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ABSTRACT 

We prove various theorems related to the application to cosmic rays 

of the theory of the motion of an electrically charged particle in a 

dipole magnetic field* Ihe theorems are essentially those conjectured by 

Schremp. In making the proofs, ve assume"that the so called trajectories 

of the first and second kinds have certain properties in the xarge. Ihese 

properties can be verified numerically and by series expansions in any 

particular case. 
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INTRODUCTION 

The theory of the motion of an electrically charged particle In a 

dipole magnetic field was Initiated by Stornier (l) and extended by 

Lemaltre and Vallarta. (2) Ihe notation used In the present work vlll 

be that of Vallarta, except that his 7. vlll be called simply 7. Recently, 

It has been found that the higher multlpole tens of the earth's magnetic 

field play a sufficiently Important role in determining the behavior of 

cosmic rays that no quantitatively adequate theory of cut-offs can be 

based on the dipole model. Nevertheless, we feel that the dipole theory 

warrants the present study on two grounds. In the first place, the dipole 

theory furnishes most of the available Insight into the cosmic ray problem. 

In the second place, it Is an example of a class of very interesting 

problems in classical mechanics which do not submit to the usual text book 

methods, and is therefore of Interest for its own sake. 

St&raer found a necessary condition that a particle must satisfy in 

order to travel from infinity so as to arrive at the earth's surface at 

a given geomagnetic latitude from a given direction. His condition is 

that the rigidity of the particle must exceed a certain critical value 

which depends on latitude and direction of arrival. 

Lemaltre (3) found a sufficient condition of the same sort. He 

showed that for 7 very near unity, the trajectories asymptotic to the 

outer periodic orbit serve as boundaries of sets of trajectories all of 

which Join an observation point on the earth with infinity without passing 

through the earth between these two points. He conjectured this same 

property to hold for all values of 7 for which the asymptotic trajectories 

exist. He and Vallarta calculated families of them on Bush's differential 
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analyzer. In addition, Lemaitre found an additional necessary condition 

for arrival whicb he calls the shadow cone. Finally, Schremp (k)  conjectured, 

from an inspection of the trajectories produced by the differential analyzer, 

that for particles with rigidities greater than a certain critical value, 

Lemaitre's sufficient condition Is necessary as veil. We present proofs 

of these claims, slightly extend them, and clarify the relations between 

them. 

THE EQUATIONS OF MOTION 

The equations of motion are obtained from the Lorentz force. Ttiey 

are thoroughly discussed by Störmer. (1) The problem has three degrees of 

freedom and two known first integrals. One of these is the energy, which 

in the present case reduces to the constancy of the particle speed, even 

in the correct relativistic case. Because of this integral, the correct 

relativistic equations have the same form as the non-relativistic ones, 

2    2-1^2 
provided m, the particle mass, is taken to be ra (l - v /c ) ' with m 

the rest mass and c the speed of light. The second first integral arises 

from the axial symmetry of the problem and expresses the conservation of 

the azimuthal component of the angular momentum. 

Let r denote distance from the dipole. X the geomagnetic latitude, 

and s path length along a trajectory. Put 

ex = 2n,  do = 2rr"2 ds (l) 

where y  is the constant of angular momentum. 
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3t<5rmer obtains the equations of motion In the form 

2 
d x    2x   -x _, -2x   2% i<*    * —5 = ae  - e  + e   cos X (2.a) 

d X    *2x • "3 
—s - e   sin X cos X - sin X cos"JX. (2.b) 
der 

We have put a ■ (2?)" and the angular momentum Integral has been used to 

reduce the equations. All lengths are In Stornier units. That is, the unit 

of length Is (M/H) ' where M is the dlpole moment and R the particle 

rigidity. The energy integral, which has not yet been used, is 

(gj2 + (gj2 . „2* + 2e-* . e-^c c082x . COfl-2x.     (3) 

By introducing two new variables x* and X1 we nay write Eqs. (2) 

as 

ail - ae2* - e'x + e'2x co.2X (k.m) 

dx ——  s v 

do   • (U.b) 

jjl   - e"2* sin X cos X - sin X cos*3X (U.c) 

$   -X». (l.d) 

The energy Integral is then the purely algebraic relation obtained by 

substituting from (if.b) and (4.d) in (3). 

