  (29), and (30), are functions 

of 0,  (27) and (28)  over the Interval    0 < 0 < n    and (29) and (30) over 

the Interval   0 < 0 < 0    .    In the solution of Rogers and Schultz (i960) 

these four equations were manipulated In a process that Involved 

differentiation with respect to 0.    It is well known that an Infinite 

series can be Integrated tera-by-tenn with non-stringent requirements 

on the nature of convergence, waereas term-by-tern differentiation of 



Ik 

an infinite series is valid only with strict requirements on the 

convergence of the series.    Since the exact nature of the convergence 

of the Infinite series expansions in (27)  through (30)  is unknovn, 

we here use an integration process,  In order to ovoid the problems 

encountered with differentiatlon. 

First we multiply (27) by    F^cos e), multiply (28)  by slnö^m , 
m de" 

and subtract the two results.    We then Integrate the resulting 

equation with respect to Ö over the Interval 0 to rt.     It it   necessary 

to evaluate two integrals with limits of 0 to n and two integrals 

with limits 0 to 0 .    The integrals ere common to boundary value 

problems of this  type and can be evaluated by using the associated 

Legendre differential equation,  and {2h) and (26).    'Hie integral 

that appears as a factor in the c    sunraatlon fortunately involves 

the Kronecker delta,  6      ,   enabling the coefficient c    to be separated. 'ran' ^ m *^ 

The coefficient d    is separated in exactly the same manner except 
m P

1 

that (2/)  is multiplied by    sin 6 _jin   and (28) by   P1( cos 0). 
d0                            dP1"1 

To separate a  ,  (29)  is multiplied by    sin 0 a   and (30) by 
d0 

P^    and the results added.      The subscript a denotes a particular 

value of the infinite set v.    This equation is then integrated with 

respect to 0 over the interval 0 to 0 .    Again the integrals can be 

evaluated by using the associated Legendre differential equation, and 

(2U) and (26).    Here the Integral associated with the a    sumnatlon 

involves the Kronecker delta, 6^ ,  enabling the coefficient art to be 

separated. 



1^ 

The coefficient b.  is separated In the same manner as is o  , ß *" 1        a' 
1 dP 

except that (29)  is multiplied by P^ and (30) by    sin 0 _^ . 
P de 

•Rie subscript ß denotes a particular value of the Infinite set u. 

If the values of y    and T   given by (8) are then substituted In the n n 0 

four separated equations,   there result: 

-iffl (20*1)  J (kb) m 
C B   

m 
m(m*l) h (kb) m 

(2afl)  sin 0o dP^ av v( vfi)jv(kb)P^( cos 0o) 

d0"'     ^     L 
2^m{ml) 2 h (kb)    w    9=9     ^       V(\M-I) - m(o+l) 

m 0    V (31) 

iml (2^1)   Wkb) 
d   =    2  

m m(nH-l) h^kb) m 

(2mfl)  P^COG 0 )    v- , 
+   T 12   I   aA(kb)Pt(co8 0o) 

2[m(^l)J2 h^kb)   ^      VV 

(2nr*l)  sin 6    ^(cos 0 )          b r(kb) dpj" 
+    o_Ji o_   X    ^^i      ^ (32) 

2m(nKl) h^kb) u   m(nH-l)  - \x{ß*l) 0=0o 

dpj 
sin 0    Aces 0 )    v-     r r                          i" (2n+l) J'(kb)-, ^L fl . 

m    o__a^ o^   )    ( [   c h.(kb) .    2 ] de   ^^o        } 
0 BrtJ'(kb) JT,   L L    n n nir^l) J a(a.l).n(n+l)J 

VäVÄ^ n-l 

^(C08 a°)— i (r a h (Kb)-L'li^i) j (kb)] ACO. e,} 
0(^1) ßaJ'(lcb)    ^ U    " n n(ml) "        J    n 0   J 

(33) 
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8in 6o da   Uo   *      ,                         j"-1 iZr*!)   ,   ,       n n(n+l)Fl(cos 0J 
b.  =    I | [ dnhn(kb) -1—-^ Jn(kb)^ 

0 
n o 

ß(ß-H) BßJß(kb) ^^ u    " n(n4l)        n        J n(n>l)  - u(un) 

where  the quantities  B    and B    are defined by 

BT =    J        sin 6 (P^)    d0 . (35) 

0 

The reader may wish to refer to Appendix A for the analytic details  of 

the derivation of (31)   thru (35). 

Equations (31)  through (3*0 could be manipulated into four equations 

with each set of coefficients appearing in only one equation,  but the 

form of the end result would be less convenient for numerical computation. 

Therefore,  (31)  through (3U),   together with (16)  through (2l),  (Zk),   (26), 

and (35) represent the formal  solution of the problem. 

We have completed  the solution without the necessity of satisfying 

boundary condition (22d),  the finite energy condition at the edge of the 

cone.    Rogers and Schultz (i960) used numerical results to show that this 

finite energy condition appears to be satisfied at the edge of the cone. 

One of the primary objectives of the solution of this problem is 

to Investigate the radar cross-section of the cone. The radar cross- 

section,  a,  Is defined to be 

2 
a = Um   Unr 

SII 

^ 

(36) 

-   1      r -   -♦! where   S = r   Re-jExH    r ,   the average Poyntlng vector.    For our co- 

ordinate system,  the radar crose-section evaluated at 9 «= 0 is more 
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precisely termed the back scattering radar cross-section,   O-^.    By 

using some simple algebra,  a—,  can be shown to be expressed by 

X 
7BS = ^ 

BS 

2 
>     in n(rHl)  (c -id) 
i-j n      n 

n 

(37) 

where    X    is the wavelength of the incident plane wave.     In oraer to 

determine the back-scattering radar cross-section,  then, we must 

first determine the sets of c    and d  . 
n n 

7.    The Numerical Solution 

Equations (31)  through (3^)  represent an infinite number of 

equations in an infinite number of unknown expansion coefficients. 

