
BLANK PAGE 



o 
CO 

Q 

FTD-MT- 4j.i» 

IA 

»       M 

TRANSLATION 
CERTAIM MATHDUTICAL METHODS OF SOLVIMC milHSgRim PROBLEMS 

By 

I. A. Birger 

FOREIGN TECHNOLOGY 

DIVISION 

V 

* 

\     f       4        I- 

" J 

/$>     .' ^ y. 

^ ^Jv 
l^NCi^ 

AIR FORCE SYSTEMS COMMAND 

WRIGHT-PATTERSON AIR  FORCE  BASE 

OHIO 
r->   r->   /^ 

i     i _. i - 

KA    ^ 



/ 
1 / 

FOPEW^RD 

Thli docvmtnt is « machine translation of Russian 

ttxt which has bsen processed by the AN/GSQ-l6(XW-2) 

Machine Translator, owned and operated by the United 

Ütates Air Force.  The machine output has been fully 

post-edited.  Ambiguity of meaning, words missing from 

the machine's dictionary, and words out of the context 

of meaning have been corrected.  The sentence word 

order has been rearranged for readability due- to the 

fact that Russian sentence structure does not follow 

the English subject-verb-predicate sentence structure. 

The fact of translation doer, not Guarantee editorial 

accuracy, nor does it indicate U5AF approval or dis- 

approval of the material translated. 



SCIENTIFIC AND TECHNICAL INrORMATION FACILITY 
op*ratod for National Amronautiei and Space Administration by Documentation Incorporated t 

Poif Office Box 5700 
Betheido, Md   70014 

Telephone!656 ,850 

|65d-2851 

FACILITY CONTROL NO. .'d*/^   I 

DATE /\  '/ . ^ 

ATTACHED IS A DOCUMENT ON LOAN 

FROM:    Scientific and Technical Information Facility 

TO:      Defense Documentation Center 
Attn:  DDC-IRC (Control Branch) 
Camero.i Station 
Alexandria, Va.  2231^ 

In accordance with the NASA-DOD Cooperative AD Number Assignment Agreement it is 
requested that an AO number be assigned to the attached report. 

' As this is our only available copy the returr of the document (with AD 
number and any applicable distribution Iiuitat ions) to the address below 
is essent i a I . 

r--| 
1   This  document   may   be   retained  by   UDC. If   retained,   please   indicate  AD 

number   and   any   applicable   distribution limitations   on   the   reproH'-cd 
copy  of   the   title  page  and   return   to   the  address   below. 

teturn  Address:      Scientific  and  Technical 
Informat ion   FJC i lily 

Attn:      INPUT   BRANCH 
P.   0.   Box   5700 
Bethesda.   Md.     2001^ 

L   2^ 



CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI 
DOCUMENT MANAGEMENT BRANCH 410.11 

LIMITATIONS IN REPRODUCTION QUALITY 

&0 £ ot. v -y 7 
^ ^ 7 / V- 7 7 

(^    I.    WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART 
UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST 
AVAILABLE COPY. 

Q   2.    A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL 
WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT. 

□ 3. THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION 
COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION 
ONLY. 

n   4-    THE INITIAL DISTRlbUTION COPIES CONTAIN COLOR WHICH WILL 
BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO 
REPRINT. 

n   5    LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL 
^ BE AVAILABLE IN MICROFICHE ONLY. 

r     6     LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL 
NOT BE AVAILABLE. 

O 7.    DOCUMENT IS AVAILABLE IN MICROFICHE ONLY. 

□  8     DOCUMENT AVAILABLE ON LOAN FROM CrSTI ( TT DOCUMENTS ONLY). 