An alternative formulation is obtained by using the energy integral 

to reduce the system of Eqs. (It). We obtain 

f2 = ifl/2(x, X, X': y) (?.e) 
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gj1 = g(x, X) (5-b) 

where 

f(x, X, X'; y)  5 ae2X + 2e"x - e"2x cos2X - cos"2X - X'2 

and 

g(x, X) = e   sin X cos X - sin X cos"JX. 

LOCAL PROPERTIES OF SOLUTIONS 

Throughout the paper we consider only real solutions for real values 

of a. Consider first solutions of (k).    The right members have bounded 

partial derivatives except at X = n/2 and x = + ». Therefore, except at 

these places, for a given value of f  exactly one solution passes through each 

point of the space (x, X, x1, Xf). It is important to notice that this is still 

true when x* = 0. 

The only solutions in which we are interested are those for which the 

energy integral is (3) without the addition of a new constant. These are 

obviously the set of all solutions of (5). Every solution of (5) is a 

solution of (U). Every solution of (k)  for which the energy constant is 

chosen as in (3) iß a solution of (5). Uhus, through every point of the 

space (x,  X, X') such that f(x, X, X1; y)  > 0 pass two and only two solutions 

of (5), corresponding to the two choices of sign in (5»a)» Through every point 

for which f(x, X, X'; y)  = 0 passes exactly one solution. When f < 0,  dx/dc 

is imaginary, and no real solutions occur. The surface f(x, X, X1: y)  = 0 

is the boundary separating regions in which motions occur from those in which 

it does not. We will call it the motion boundary. On it, dx/do = 0, elsewhere 

dx/do ^ 0. Consequently every trajectory has all of its extrema in x on the 

motion boundary. This fact is of central importance for all that follows. 
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Next, it Is necessary to understand the structure of the motion 

boundary. It is evident that its intersection with the plane X1 = 0 is the 

boundary of Störmer's forbidden regions. We shall only be interested in the 

cases 0 < y *  1. For every such case, the Stornier boundaries have the 

structure shown in Fig. 1. The shaded regions are forbidden. It is easy 

to see from the algebraic equation f( x, X, X'; 7) - 0 that when 0 < y <  1 

the motion boundary has the structure of a ,rY" constructed of hollow tubing. 

SPECIAL SOLUTIONS 

The equations (5) are not integrable. All of our knowledge of 

specific trajectories depends on the application of numerical methods. 

Störmer discovered certain periodic solutions which are now 

called principal periodic orbits. We will call these simply "principal 

orbits." For a particular value of 7,  which we will call 7*, there is 

one of these. If 7* < 7 < 1 there are two. Godart (5) has calculated 

7* to six places as 7* ■ O.7885UI. These orbits were studied extensively 

by Lemaitre, Vallarta, and their students. Godart initiated a study of the 

stability of them. The principal orbit which is farther from the dipole 

(called the outer orbit) is unstable. The inner orbit is unstable for 

certain ranges of 7. Over the remaining range of 7, the inner orbit has 

Imaginary characteristic exponents (6) so that its stability is undecided. 

In this paper we will be concerned only with the outer orbit. 

Since the outer orbit is unstable, we know from PoincareXthat there 

are orbits asymptotic to It. These have been extensively calculated by 

Lemaitre snd Vallarta, who made them the foundation of their theory of 

the allowed cone. (2) Figure 2 shows a sampling of the family asymptotic 

from the side toward the dipole, as calculated by them. The calculational 
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methods which they developed are adequate to verify the properties of 

asymptotic trajectories in which we shall be interested in this paper, and 

we will not go into them here. We will Instead assume that the family has 

particular properties of interest and base our proof on these assumptions. 

In a practical case it would then be necessary to cany out the procedure 

that they specify (j)  in order to find the regions of space in which the 

theorem is applicable. This is no hardship since the theorem cannot in 

any case be put to use without the asymptotic families. 