The expansion coefficients,   therefore,  do not enjoy the property of 

finality.    It is important,   then,   to calculate as many of the co- 

efficients as possible in order to insure that the values of the 

lowest order coefficients are reasonably accurate.    The number of 

coefficients calculated in each set is designated by n  .    All 

numerical work was done for 0    =  I650 (a cone apex angle of 30°) • 

The calculations have been carried oat for a rather large number of 

values of ka in order to determine rather well the details of the 

graph of o ~ vs.  ka,  a being the  radius of the base of  the cone. 
Bb 

An examination of (31)  through (3^)  indicates that the following 

sets of constants need to be determined;    u,  v    B ,  B  .  P (cos  165  ), 
1 dP i| dP  1 

Pv(=cS 16,°), _JL| .    jJil ,  Jn(kb), Vkb),  Jv(kb), 
0=165° l0=l65< 
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J'Ckb),   J/Ub),  J'Ckb),  h (kb),  and h'Ckb).    The first thirty values, 
n wA v n n 

each,  of U and v,  as determined from (24) and (26), were  taken from 

Waterman's paper (1963)^  and these have seven-place precision.    With 

the exception of the  radial functions,   the remaining sets of constants 

were calculated by Schultz,  Bolle,  and Schindler (I963K   uoing a 

Burroughs Datatron 205 computer.    The reader may wish to refer to 

their work for a detailed presentation of the methods  used in calcu- 

lating  these constants.    Appendix B herein lists the first fifty-one 

values in each set of these constants along with the given sets u and 

v.    The radial function constants were calculated by asing the infinite 

series representations for the spherical Bessel functions. 

When these constants are substituted into (31)  through (3^)»  ^n 

equations in Un    unknowns result.    These Un    equations must then be 

tolved for the four sets of n    expansion coefficients.    Two different 
0 

methods were used to accomplish this.    First,  an iterative method was 

used for values of ka in the Rayljlgh region.    Secondly,  a more 

complicated method,   but one that is usable for any value of ka (a 

standard matrix solution), was used for the higher values of ka. 

For the Iterative solution we first assume initial values of the 

c    and d    in (33) and (34) and obtain initial values of the a.   and b . n n v n 

These values of av and b    are then substituted into (31) and (32) and 

new values for the c    and d   are obtained.    The process is then n n 

repeated, and continued until the values of the coefficients approach 

a final value. This method did not converge for values of ka greater 

than O.518. 



^9 

The second method Is more complicated bat more unefal since it 

is applicable  for higher values of kß.    This method involves a 

straightforward matrix raultipiicatlon.    If n    coefficients are  to be 

calculated,   (31)  through (3^)  car  be written in  the form 

where 

c    =    E    +  E.; a 
1 c 

d    =    F    +  F2 a +  F    b 

a    =    G,   c +  G0 + G-,  d + G, 

b    =    H1 d +  H2     , 

(38) 

(30) 

c  = d    - (^2) 

n 
o 

u 

'M) 

u n 
o 
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E1,  F1,  G2,  G^,  and H2 are no-by-l matrlces, and E2,  ?z,  F ,  G1, G , 

and H,  are n -by-n   matrices.    Since only c and d are needed to 
x GO 

calculate offi,  we substitute (40) and (Ul) into (38) and (39)  to 

eliminate a and b.    The two resulting relations can then be written 

in the form 

[ 1 - E
2 

G
IJ [- '■ * 1' h 03 ]d  =  [E1»E2(Q2tG1()J (1.U) 

where I is the identity matrix.    If we define 

[- F2 Oj C + [l  -  F2 G3 -  F3 Hj d = ^ +  F2  (G2 +  G^) +  F3 H,], 

(^6) 

then (4^) and (^5) can be expressed as 

A x = b    , (^7) 

and so tlie desired solution is 

x = A'1 b (^8) 

We then have the values of c,,   c2,   ...   c    , d ,  d?,   ...  d    ,   enabling 
o      i      s o 

o^, to be calculated by using (37)- 

All calculations were acccnplished by using an IEM-7090 digital 

computer programmed in FORTRAN.    The quantities kb and n    were input 

parameters which could be changed at will.    The sets of constants u, 

v,  B ,  B , and the values of the associated Legendre functions were 

read into the machine as input data,  whereas the values of the radial 
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fanctions were calculated at  the beginning of  the program,   since the 

latter are dependent upon kb.     In the case of  the  Iterative method 

of solution,   the values of a   ,   b ,   c  ,  and d    vere printed out,   either V    u      n n ^ 

after every Iteration or after every fifth Iteration,  depending upon 

the speed of convergence to the final values.    A subroutine for o__ 
Bo 

was included at the end of the program,  and the value of o..- was also 
Bb 

printed.     In the case of the matrix method,   only the valuts of c  , 

d  ,  and a      were printed,  as  the a    and b    were not computed in this 

latter method.    Also,  in the matrix method an additional input 

parameter s   was used,   s    being the number of terms retained in the ^ o '    o 

summations In the elements of the matrices G?,  G^,  and K    (see 

Appendix C). 

8.    The Numerical Results 

Table 1 lists 60 calculated values of «^/«a    for 50 different 
2 

values of ka.    For some values of ka,  a^/na    vas calculated for 

several values of n   with ka fixed,  in order to determine the sensl- o ' 
2 

tivlty of a^/na    to n ,  n    being the number of expansion coefficients 
2 

calculated in each set.    Nine values of a„/na    were calculated by 

using the iteration method.    As mentioned previously,  it was found 

that the iterations wo/.d not converge for values of ka above O.518. 

The matrix method was then used for all calculations for ka > O.518. 