D' 

PRnCESSOR:   / 
TSL-I07-I0 64 ^    ^( ^ 



FTD-MT-63-X90 

EDITED MACHINE TRANSLATION 

CERTAIN KATHSUTICAL METHODS OP SOLVING EMGINKERINC PROBLEMS 

BT:    I. A. Birger 

Bhgllsh Raget:   167 

TNIS TIANSLATION IS A RENDITION OF TNI ORIGI* 
NAt RORIION TIXT WITNOUT ANY ANALYTICAL OR 
IDITORIAL COMMINT. ITATIMINTS OR TNIORIIS 
ADVOCATIDOR IMPLIID ARITHOS1 OF TNI SOURCI 
AND DO NOT NICISURILY REFLICT TNI FOSITION 
OR OFINION OF TNI FORIION TECNNOLOOY DL 
VISION. 

FRIFARRD iYi 

TRANSLATION DIVISION 
FOREIGN   TECNNOLOCY DIVISION 
WF-AFR, ONIO. 

FTD-MT-63-190 Data    6 Apr 19 6 



Z. A. Blrgtr 

NBKOTORYTE MATEHATICHESKIE METOOT RESHENIYA 
IMZHENSRimCH ZADACH 

GotucUrstvenno« 
Isdftttl'ttvo Oboronnoy Prongrfhlennoeti 

Moskva - 1956 

Page« 1-151 



TABUE OF CONTENTS 

Introduction  

Chapter 1. Normal Fundamental Functions of Linear Differential 
Equations With Constant Coefficients  

1. Statement of Problem  •', 

2. The Homogeneous Equation  r 

3. Recurrent Relationships Between Normal FunUamemal Functions  S 

k• Solution of Jnhomogeneous Equation *.... 1* < 

5« Discontinuous Solutions  11 

6. Examples of Applying Normal Fundamental Functions  1« 

7. Other Applications of Normal Fundamental Functions  26 

8. Normal Fundamental Functions of Euler's Equation  Jl 

9. Application to the Integration of Equations With 
Variable Coefficients  r 

Chapter 2. Normal Fundamental Functions of Linear Differential 
Equations With Variable Coefficients  4A 

1. Statement of Problem «  U* 

2. Determination of Normal Fundamental Functions and of a 
Particular Solution by the Method of Successive Approximations..,, L,f 

3. Discontinuous Solutions  %' 

4. Application of the Linear Approximation Method  53 

5. Method of Moving Origin  5^ 

6. wuasinormal Fundamental Functions ,  62 

Chapter 3« Boundary and Normal Integral Equations  66 

1. Classification of Equations ,... 6V 

2. Formation of Integral Equations From Differential Equations  7^ 



3* The Solution of Hoaogoneous Boundary Integral Equations..  80 

4* Tha Solution of Honoganaoua Normal Integral Equations  89 

5« The Solution of Inhonogeneous Boundary Integral Equations  94 

6. The Solution of Inhonogeneous Normal Integral Equations  108 

Chapter 4.    Application of Bounoary and Nornal Integral Equations 
to Problems of Structural Mechanics 116 

1. Flexure of Rods in a Field of Centrifugal Forces  116 

2. Vibrations of Rods  122 

3. Critical Speed of Shafts  135 

4. Stability of Rods  143 

5. Extension and Flexure of Round Plates (Disks)  153 

6. Symnetric Deformation of Shells of Rotation  159 

Literature ••••  IhL 

ii 



In book thore  Is given an annlication of normal fundamental 
functions and integral equations for solving engineering oroblems. 

Examples, considered in work, refer to problems of strength, 
stability and vibrations of elastic systems, however, the results 
can be used also in other fields of engineering. 

Editor Candidate  of Technica]  Sciences,  Decent M.   I,.   Kemnner 

Director of editorial ofiice Engr.   15.   V.  Latynin 

u.i 



BLANK PAGE 



INTHOÜUCTluN 

Frequently the solution of öngineering prcbiema reduced ho a ^olv on oi 

ordinary differential equations or their systems *ith boundary condjtjons of a 

general form. If the corresponding equation has a high order anr1 varii^li co- 

efficients, then the problem is found *o be difficult, since the f^acmiß of ii. 

accurate solution usually is not successful. This refers even to second ^d« : 

equations, if they do not reduce to known equations (for example, Beaael eqi t/ r), 

the solutions of which have been tabulated. 