THE MAIN CONE 

In this section we prove a theorem which, under appropriate 

circumstances to be specified, Justifies the use by Lemaltre and Vallarta 

of the asymptotic trajectories as boundaries of allowed cones of cosmic 

radiation. Before stating the theorem it is necessary to discuss some 

properties of asymptotic solutions as plotted in the (x, X, X') space. 

We begin by considering the trajectories plotted in the (x,X) plane. 

See Fig. 2. The slope in such a plot is dV<*x ■ V/x1. From Eq. (3) 

[l + (X'/x'f2] (X*)2 - ae2* + 2e"x - e"2* cos2X - cos~2X. 

Thus when one has definite values of x, X, a, and dX/dx, one has a value 

of Xv which is determined up to a sign. If, in addition, one has a definite 

sign for x', one has a definite sign for X'. Finally, from Eq. (3) directly, 

for x, X and a fixed. X' and x' vary in opposite directions so that dX/dx 

and X' vary in the same direction. This fact makes it easy to compare the 

relative site of X1 on each of two trajectories pessii« through a given point. 

Let us now see how the asymptotic trajectories lie in the (x, X, X') 

space. First consider the periodic orbit. In the (x,X) plane a particle 
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travels back and forth along it fron one end to the other. It is fairly 

obvious that when plotted in x, X, A' space it becomes a aiaple closed 

curve. Since at any point on it when x* * 0 it is tangent to the notion 

boundary, we see fron Fig. 2 that it makes contact vith that boundary in 

four points. These points are narked vith open circles on the figure. The 

point in the center counts as two, of course. On one-half of the orbit 

A1 > 0, on the other half A* < 0, so that the plane A1 = 0 bisects the 

orbit. In fact, it is a plane of synartry for it. Cb the other hand, 

x' alternates in sign between aqy two adjacent quadrants. Now, if we add 

to the figure a A1 axis at right angles to the figure and vith the positive 

A' direction out of the page, we can conveniently visualize this periodic 

orbit as so plotted in the resulting 3-space. 

How we cone to the asymptotic trajectories themselves. Let us take 

then as being traversed by the particle in the direction shown by the 

arrows, so that the particle approaches the periodic orbit in the infinite 

future. 

It has been shown by Folncare'that such a family of asymptotic 

trajectories constitute a surface, and that the periodic orbit lies on the 

sane surface. (6) Lemaitre and Vallarta have adapted the method of proof 

used by Foincare' to the calculation of the family, (j) One can "see" this 

surface in Pig. 2. If one visualises this plot as it would be in x, A, A' 

space, the asymptotic trajectories seen to wind spirally around a "cylinder.19 

With Polncare' we will call this surface the asymptotic surface. A way of 

labeling points on this surface that is sonatinas convenient arises fron 

Polncare'sproof. She asymptotic trajectories are distinguished fron each 

other by a single initial condition, which can be used as one label. The 

arc length a on the asymptotic trajectory selected serves as the other. 
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tte nov describe the property of a family of segments of asymptotic 

trajectories on which our proof of Lemaitre's main cone theorem depends. 

Consider a particular plane x - constant. In the geophysical application, 

the earth's surface is such a plane. We will therefore call this plane 

the earth. The vertical line in Pig. 2 labelled x. is such a plane, and 

has the property to be described. We vill call the complete set of asymptotic 

trajectories the asymptotic surface. Me assume that 

1. The earth intersects the asyBQtotlc surface. 

2. At least part of the intersection (the only part ve vill consider) 

consists of a closed curve which bounds a simply connected region on the 

earth. 

3* Each asynqptotic trajectory has, at this intersection, x' > 0. 

k.   No asymptotic trajectory, on leaving this intersection, 

subsequently Intersects the earth. 

The only part of the asymptotic surface which ve subsequently 

consider is that composed of trajectory segments leaving this intersection 

and proceeding into the infinite future to become asymptotic to the outer 

orbit, and one of the two families asymptotic on the outer side of the 

outer orbit. 