Two different programs were written using the matrix method.    A 

maximum of only 30 coefficients (n    =  30) could be calculated by using 

the first program, and the maximum value of s    was also limited to 30. 
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TABLE 1 

Calculated Values of the Normalized Back-Scattering Radar Cross-Section,  a^/na' 
BS 

J1' J2) 
0 

Iteration 

/    2 V*8 
method 

number of 
iterations 

Matrix method 

/    2 Ogg/na s'1 

0 

0.10 0.0259 5 3.362 X 10-6 50 

0.10 0.0259 10 3.956 x 10-6 

10-6 

50 

0.10 0.0259 15 U.035 x 50 

3.931 x 10"6 0.10 0.0259 15 15 

0.20 0.0518 20 6.395 x 10-5 50 

0.20 0.0518 20 6.Uli x 10"5 20 

0.50 0.130 10 2.398 X 10-3 50 

0.50 0.130 20 2.1+39 x io-3 
50 

0.50 0.130 20 2.M*7 x 10"3 20 

1.00 0.259 25 3.618 X 10-2 125 

1.00 0.259 25 3.6lU x 10"2 
25 

1.50 0.389 25 1.591 x 10"1 25 

2.00 0.518 25 O.U132 50 

2.00 O.518 30 0.1*153 85 

(1) 

(2) 

(3) 

(U) 

b    is the slant height of the cone 

a    is  the base radius of the cone 

n    is  the number of expansion coefficients calculated in each of 
the sets a  . b.c. and d v7   li7    n n 

s    is the number of terms retained in the suzmnations in the 
elements of the matrices G2, G. , and IL 



kb ny ka UT n TF Iteration aethod 

2 
a^/na number of 

Iterations 

Matrix method 

aBS/na' 
(M 

2.00 0.518 30 
2.25 0.583 30 
2.50 0.6U8 3O 
2.75 0.713 30 
3.00 0.777 30 
3.30 0.855 30 
3.60 0.933 30 
3.60 0.933 33 
u.oo 1.01+ 30 
U.50 1.17 30 
5.00 1.30 30 
5.40 l.ifO 30 
6.00 1.55 30 
6.U0 1.66 30 
6.70 1.7^ 30 
7.17 1.86 ^5 
7.50 1.9^ ^5 
7.75 2.01 ^5 
8.00 2.07 ^5 
8.50 2.20 ^5 
9.00 2.33 ^5 
9.50 2.1+6 ^5 

10.00 2.59 ^5 
10.50 2.72 ^5 
11.00 2.85 ^5 
11.50 2.98 ^5 
12.00 3.11 ^5 
12.25 3.17 ^5 
12.50 3.2U ^5 
13.00 3.36 ^5 
13.25 3.^3 ^5 
13.50 3.50 U5 
13.75 3.56 ^5 
1U.00 3.62 ^5 
1U.25 3.69 ^5 
1U.50 3-76 ^5 
15.00 3.88 ^5 
15.30 3.96 ^5 
15.50 k.Ol 45 
16.00 k.lk Us 
16.50 U.27 U5 
17.00 h.hO U5 
17.50 4.53 ^5 
18.00 h.66 ^5 
19.00 U.92 45 
20.00 5.18 Us 

O.U130 30 
O.581U 30 
0.771O 30 
0.9723 30 
1.16U 30 
1-363 ^0 
1.530 30 
1.537 3b 
1.73U 30 
2. OSO 30 
2.371 30 
2.U7b 30 
2.U05 30 
2.297 30 
2.152 30 
1.8UI 50 
1.577 50 
1.U60 50 
1.U12 50 
1.U62 50 
1.U95 50 
1.367 50 
1.077 50 
O.8U52 50 
O.82U3 50 
0.77U6 50 
0.5292 50 
O.U0U3 50 
0.3273 50 
0.3636 50 
O.U176 50 
O.UU91 50 
O.U505 50 
O.UU90 50 
O.5OS6 50 
O.6738 50 
1.178 50 
1.30U 50 
1.181 50 
0.7O?9 50 
O.8850 50 
1.273 50 
0.8129 SO 
O.7369 so 
1.U95 50 
1.66U 50 
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The second program offered greater flexibility,   the maximum values of 

n    and s    b^lng U5 and 50,   respectively.    These latter maximum values 

of n    and s    were limited by the memory capacity of the IBM-7090 digital 

computer.     Both of the matrix programs were used to calculate a a/na 

for ka  = 0.933, and the values obtained were  the same,   1.530,   for the 

same number of terms,   n  .     This was reassuring,   considering the 

completely dissimiliar nature of the sequence of calculations in the 

two matrix programs. 

2 
Fig.   3 shows 0 graph of a    /na    vs.  ka, where a is  the radius of 

Bo 

the base of the cone (a =  b sin 15  ).    For those values of a^/na 

calculated for several different values of n    with ka fixed,   the value o ' 
2 of o rj/no     corresvending to the  largest n    is  used in Fig.   3- 

Bo O 

The values of ariC/na    in the Rayleigh regior  (ka < O.h) are not 
Bo 

2 
shown in Fig.   3>  but it is  Important to note that a.._/na    obeys 

-k 
extremely well the \      law predicted for this  region.    Furthermore,  by 

using an approximate method of Siegel (Siegel,  1959)» applicable in the 

Rayleigh region,  it can be shown that at ka = 0.0259 the normalized 

back-scattering radar cross-section is approximately 3*56 x 10"  .    The 

value for ka = 0.0259 from Tfeble 1 is 3 93 x 10*  , which agrees with 

the approximate value of Siegel  rather well. 

For higher values of ka  the graph shows unexpectedly rapid 

fluctuations.    It is bexieved that these are caused by convergence 

difficulties,  especially since a curve obtained by using n   =  30 instead 

of n    = ^5 showed even wilder fluctuations for ka > 3-2. 



Keys (Experimental) 

Fig.   3.     Values of the Nonaalized Back-Seatterlmr 
Radar Cross Section (o„/na2)  for Q  30.Degree 
Perfectly Conducting    ^ Cone of Slant Height b. 
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2 
Also shown in Fig.   3 are values of a    /na    calculated by using 

Keller's modified geometrical optics theory (Keller,   i960).     Double 

diffraction effects are  incxuded. 