Difficulties arise also in thor.e cases,  when an accurate solution   is known 

(for example,  for differential equations with constant  coefficients),  b t u'th , 

limits of interval of changes of the independent  variable,  the sought  function  v. 

its derivatives experience discontinuities  (for example,  problem on  fi xur«.   oi 

rod under action of concentrated  forces and moments,   problem on d:. ' "..tut. ion  of 

temperature in rods with branches). 

The most effective way of solving in the   Latter  case  is tn« appljcition ol 

normal fundamental functions,  as was demonstra^od in worki: of the outstanding 

Academician, mechanics and mathematics special.st,   A.   N.   Krylov. 

In those cases,  when the probie... reduces  to differential equations with 

variable coefficients,   it seems  expedient to proceed to  in'-egral equations.     The 

idea of such a transition is  intimately connected with application   ,f method of 



■uc^Mflv« »pproximttiona for the solution of diff«rentlt,l «quatlons, however, a 

tren8itl"»n to Integrtl equations makes it possible to use more general and more 

effective solutions. 

In this work there is considered the application of method of normal fundamental 

functions  (Chapters 1 and 2), and also there are investigated boundary and normal 

integral equations (Chapters 3 and 4). 

Examples of application refer to problems of engineering Mechanics,  however 

the fairly feneral discussion makes  it possible to apply the results also in solving 

other engineering problems. 

Author expresses gratitude to Academician L.  I.  Sedov,  to Acting Member of 

Academy of Sciences of Ukrainian 3SR, 3. V. Serensen,  Professors F. R. Gantmakher, 

R.  3.  Kinasoshvili, 3. D. Ponoraarev,  P. M. Riz,  Doctors of fSngineering Sciences, 

V.   K.  Zhitomirskiy, V. Ya.  Natanson for critical remarks and advices in revievvin^ 

the manuscript. 
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C H A P T E R 1 

NORMAL FUNDAMENTAL FUNCTIONS OF LINEAR DIFFERENTIAL 
EQUATIONS WITH CONSTANT COEFFICIECTS 

Effectiveness of use of normal fundamental functions in engineering problems 

was established in widely known works of A. N. Krylov. In the subsequent works of 

P. F. Papkovxch, Sh. E. Mikeladze, N. K. Snitko and others, the3e functions were 

applied in solving a number of problems of structural mechanics. 

The special advantages of normal fundamental functions are reflected in 

constructing discontinuous soxutions of differential equations with constant 

coefficients (of solutions with given discontinuities of the derivatives). 

Comnrehensive experience in constructing and using such solutions in problems 

of structural mechanics (beginning with the known nroblem of integrating equation 

of elastic line of rod) made it possible to generalise the results for linear 

differential equations of arbitrary structure (Works of Sh. E. Mikeladze). 

In this work there are established general formulas for determining normal 

fundamental functions and simnle differential relationships between them. 

By means of general relationships there are obtained already well-known systems 

of normal fundamental functions and there are given certain applications of these 

functions. In particular, they are used for ar. approximate integralion of differ-

ential equations with variable coefficients. 

The solution of differential equation is presented in matrix form, which is a 

mathematical expression of a known method in structural mechanics of initial 



P4r«att«r8 (Works of A. A. Umanskiy, N.  I. Bazukhov,  N. G. Chudnovskiy and others). 

1.    Statement of Problem 

Suopose there is given a linear differential equation of n-th   order 

4(j>)-y-'(^)-f/»i(*)y"-"(*)+ . .   +pA*)y{*)**/(*)       (i.i) 

or 

ipt(*)/-H*)-/(*y ,   x 

the solution of equation (l.l) in a certain interval of change       x(a<x'b)J 

is sought. 

The totality of n      (linearly independent) solutions of the homogenef-us equation 

(1.1, {^»(Jf)} (*Ä0,1 n-l). satisfying the condition 

^^'[o irk   (i. ik=»0, 1. .   .     .n-l). d^) 

is called the normal fundamental system of solutions of equation (1.1) vd-th the 

initial section x = a. 