Notice that there are portions of this asymptotic surface where 

x* < 0. By the continuity of the solutions, these regions must be bounded 

by closed curves on which x* ■ 0 and along which, therefore, the asymptotic 

surface is tangent to the motion boundary. Further, these bounding curves 

cannot intersect the earth, by assumption (3)* 

When the four assumptions are satisfied and a trajectory intersects 

the earth vithin the simply connected region mentioned in assumption (2) 

with x* > 0, the trajectory from that point of intersection on, but 
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excluding that point, vlll be said to lie In the restricted main cone. 

Theorem 1: Wo half trajectory vhlch lies In the restricted main 

cone Intersects the earth. 

Traverse a half trajectory vhlch lies In the restricted main cone, 

away from Its Initial point. Since It has x* > 0 Initially, It must pass 

through a maximum In x, I.e., x* = 0 before It can again Intersect the 

earth. It can only do so by becoming tangent to the motion boundary. In 

order to reach the motion boundary It must first penetrate the asymptotic 

surface. Because of the existence and uniqueness theorems, since at such 

penetration It has x* > 0, the asymptotic surface must have x' < 0 at the 

point of penetration. The trajectory, once having so penetrated the 

asymptotic surface vlll find Itself In a region of (x, \,  X') space 

completely bounded by a portion of the motion boundary and a portion of 

the asymptotic surface everywhere on which x' < 0, and which, by 

assumption (3), does not contain any part of the earth. The trajectory 

can only leave this region by penetrating the bounding portion of the 

asymptotic surface again, and must consequently again have x' > 0 when It 

does so. But It vlll then still be going away fron the earth. It Is 

then clear that the theorem Is established. 

THE PENUMBRA 

3he penumbra Is that range of conditions lying between Stfamer's 

necessary condition and the main cone. As is veil known, it consists, 

in general, of infinitely many allowed and Infinitely many forbidden 

trajectories. Sohrenqp concluded from an inspection of computed trajectories 

that in any particular direction of observation, at a latitude sufficiently 

near the equator, the penumbra consists only of forbidden trajectories. 
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He called this phenomenon the F cutoff. We will now prove this property. 

We need the same asymptotic trajectories, the earth, and assumptions 

as for theorem 1. In addition, we assume 

5- The asymptotic surface Is tangent to the motion boundary along 

a closed curve which encircles the asymptotic surface and cannot be shrunk 

to a point, and which nowhere touches the earth. 

ftiis Is easy to contrive whenever the first four assumptions are satisfied. 

Notice that in two of its quadrants the periodic orbit has x} < 0. Figure 

3 illustrates the argument we now make. It represents a portion of the 

asymptotic surface slit along the curve V = 0, A > 0 and spread out flat. 

The vertical line represents the periodic orbit. Clearly, that portion of 

the figure to the left of the periodic orbit, except for other possible 

regions of x' < 0, is established by the property noticed for the periodic 

orbit together with assumption (3)* From Foincare, we know that there are 

two surfaces asymptotic on the outer side of the periodic orbit. If we 

choose the one of those that consists of trajectories asymptotic In the 

infinite future, the portion of Fig. 3 to the right of the periodic orbit 

is established. 

Iheorem 2: When assumptions 1-3 hold, any trajectory which 

intersects the earth with x1 > 0 in such a point that It does not lie 

in the restricted main cone will intersect the earth at least once more 

before going to infinity. 

Any trajectory having the initial conditions specified will be 

entering a region of (x, A, V) space completely bounded by segments of 

the earth, the motion boundary, and the asymptotic surface. At every point 

on the bounding portions of the asymptotic surface» x' > 0. We will call 



-14- 

this region the pocket. The region In which a trajectory in the restricted 

main cone starts will be called the channel. Any trajectory which goes to 

infinity must enter the channel. A trajectory which starts in the pocket 

can do so only by penetrating either the earth or the asymptotic surface 

at a point where x' > 0. In the first case, the theorem is established. 

In the second case, it must have x' < 0 at the time of penetration. It 

cannot, while still in the channel, acquire a value of x1 > 0, since no 

portion of the channel Is bounded by the motion boundary. When x' < 0, 

it Is going toward the earth, and thus cannot escape to infinity. 