Mr.  John E. Keys of  the Defence Research Telecommunications 

Establishment,  Ottawa,  Ontario,   very kindly supplied the  present authors 

with detailed data from measurements similar to those on which he and 

R.   I.   Primich reported in  the Canadian Journal   of Physics (1959). 

Mr.  Keys has given his permission  for the  inclusion of  these measure- 

ments  in the  present report,  and  they are plotted  in Fig.   3-    These 

measurements were made on flat-based cones but Mr.  Keys  has informed 

the present authors that he has made ireasarements on spherically-capped 

cones,   of the type analyzed  in the  present work,  and these measurements 

are indistinguishable from  those made on flat-based cones. 

Likewise Included in Fig. 3 Is the straight-line graph representing 

the results obtained by using Siegel'B modified Rayleigh theory (Siegel, 

1*59). 

The conclusions  to be drawn from Fig.   3 ore  rather obvious and will 

not be discussed.    It Is  of interest,  however,   to point out that the 

irregularities appearing at ka values of about  1.0,   2.2,   and 2.8 in the 

curve  illustrating the present work,  occur in a  region where the cal- 

culated results are believed  to be accurate,  so it Is considered  that 

these are bona fide irregularities.     It was thought that they might be 

caused by diffraction from the tip of the cone,   but, when this effect 

was included  iü the Keller-theory calculations,   the changes in the 

o-values were too minute to be noticeable. 
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In order to look into possible  resonance effects as  tne  cause  of 

these Irregularities,   the following table was made ap. 

ka 1.0 2.2 2.8 

kb 3.86 8.'49 10.82 

2a 
T 0.318 O.700 0.892 

b 
O.61U 1.352 1-723 

na 
T 0.500 1.10 l.kd 

Ma 
0.773 1.702 2.17 

The values of Jia/\ make it appear that these trrrgaLarlties may be 

resonances In response caused by current paths  from top to bottom of 

the cone along the edge of the base.     In view of the fact that the 

base edge of the cone is very important in determining the scattering 

characteristics,  it is not surprising that these resonance effects 

occur. 
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APPENDIX A 

ANALYTIC SOLUTION FOR EXPANSION COEFFICIENTS 

"Rie solution for the expansion coefficients will now be presented 

in its analytic detail. 

1 ^ 
First we multiply {2?) by    F^cos ö),  multiply (28)  by    sin 0 ^ , 

and subtract the two results,  obtaining, 

i 

)    Y J (kb) I"   m *n + sin 0    ^   '"n 1 
, sin 0                    d0      d0 n»l 

*) T j'Ckb) I   P1-^ + ^F1 

L, XCVL         _    m d0        d0      n J 
n=l 

r P
1
 p1 dp1 ^ , 

n=l 

+ ) dh'Ckb)      P1--^^ -Sp1 

t-. n nv    ' L    m d0        d0      n J 
n.l 

r 
\ Vv^H^t, sme^ffi] 

sin 0 d0    d0 

< *l ^(^[«t^^'i]. °s«<« 
d0        d0 

0,       0   < 0 < n 
V     ' o -     - (1-1) 

By integrating both sides of (l-l) with respect to 0 over the Interval 

0 to n and canbinlng terms, we obtain, 



■1 

"IT. 1    JL 
)        Y J„(kb)  ^   c h (kb) ^    m ^ ^   sin 0 dPm      n n n- n n 

n-1 0 
sin 0 

dö 
dO    dO 

L,   ^    n n n n jj m -r-—      -rrr-   n  J dO 

n=l 0 
dO        dd 

-l\K^ J 
0r p1 

.' dF*  dP    1 
m    v -f  sin 0      m      v      dö 

ein 9 de   de —  J 

0 bj'dcb)/ T^^'^p1! L     u^n" J       L    m -r-r      TTT-   *   J 
dö (1-2) 

0 
du        dO 

The first  integrol  In (1-2)   1s a  fomiliar integrt 1 of bo'indary value 

problens. 

1      r p1 p1 n dF1 dF1 1 jn       2rm(mU)l     l m    n +  sin 0  m   _n      dö ^ x J      6 
0        sin e dO    de     ' 2m+l mn, (1-3) 

where 6 Is the Kronecker delta.    The second and fourth Integrals ore 
mn D 

easily evaluated by using    P"^   | - 0 ,  r    ( = 0  ,   and P^   | =0 
n   e»o n   e=n u   e=e 

o 

J "r P1 ^ ^ p11 o" = [ a ^ p11 - ^ p1! i" =0 J    L   m -rr-     TTT-    n J J      ^ m    n^      ^ m   nJ  ' de      de 

(i-^) 
e 

^pl       ^pl     1   I r 0   r 
u +      m P^   ' dö 

* 
d 

de      de    ^ " - 
dV P

1
! = V P

1
] | =   0 

(1-5) 

The third integral is eva] oated by utilizing  the associated Legendre 

equation, 



^ 

a dP1 

-rrr [ sin  9      n    / 
dO v TT- ' n        n 
—       n.  ■>   ^n y +   n(m-l)   sin 0 P1 - P1       =  0  . (1-6) 

do 
sin 9 

Multiplying by P~ and using the product differentiation rule,  we obtain m 

P1  P1 dp1 dp1 ,   _L 
m n 4   „1 , n      m      n      d   /"  .     . _1 dP^ \        ,     ,»  _.     „ „1 JL 
JiTe      8in 0 dT do" ^   dö ^in 0 Pm ^ ^  n(ml)8in 9 Pm FJ • 

dO 

(1-7) 
Integrating  frcm 0 to 9 ,   there results 

o 

I     ^P1  P^ dP^ dP1! r 1 dP1"!.   0     r    0 11 
i      |   n    n +  sin 9     m      n d0 =    sin 0 P       n   !    + n(n+l)8in Q V' r 
o   LiTir9 dT de-J        L m d9"J o     Jo m   n 

(1-8) 

The integral in (1-8)  can easily be evaluated by using (1-7).    If m and 

n are interchanged in (1-7) and the result subtracted frcm (1-7),  the 

ensuing equation  is 

rm(o*l)-n(ml)1sln 9 P1 P1 = -^ f sin 9 P1      n -  sin 0 P1     m] . L J m    n      d0 . m ^ n ^-J 

(1-9) 
The integral  in (1-8) may now be evaluated. 