The particular solution of equation (1.1),  corresponding to zero initial 

conditions,   is designated       V•(-*)• 

Thus, 

K("(a) = 0    0-0. I..   .   ..n-l). (1.4) 

(If (K4(-<)} and        /«(*).      f are ^ovm then the solution of equation  (l.l) 

is nresented as: 

yi*)~mly{k){a)y><*) + r.{x). (1.5) 

^ 



where yik> (a) (k=0,...,n—1) — are values of the function y(x) and its 

first n—1 derivatives in the initial section x — a. The indicated values arr 

called also initial parameters. In solving boundary value problems, there is use 

usually not only the function y(x), but also its derivative UD to n—1 order 

inclusively. 

For the future it is exnedient to introduce "the column—solution" 

Lv(*)l = 

>(*) 

yl»(x) (1.6) 

From equa l i t y (1 .5) by successive d i f f e r e n t i a t i o n we f ind 

LM*)l = [r(*)l[j>(a)| + [K.(*>]. 

where 

l^W) = 

•̂(-*) 1̂ (v) • .' . Ka-x(A') 

(3.7) 

(1.8) 

is a normal fundamental matrix of the homogeneous equation (1.1), and 

I.V(a)H 

y(a) 
yO)(a) 

y - 1 ' (a) 
IM*)1 

is the column of initial parameters and the column of a narticular solution. The 

normal fundamental matrix in initial section is unitary and columr.— the part-

icular solution — is zero. The solution (1.7) corresDonds to the anplication of 



the method of initiel paraweters, widely uand in engineering problems.    This 

eolution we shell cell the solution in matrix form. 

2.    The Homogeneous fo^uatjon 

let us consider a homogeneous differential equation with constant coefficients 

»e 

luopose     fM) is the characteristic nolynomial of equation  (2.1): 

FW- |p^-'. (2.2) 

the roots of which we shall designate       \, (s~0, I,...). 

If we subordinate  the selection of arbitrary constants  to the condition 

y)(a) = V        (^-0. !'• -    • "-O- () 3) 

where     ^      is a certain parameter,  then the solution of equation (2.1) will be 

such 

V-rJfik) ('•'*) 

where B is the symbol of operation of a ccmnlete  integral residue. 

If now WB expand expression {2.U)  into a series hy derrees  of the  narameter 

tjt   ,   then,  as was established ever by Cauchy,   the  normal  fundamental   functions of 

equation  (2.1) are found  to be the coefficients  of the exnansior; 

yW-Mxjv+K.OOV-»- • ■    +^ .(«)V '• (-^ 

« 
A.  N. Krylov, On Certain Differential liquations oT Mathematical Physics, GITTL, 

M.—L.,  1950. 



After discussing this result A. N. Krylov in the work On Certain Differential 

Equations of Mathematical Physics' turns tc the consideration of concrete differer. 

equations of sinrole structure, for which he also makes the indicated expansion. 

However, it is possible to establish certain general results, valid for differenti 

equations of arbitrary order with constant coefficients. 

We shall assume at first that the roots of the characteristic polynomial 

Xo, are all simple. 

In introducing the vaJue 

1*0 

ft —0 <-o 

(2.6) 

into equality (2.U), by making a calculation of integral residue and by ccnsiderir 
•» 

the expansion (2.5), we obtain 

*-I-A 

el, (*-<>) 
,..0 \ P l ( n - i ) l n , ' 1 (2.7) 

I =0 

(* = 0.1 n — 1; /70 = 1). 

In this equality X, (s=0, 1 n 1) are roots of the characteristic nolynom. 

In a particular case for function t (A) there is obtained the following 

exnression: 

El , ( j a) 

v-i — : 
V Pi{n — i ) l , 

».(*-«> (2.8) 

<=0 

5-0 (p.-n-

*This result also can be obtained by methods of operational calculus. 