Consequently, any trajectory which starts in the pocket and finds Itself 

in the channel without having penetrated the earth can only re-enter the 

pocket or intersect the earth. The theorem is established. 

THE SHADOW CONE 

Figure k Illustrates the trajectories with which we are now concerned. 

Each such trajectory leaves the earth with x' > 0, X' > 0. passes through 

a maximum in X, then one in x, and finally becomes tangent to the earth again. 

Sometimes one such trajectory Issues from a given point, sometimes two do. 

We call such a trajectory a shadow trajectory. Consider a trajectory with 

either of the following properties. 

1. It leaves the earth with x1 > 0, X* > XJ where there issues 

from the same point only a single shadow trajectory having X* = XJ. 

2. It leaves the earth with x1 > 0, and either X' > XJ or 

X* < X'. Exactly two shadow trajectories Issue from the same point on the 

earth, one with X' * V, the other with X1 = Xi. 

Any such trajectory will be said to be in shadow. Schremp assumed that 
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any trajectory issuing from the earth in such a point that it is in shadow 

must again intersect the earth before it can proceed to infinity. 

Notice first that it is a simple consequence of theorem 1 that no 

orbits allowed by that theorem can be forbidden by the shadow cone. 

In order to understand the shadow cone, we must consider a surface 

in the (x, X, X1) space to be called the shadow surface. It is composed 

entirely of shadow trajectories. Inspired by families of shadow trajectories 

such as that shown in Fig. 5, we assume the following properties. 

3. Hie most southern member leaves the earth with x' = 0, 

becomes tangent to the motion boundary at X* = 0, and then returns to a 

second tangency with the earth. It has no other extreme in x between the 

two tangencies with the earth. We designate the point of tangency with the 

earth by X . 

U. Designate by X- the intersection of the earth with the curve 

obtained by equating the right member of Eq. (U.a) to rero. At each 

latitude between X and X. there Issues from the earth a shadow trajectory, 

having X' > 0 at the earth, which passes through a maximum in X, then one 

in x, and then becomes tangent to the earth at a latitude greater than X . 

5- There is a latitude, to be called X , north of which no shadow 

trajectories issue from the earth. The intersection of the earth, the motion 

boundary, and Xf = 0 is north of X . 

6. At every latitude between X. and Xp there issue from the 

earth exactly two shadow orbits, each of which has its tangency north of 

X . These issue from the earth with X* < 0. 
o ■• 

7. As one goes from X. to X , the initial slopes in the (x, X) space 

become more and more nearly equal. At X there is Just one shadow trajectory. 
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Figure 6 shows the shadow surface and that part of the earth bounded 

by Its Intersection with the motion boundary. The curves which lie both In 

these surfaces and in the motion boundary are shown dashed. The shadow 

surface Is shown shaded. The curve DBC Is the southernmost shadow orbit 

which begins and ends at X.    Die curve DA consists of the Initial points 

of shadow orbits. The curve AC consists of their tangency points. The 

curve AB Is the locus of their maxima In x, and consequently the shadow 

surface Is tangent to the motion boundary along this curve. On the part 

of the shadow surface bounded by DBAD, x1 > 0, on the remainder It Is 

negative. 

Ma require one more surface. It consists of all lines which both 

pass through the southernmost shadow orbit and Intersect the plane X1 = 0 

orthogonally. (A plot In the (x, X) plane of the southernmost shadow orbit 

always has DB and CB coincident.) That part of this last surface bounded 

by Its Intersection with the motion boundary and the curve DB will be called 

S . That part bounded by Its Intersection with BC will be called S .    That 

part bounded by DBCD will be called S_. 

That region of (x, X, X') space completely bounded by portions of 

the earth., the motion boundary, the shadow surface, and S. will be called 

I. That part bounded completely by portions of the motion boundary, the 

shadow surface, and S will be called II. That region bounded by part of 

the earth, the shadow surface, and S will be called III. Ihe segment of 

surface consisting of S. + S + S will be called S. 

Theorem 3: Wo trajectory which starts In region I can cross S 

until It has first crossed the earth. 