0 9 

I     0n(^l)  sin 9 P1 P1 d0 .     A^f     H rain 0   ("p1 ^ - P1 ^| 
J0 an m(m+l)-n(n+l) L o \ m ^-       n^^j^ 

(1-10) 

Substituting (1-10) in (1-8) and ccciblning terms,   there results 

F    T P1 ^ 4    n dpl ^ "UA m(i^l) r  ,     ,, J- dP1 -|,0o m    n +   sin 0      m      n    d0 =    r-rj \    Z^, \       sin 0 P^      n 

o 

n(n+l) r .     « «1 dP1 "I,   o 
mUl)-n(ml)    l8ln 0 ^ -2 JL   .    (l-ll) 

de 
The  third integral  In (l-2)  is   then obtained by letting n ^  v in (l-ll) 

and making use of the condition (26). 
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Q 

•    0 T P1 PJ;        .     , dP1 dP^ ]AO     - v(vfi)Sin 0     r i dp1! 
m    v +   sin  9  m   _v    de = ^ o    ■ ?        ml1 

v
0      ^  sin 0 dö    dO    J m(m*l)-v(v+l)  '   v dö"-    o 

(1-12) 

Upon sabßtltutlrig  the  integral   results,   (1-3),   (l-'O,   (1-5),  nnd 

(1-12),   into (1-2),  we  obtain 

) rYj (kb). c h (Kb)i 2 "i(mi)^  6 
L,   L n0nv n  :r       J  ; =       mn 

2ml 

v( v+1)  sin 0 

n=l ^ml 

v{\»l)  sin 0    r  .    ,^1-, 

de      o 
V 

which can be solved for c   : 
m 

Cm =  "   Ym Jm(kb)  +   ^jj   S^n 'o ^( \     "v v( ^D Jv(kb)^( cos Qj 

hmUb)      2^m(i^l)^ hm(kb)    dt}    ^öo^ v(wi)-n(mfl) 

(1-lM 

The  separation of d     is acccmplished in a  similar manner by 
m      1 

dP 1 
multiplying (27) by sin 0      m  ,  multiplying (28)   by    P^  ,  and  subtracting 

dö 
the  two results,  obtaining, 

00 

L,     n n L    m -„-r-      TTT    n  J 

dO m 

dö        dö n=l 
00 

\     r     .'^^   T  P1  P1 .   cU1  d^1 1 + )     i     J  (kb)        m    n + sin 0      m      n 
sin 0 do     dö 

n-l 

en 

O   c f (Kb) r ^ F
1
 • r dpi ^ 

•^   ""      - air n     m IT J 
n=l 

\    A v,'^v^  T P1 P1        ,     , dF1 dP1 1 + )    d h (kb J        m    n + sin 0      m      n 
sin 0 dö    dö 

n=l 



^ 

r 

v 

i^^[<^i<] 
r H1 P1 dP1 dP1 1      „      ,, 

m   u ^  .._ „      m     u       , 0 < 0 < Ö I *XM[%5.sine do    d0 

0 ,        9   < 9 < n  . 
o -      — (1-15) 

Integrating both sides of (1-15) with respect to 9 over the Interval 

0 to n and ccoblning terms,  we obtain, 

) r Y J (kb) * c h (kb)l [  r pi «^ + < pi ide 
LJ   L    n n n n        J J m -rr-     -rrr-    n J 

n=l 
d0        d0 

+ I   [ rn Jn(kb)  +  dnhn(kb)] I      [ -5    " +  sin 0 f^ ^ ]d0 

n=l 
0        sin 0 d0    d0 

1 vv(^ro[^^+^^> ^   v v     Jo   L ir v    mdrJ 

+ I bn'\i^
kb)  J        [ ^ L +  sin 0 ^ ^ ]d0  . (1-16) 

sin e d0    d0 

The values of the first and second Integrals  In (l-l6) are given by 

(l-^)  and (1-3);  respectively.     The third Integrcl Is easily evaluated. 

0 , , 0 

j    0 I" < P1 ♦ P1 ^ > =   f    0 di P1 P1! =  P1 (cos 0 ) Pj (cos 9  ) J L TTT-   
v       m TT- J J^       L m    vj        m o     v v o 

(1-17) 
d0 d0 0 

The fourth Integral Is evaluated by using (l-ll) with n replaced by u. 
a 

r  0 r p1 p1 ^   i   . dp^- dp1 i,fl   m(i^i)  .   fl rj. dp1]! 
m u + sin 0  m  n d0 = -*—r-t—7—r-r sin 0 ' P^  u J

ü   
Liir0 d6rdrJ     «(».1)^(^1)       oLm^Jl^ 

(1-18) 
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By substituting   thece results  into (l-lb),  ve obtain 

z\m{ m* 1) )   Tr j'(kb) + d h1:^) 
L   L n n n nv       . 

n=l 2ml 
mn 

-I   \^^  P^cos Oo)  ^COS Oo) 

< m(m+l)  sin 0    r 1 -. 

u ay 0 

(1-19) 

which can be  solved for d   : 
m 

m 
r   Jm(kb) 

"rikbT 
(2ml) P   (cos 0  ) 

+ m o 

ni(m+l) 

y(kh) p?; (cos e^) 
2 h'(kb) 