•7 



Wt now consider the caae of multiple roots. Suppose the characteristic 

polynoniel (2.2) has m different roota  X, (4=0,1,...(/n- I)        with a 

Bultiplicity  »•• 

Relationahlpa (2./*) — (2.6) remain in force also for the considered case and 

therefore 

Yk (x)« ß —-^ e^'~ °K (2.9) 

After calculating the complete integral residue,wo will find 

I   <•-!-* 
-I 

I <J'•-, 

^^"ZJK-I)'   dA'.-l 

2 ^ .«-i-»-/ 

1-0 
m~l 

gXiM-m) 

-—- n o-^r' 
>-». 

(..10) 

Differentiation in this equality is conducted with respect to      ^        and into final 

result there is introduced    X = Xi. 

If all     v,      «- 1 (s '■■ 0, ...,ra-l),   then m - n and 

j-L-fJCX-^l      ~f "(>,).   V^>- /)ä; n -I- 1 

1-0 li-l. 

formulas  (2.7) and  (2.10) coincide. 

At k ^ n-1 from equality (2.10) we  find 

i-i 

r.-.o*) V    J      d 

\~t <:,:- D' OK 

~m    I 
(^.11) 



In the future there will be given examples of use of formulas (2.7) and (2.10). 

We note that in the formula for Yk(x) (k — 0,..,n—1) the value of 

the coefficient P- does not enter. Its magnitude exerts an influence only on 

the value of the roots of the characteristic Dolynomial. 

3. Recurrent Relationships Between Normal 
Fundamental Functions 

From formulas (2.7) and (2.10) it is possible to establish the following basi-

relationship: 

± Y k ( x ) ~ K*-l (A)--Pn->Y„-X{x) 
dJC (h 1) (A = 0. 1 «-l). ° ; 

In this formula it is necessary to assume y\(.v)ŝ 0 at . Tnus, for 

example for derivative Yo(x) we shall have 

— K,(JC)= -pnY„-,(*)• 
dx 

Equality (3.1) makes it oossible to seek a system of normal fundamental 

functions of an equation with constant coefficients, if there is known, for 

example, function Wi(*) • "his method frequently is found to be in practiral 

problems very effective, since the determination of YVi(*)- by lonnulas (2.3) and 

(2.11) are relatively simple. 

On the basis of equality (3-1) 

r.-A*) K»-' +Pxy*-i (*)• dx 

Yn-i(x) — ^ 

what results in a subsequent determination of all V*(x) '•—,n '* 

L1 



Th« recurrent relationship (3.1) makes it  possible to express derivatives of 

the function Ki'^x) (/, A"aOl,..,n—I)  by a linear combination of the normal "uncUunental 

functions. 

k.    Solution of Inhomo^eneous Filiation 

Suppose there is given the nonhonu-geneoua equation 

itpy""(*)~/M    ^i y^) .yun. ^v 

The oarticular solution of equation (4.1) satisfying the zero initial conditions 

may be, as known,  presented in the  following form: 

y9ix)^Yn-i{X'-s + a)/(s)d5, (U.2) 
a 

which readily is verified by a direct  substitution.    This result can be establii.heJ 

also by means of theory of integral residue, if equalities  (2.8) and (2.11) are 

used. 

For an explanation of the writing in the form (4.2) wo shall present an 

illustrative example. 

For the equation y^Hx) + y (x) ^ /(x) 

we have 
K#(t) =^cos(.v -a). 

K, (x)- sln(i - 

Y%{x)^]ri,.l(x-s^ a)fis)ds    Jsln(<    s) / (s) ds. 
« a 

General solution of equation (4.1) will be thus: 

»-o 0 

The solution in matrix form has the form (1.7). 

Jc 



5. Discontinuous Solutions 

We shall seek the solution of equation (4.1), satisfying the given initial 

conditions and having given discontinuities (discontinuities of fi~st order) of 

derivatives un to n—1 order inclusively. 

Such a type of oroblem is encounLered during calculation of concentrated 

influences. We note that coefficients of equation do not have discontinuities 

in entire interval of change x . 