We establish this result by considering cumulatively various alternatives 
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1. No trajectory starting in I can cross S without first crossing 

S-, S , or the earth. To do so it would first have to cross the part of 

the shadow surface where x* > 0. At this crossing, by the uniqueness 

theorem, it must itself have x1 < 0. It would then have to cross the 

part of the shadow surface where x1 < 0, which it could do only by first 

changing the sign of its own x*. This it cannot do, since it is in III, 

no part of which is bounded by the motion boundary. 

2. No trajectory starting in I can cross S without first crossing 

S or the earth. To do so it must first cross the portion of the shadow 

surface where x1 > 0, so that when it is in III it has x' < 0. But It 

cannot cross S with x' < 0 for the following reason. As can be easily 

seen by a consideration of the relative slopes of trajectories plotted in 

the (x, X) plane, any trajectory crossing S from left to right while having 

x' < 0 must be leaving II, i.e., crossing S , rather than be leaving III 

via S . 

3- No trajectory starting in I can cross S without first crossing 

the earth. Since the point B in Fig. 6 Is in the X* = 0 plane, any 

trajectory crossing S. has X* greater than that at the same (x,X) point 

on the X' > 0 half of the southernmost shadow orbit. But any trajectory 

with this property is crossing S, to enter I, not to leave it. 

The theorem is established. 

ON APPLICATIONS 

In applying these theorems it is evidently necessary to construct 

the bounding families and see where they possess the properties assumed. 

The only families of asymptotic trajectories that we have considered here 
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exhibit the assumed properties for values of x greater than that corresponding 

to Schremp's F cutoff, except near the periodic orbit, where the earth's 

surface cuts through regions with x' < 0. At smaller values of x, the 

assumptions given apparently do not hold. Presumably from an Inspection 

of computed families, one could extend the main cone theorem using techniques 

like those exploited here. It Is evident that this latter case, as veil 

as the Just-mentioned small region near the periodic orbit are the situations 

where the shadow cone theorem has Importance. 
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Flg. 1 The shaded regions are forbidden. The solid curves are the 

intersection of the motion boundary with the plane X1 = 0. 

The dashed curves are the projections on the plane V *0 

of the principal orbits. The figure is drawn for y  = O.d. 
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X 0 

-0.1 

-0 2! 

-0.3 I 

Fig. 2 The inner asymptotic family for y  = O.85. 
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Locus of   X1 sO 

Periodic orbit 

X' >0 

Fig. 3 A representation of an asymptotic surface. 
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Fig. 4 — Shadow orbits. This figure is schematic 

and has no quantitative  significance. 
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Fig. 5 A family of shadow orbits when the radius of the 

earth is 0.4 StSrmer units and y  = 0.9« 



-24- 

Initrsaction of the torth 
ond motion boundary 

/ 

X2 r 
x,t P»V-> 

\ 
\ 

B 

/ 
1 X                    A1 

/ A, .*"„;'"» -jJr 

. /?<$W 
/'i \"s£*W 

1      / 
1    / •'•/ in 
1      /? 
•   M 
> / 
*/ x„/° *0* 
\ 
\ / 

\ / 
\ / 
\ / 

V s X ^4* 

%*■<; 

••»?•/; 

Southernmost 
shadow orbit 

Fig. 6 A schematic representation of a shadow surface 

(the shaded surface). 
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FIGURE CAPTIONS 

Fig* 1  Tbe  shaded regions are forbidden. The solid curves are the 

intersection of the motion boundary with the plane X' = 0. 

The dashed curves are the projections on the plane X' = 0 of 

the principal orbits. The figure is drawn for y  - 0.3. 

Fig» 2  The inner asymptotic family for 7 - 0.Ö5. 

Fig. 3  A representation of an asymptotic surface. 

Fig. h       Shadow orbits. Thi6 figure is schematic and has no quanti- 

tative significance. 

Fig. 5  A family of shadow orbits when the radius of the earth is 

0.4 Stormer units and 7  * 0*9* 

Fig. 6  A schematic representation of a shadow surface (the shaded 

surface)• 