ED 

V"v 

(2nnl)  sin 0    P    (cos 0 )    - b J,'(kb) dP 
o    m x  o_   \ ^0u u     i 

L m(ml)-ü(n+l) de      '     . 
u o 

^ HI 

2in(nH-i;  h'(kb} 

(1-20) 

The seperati^n of a    is acconplished by multiplying (29)  by 

dP —1 
sin 0 a    , multiplying (30) by P^ and adding the results,  obtaining, 

d0 
Of 

I  YnJ>) [ J^Jn ♦ '1-e f» fa ] 
n=l 

sin 0 d0    d0 

)   rjCk^fp1^.^  P
1
] 

^L      n n L    Of -rr-     TJT-      n J 
n=l 

n=l 

"   " de     ie 

'nw HP1!'1     ,   „dpidp1 

cr    n + sin 0     er      n 
" sin 0                 dB    de 
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n=l 

- i   V>) [ ^ * sin 9 <   fft ] 
^ 8ln 9 d9     de    J 

do        a0 

where the subscript or denotes a particular value of the Infinite set 

of v.    Integrating both sides of (l-2l) with respect to 9 over the 

interval 0 to 9   and combining terms, we obtain, 

9 

sin 9 d9   d9 

eo 9 

I   [ Vn(kb) + cnhn(kb)] I   0 [ ^-^ ^ sin 9 ^ ^ ] d9 
n=l 0 

d 

d9        d9 n=l 

e 

sin 9 d9    d9 
= 1   a,..l.>b) j ^ [ ^ ^v - sin 9 ^ ^v ] dfl 

0 

-)    bjl(kb)      f    0 r P1 ^ + % P1 1 d9     . (1-22) 

\i 0 

The first Integral in (1-22) is evaluated by using (l-ll),  replacing 

m by or and noting that o- is a particular value of the set of v. 

Q 

r0rP1P1        .ad^dP1"]^      cr(crfl) sin 9   fj. dP1 It :   _a n +  sin 9     or n     d9 «    N       _ o   P^ n    | 
J        L sin 9 35" d9    J ff(Q^l)-n(n+l} d9        9=9o 

(1-23) 
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The second and fourth integrals are easily evaluated. 

[   0 [^    " +    » Pi 1 d0 =    I   0 ^P1 P
1
! = ^(cos e ) ^(cos e ) j        L or   .. ,_      n J w de      de or    nJ        ff 

rKä^i- 
e 

o      n o 

(1-2M 

e 

de      de 
dTr1 P

1
! = iV P

1 

^ cr    uJ      L or    uJ 
|        = 0   . 

(1-25) 

The third integral is evaluated by using (l-ll), 

6 

\   [ 
0 T P1 P1 dP1 dP1 

a    v + sin e     »      v   | de =    6 
sin e 

^ dP" 1 a v   j 
de   de 

crv 

0[l^2.ainer<)2]d9, 
sin 0 de 

(1-26) 

where 6 v iß the Kronecker delta.    The integral in (1-26)  can be 

evaluated by the use of (1-7).    If (1-7) is re-written with m and n 

replaced by a,  there results 

(V    4  sin e (f ^ ^   = ^ fsin e P1 ^ V »(0*1)  sin 6 (P1)     . 

(1-27) 

Tit integral in (1-26) is then 

j 9o [ (^ . .m B ^<)2] d9 = (sin e ^ <) T0 

sin e de de       o 

+ <y(cr*l)   [     sin e (P1)    de.      (1-28) 
J or 
0 

The first term on the right side of (1-28) is seen to vanish, and then, 

if we define 

r'0 a2 
B^ =   sin e (p^) de , 
er  j a (1-29) 



Jß 

for (1-26)  there resulta 

0 

I or Vv   ♦  sin 0 J_» ^      d0 - »(arfl)  B    6       . (1-30) 
0 sin 0 d©    d0    J a   a 

Upon substituting these results In (1-22),  we obtcln 

t-<    L    n n n n        J    /     . <     >    . ^  L    or  . -    J    „  „ , a(Qrfl)-n(n+l) d0 0=0 n*l o 

00 

- )     fr J (kb) + d h (lcb)l P1 (cos 9  )  P1 (cos 0  ) L.   L nwnx n n        J    or N on o 
n=l 

= 1    avj;(kb)    c^l)  Bab^ , (1-31) 

and solving for a    , 

OP 

.in 9o ^ (co. ao)   V      ynj;(l.b) * cnh;(kb)    < a    « o   or ^ o 
or 

P^ (cos 9 ) ^   r 1 

fa B J'(kb)       Z,   [rnJn"tb' + W"»)] K ^ Oo>  ■ 
o or n^l 

(1-32) 

ITie last coefficient to be separated Is b .    Ibis Is acconpllshed 

0 W 

_1 dP1 

by multiplying (29) by P^ , multiplying (30) by   sin 0 ^^ , and adding 

the results, obtaining, 
OB 

dP1      drf 

nil d0        d0 

, sin 0 de    d0 n«! 
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^  n n   . ß _  _£ n 

n-l 

-I d h (Kb) r ^ > sin 9 < ^ 1 
n "    L sin 9       d0 d0 

4 c p do   do    J 

^ buJu(kb) [ 
Fß K  ^ sin 0 ^  ^ ] , 0 < 0 < Oo ,  (1- 33) 
..In 0 d0 d0 

where the subscript ß denotes a particular value of the infinite set 

n. Upon integrating both sides of (1-33) vith respect to 0 over the 

interval 0 to 0 and combining terms, we obtain, 
Q 

i Tv.. • ■ + chWj 'r^.^p1! d0 

n=l 
d0        dO 

dp^ dp1 

do    do 
n=l 

sin 0 

4 v»r[^£U]- 
d0        d0 

" I   Vu(kb) I    0 [ i-^ *  sin 0 ^ ^ ] d0  . (I.3U) 
sin 0 d0    d0 

The first integral in (l-SM is easily evaluated, noting that ß is a 

particular value of the set u. 



ho 

n^^]M\^j-[^jro-o 
dO        dB 

(1-35) 

The second integral is evaluated by using (l-ll) and replacing m by 

ß,  obtaining, 
a 

|  0 [ 1^ . sm ^ < 1 dö .   ^ ^" e
0 [T><]\   . 

i        L^i^ T^Tö-J n(rHl)-ß(^l) L    "^-l1 — 
0 sin 0 do    d0 

The third Integral in (1-3^) also Is elementary. 

0 
dP1.       dpi 

0 

do 0»0 
o 

(1-36) 

0 

j [i^*%t]"-l {i^-tttX'* (10 do 

The fourth IntegTTil Is evaluated by using (1--J.), 

0 ,    , ,       , 0o      ,   2 

(1-37) 

J    Or^+sln0^<]d0.6ftiJ   fi^   +sineC<)]äC , 
J
0    L JTrTd d0   dT J ^ J

0 
L Hr0 v 30 y J 

(1-38) 

where 5      Is the Kronecker delta.    The Integral In (1-38) Is evaluated 

by using (1-28) with or replaced by ß. 

0,2 ,2 

\ sin 0 ^ d0 v p d0 

0 
> 

0 

ß(^l) 

^d^^'o 

sin 0 (P1)    do (1-39) 

Thö first term on the right side of (1-39) 1> seen to vanish, and then, 

If we define 

0 
2 

ß0 - J     sm 0 (pj)   d0 , 
ß' 

(i-^o) 



kl 

for (1-38)  there results 

a 

J   0 [ ^ ^ aln * '"'X > . 
sin Ö dO   d0 

ß(ßn) Bß 5^ (1-^1) 

Upon substituting the results of these Integratlone Into (1-3M,  ve 

obtain 

-a r j (kb) + d h (kb) n n .. n 
n=l 

n(n4l)  sin 0      f _1 dPn o        r       ß 
n(n+l)-ß(f>fl)    L    n df' 0=0 

= -I   b^(kb) P^1) B
ß 

6
ßu (1-^2) 

and solving for b.  , ß 

sin 0 o 
3ß " ßTFll BßJß(kb; 

f^, T     [rnVkb^ dnhn(kb^ 
d0 0=0 n(n+i;-ß(ß+l} 

o n=l 

n(n+l) P^(cos 0 ) 
n 0 

(1-^3) 

Equations (l-l1*),  (1-20), (1-32), and (I-U3) represent the formal 

solution for the expansion co-efficients, and,  when the values of   y 
n 

and    f     are substituted by using (8), are equivalent to (31)  through 
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APPENDIX B 

LEGENDRE FUNCTION CONSTANTS 

(1)(2) 1(1)(3) B (M 

^   ^ Donated by Dr.  P.  C. Wateman of AVCO, 

^   ' Determined from    P (cos 165°) = 0 . 

(3) 

M 

Determined from dp1 0 

Defined by B 

dö '0=165 
165 

T = J    sin 0 (P^) d0 . 

B. (M 

1 1.031631 0.967140 1.310 1.35806 
2 z.oQhky* 1.918899 2.346 2.42491 
3 3.11+9929 2.887078 3.3^7 3.379^5 
h U.223096 3.887853 4.341 4.28564 
5 5.301087 4.917100 5-3^0 5.18033 
6 6.3822U9 5.965629 6.323 6.09038 
7 7.U65580 7.026428 7.168 7.032 36 
8 8.550454 8.095125 8.206 8.O58 
^ 9.63645 9.169073 9.227 9.009 
10 10.72329 10.24665 10.24 9-973 
11 11.81078 11.32681 11.25 10.95 
12 12.89879 12.40890 12.25 11.93 
13 13.98718 13.49242 13.26 12.91 
1h 15.07592 14.57706 14.26 13.89 
15 16.16491 15.66258 15.26 14.88 
16 17.25414 16.74882 16.26 15.87 
17 18.31*351+ 17.83562 17.26 16.86 
18 19^3311 18.92291 18.26 17.86 
19 20.52280 20.01059 19.26 18.85 
20 21.61262 21.09860 20.26 19.3 
21 22.70252 22.18690 21.PO 20.84 
22 23.79253 23.275^5 22.26 21.83 
23 24 88260 24.36421 23.26 22.83 
Zk 25.97275 25.45315 24.26 23.83 
25 27.06294 26.5^226 25.26 24.82 
26 28.15320 27.63151 26.26 25.82 
27 29.24349 28.72088 27.26 26.82 
28 30.33385 29.81037 2e.26 27.82 
29 31.42421 30.89995 29.26 28.81 
30 32.51^65 31.98963 30.26 29.81 



M 

31 33.61 33.08 31.26 30.81 
32 34.70 3^.17 32.26 31.81 
33 35.79 35.26 33.26 32.804 
3^ 36.88 36.35 34.26 33.803 
35 37.97 37.44 35.26 3^.801 
36 39.06 38.53 36.26 35.800 
37 UO.15 39.62 37.26 36.798 
38 41.24 40.71 38.26 37.797 
39 42.33 41.80 39.26 38.796 
ko 43.42 42.89 40.26 39.79^ 
Ul 44.51 ^3.98 41.26 ^0.793 
42 45.60 45.07 42.26 41.792 
^3 46.69 46.16 43.26 42.791 
UU 47.78 47.25 44.26 ^3.790 
^ 48.87 48.34 45.26 44.789 
U6 49.96 49.43 46.26 45.788 
^7 51.05 50.52 47.26 46.787 
U8 52.14 51.61 48.26 47.787 
49 53.24 52.70 49.26 48.786 
50 5M3 53.79 50.26 ^9.785 
51 55.^2 54.88 51.26 50.784 



kh 

n PJ(COS 165°) FJ(COS 165°) 
dP1 

ni 
do   '0.165° 

dP1 

kit 

dö  '0=165° 

1.886 1 -O.25881924 -O.52346792 0.96592579 
2 0.750 I.4156256 -2.5980742 -5.177 
3 -I.U22883I -2.305OO79 4.339688I 9.503 k 2.2069309 2.98087 -5.^575812 -14.65 
5 -3.OI77961 -3.50544 5.1518426 20.48 
6 3.7b46396 3.92272 -2.6831313 -26.91 
7 -4.3581639 -4.27745 -2.556614 32.93 
8 4.748 4.603 11.19 -40.63 
9 -4.797 -4.891 -22.08 48.73 
10 4.514 5.159 35.26 -57.23 
11 -3.884 -5.413 -49.72 66.12 
12 2.922 5.655 64.10 -75.39 
13 -I.675 -5-886 -16.lh 85.03 
14 0.2149 6.109 85.84 -95.03 
15 1.364 -6.323 -89.66 105.4 
16 -2.953 6.530 86.71 -II6.I 
17 4.433 -6.732 -75.92 127.1 
18 -5.690 6.927 56.81 -138.4 
19 6.618 -7.II7 -29.64 158.O 
20 -7.133 7.302 -4.551 -I62.O 
21 7.176 -7.^83 43.92 174.2 
22 -6.720 7.659 -85.90 -I86.7 
23 5.775 -7.631 127.3 199.5 
2^ -4.388 8.000 -164.8 -212.6 
25 2.637 -8.166 194.7 226.0 
26 -O.6337 8.328 -213.6 -~39.6 
27 -I.491 -8.487 218.7 253.5 
28 3.591 8.643 -208.2 -267.6 
29 -5.516 -8.796 180.8 282.0 
30 7.126 8.947 -I37.I -296.6 
31 -8.296 -9.096 78.73 311.5 
32 8.929 9.242 -8.613 -326.6 
33 -8.964 -9.385 -68.98 342.0 
3^ 8.380 9.527 148.8 -357.5 
35 -7.199 -9.666 -225.2 373.4 
36 5.487 9.804 291.9 -389.4 
37 -3.3J*9 -9.940 -343.2 405.7 
38 O.9210 10.07 37^-0 -422.1 
39 1.634 -10.21 -38O.2 438.8 
ko -4.142 10.34 359-5 -^55.7 
hi 6.427 -10.46 -311.2 472.9 
kz -8.324 10.59 237.0 -490.2 
hi 9.693 -IO.72 -140.3 507.7 
kk -10.42 10.84 26.61 -525.5 
^ 10.45 -IO.96 96.96 543.4 
kb -9.765 11.09 -222.1 -56I.5 n 8.388 -11.21 339.7 579.9 
hQ -6.404 11.33 -440.9 -598.4 

kg 3-937 -11.44 517.1 617.1 
50 -1.149 II.56 -56I.4 -630.0 
51 -I.773 -11.68 568.5 655.1 
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APPENDIX  C 

DEFINTTIONS  OF MATP.IX ELEMENTS 

Th.e elen.er.ts  cf  tr.e matrices  li   ( 3Ö)   through (Ul)  are given by 

(31)   throogh {^).     If we  let [A]       denote the  Jtl' element, of  the  1th 

row of a  matrix A,   then  the matrix elements are defined by 

W 
1    (2r^l)  JrUb) 

m m (m+1)  h (kb) 
(3-0 

w 
dp* 

(2m+1) sln0o__£!|e=e v.(v^l) ü. (kb)  P1  (cos 0  ) 

mn 
j|n(nr*l)|    h (kt)  'v (v+l)   - in(m*l)| 

L j      m L n    n J 

(3-0 

fp 
I"1*1 (2ml) ^(kt) 

r m(rTr+l)   h^kb) 
m 

(3-3) 

(2n^l)  F'  ( cos  0  ) 

2. 

J        UU    P CO£ UV   v       '       V o' )s e ) 

mn 
2| tT.(ml) j    n'  ( kb) 

J        rr. 

(3-M 

dp 
u 

mr. 

(2mtl)  sin 0    P^  (cos  0  ) 4;  (kb) -5-I 
o'  "u dO     '0-0 

o 

2n(m*l)  .'.'(kh)  I r.(ml)   - a (^ +l) 
n ^ r.     n 

(3-5) 

LG1. 

sir.  » 
c     v 

, dP^ 
P^cosejh^kb)^!^ 

o      n 

mn 
j; (Hb) PV 

r^( v0 - n(n+1)] 
1 

r   ■ 
' G. 

s dp 
■i^r ^(c.so(i)   ;   r-(,„,0 j^Kb) ^i^ 

n 

r rr. 

I 
n= * 

o 

(3-6) 

(3-7) 

n( r^ 1) I v ( v +1)  -  n( n+1) 
i_ ro    m J 



ke 

nin 

pj". (cos 0  ) h (kb) P1 (coe 0 ) 
m o     n n 

m      m 

(3-8) 

m 

Pv (cos 0o) 
m I 

o      ln41 (2n+l)  J (kb) P1(co8 e ) n n o 

Vm   (V15   BV      K   (kb) n   I 
m      m 

n(rH-l) 
(3-9) 

dP1 

mn 

^^odr2'^    hn(kb) n(n+l) Pr. (^V  o  

u (u+l) B^    4L (kb) [ndnl) - u (u +1)1 mm uii L mmj 

(3-10) 

dP 

m      m 

1 

[H2] 
m 

- sin 0^ ^\0 a 
0   ln"L (2n+l) J (kb) P^cos 0J 

o d0     '0=0 

1 
n n o 

a (u +1) B      J    (kb)        .    Mn-H)  - a    (u +l) 
m   m u      u n=l    L m      m      J 

n      m (3-11) 

U    and v    represent the m      value of the sets u and v,   respectively. 
m m 
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