Sunnose the function y{,)(x) (' = 0,. . . ,n — 1) has m discontinuities, 

located in the section x — a,/ (1 The discontinuity of 

in section x = a,, f will be designated as: 

y)(a,/ + 0)-y">(a>y-0) = ̂ » ( 5 t l / 

(> = C. 1, . . . , n — 1; /= 1 m,), 

Function _y<" nossessing given discontinuities must have the follfwing 

structure: 

y(" (•*) = ?,(x) S(x, a„j) (5.2) 

(v = 0, 1 /i-l), 

where S(.t, n,j) is a single function, determinated by the equality 

S(x. »•/)-{" (5-3) 
(1 

?»(*) is a continuous function. 

Function y(x) which is a solution of the stated nroblem has to satisfy equation 

(4.1), the initial conditions and condition of discontinuities (5-2). 

* Presence of discontinuities of function y(x) and its first n—1 derivatives is 
not associated generally speaking, with the continuity of coefficients of the 
differential equation. There may take place also the reverse case, i.e., continuous 
solution in the presence of discontinuous coefficients. 

11 



I t can be established that 

y (x)« y<*> (a) Y„ (x) + t | S (*, a»y) 4}*> >'»/ (*) + Y, (*) ( $ 4 ) 

corresDonds to the indicated conditions, if functions of ^(*) satisfy the 

homogeneous differential equation (4.1) and the relationship 

w-Hi (5-5) 
(», 4 = 0, 1 n—1). 

Functions of Ynj(x) should be continuous together with the n-1 derivatives. 

Prom the preceding it is clear that function »V/ (A) is normal fundamental 

function with the initial section x — ak). It is sufficient to assume 

Ynix)~Yk(x-akJ), (5.6) 

so that all the indicated conditions above were satisfied. 

Thus, m 

>(0 = 2 (a) Yk (x) + "l y S (x, akJ) (x - akJ) + t -o o 
(5.7) 

+ (X-S + a) / (s) ds. 
S 

The solution (5.7) can be written in a more symmetric form, if initial values 

of the function are considered as the given discontinuities after assuming 

y(a) = A««). . y<"-> >(a)~ Aj-» 

and by assuming all «»==« (jfe = 0 n — 1). 

Now, equality (5-U) we shal l write out as: 

y(x)=*l'is(x, akJ) (5.8) 
»—o /-.a 

The solution of type (5.8) long ago was used in structural mechanics for 

equations of particular forms. By another method and in another form formula (5.8) 
* 

was established by Sh. E. Mikeladze . However, in the reasoning of the author an 

*Sh. E. Mikeladse, Certain Problems of Structural Mechanics, State Engineering 
Publishing House, Moscow, 1948. 

1Z 



error creot in: equality (5.8) is correct only for an equation with constant 

coefficients, since only in this case, functions Yk(x—ak,) satisfy the 

corresponding differential equation. 

Î t us turn to the solution in matrix form. For convenience in writing we 

assume that in section x = ajthere is in a general case a discontinuity of all 

derivatives which characterizes the ''column - discontinuity". 

[\\ = 

A<0) 

1) 
(5.9) 

Certain elements of this column, of course, may be equal to zero. 

The discontinuous solution of equation (4.1) in matrix form will be: 

(>>(*)! = gs(x, a,) [K(V-aj)\ b,| + [K»(x)J. 

where m is the number of sections, in which there are discontinuities, 

ihe initial column-discontinuity is 

(5.10) 

IA.1 
y(a) 

yOi(a) 

(5.11) 

The matrix [y(x—a,)] has the form (1.8), where functions >'t(x) are 

redaced by y»(x—a;)- If all elements / X / are given, then the 

discontinuity will be called independent. Frequently, however, there are en-

countered Droblems, in which discontinuity of der'vative yl,) (*) in the section 
derivatives/ 

x=ai depends on values of function y(x) and its / in the same section 

15 



(in th« presence of discontinuities we shall for definiteness consider the left-hand 

values of functions in section *=<!/; the results almost without change are 

applicable for the case, when one should consider right side values). 

Thus, 
(Ayl — [Cyl I jr (â)l. 

(5.12) 

In this case the discontinuity will be called dependent, and [_ \Cj is the matrix of 

deoendent discontinuity. In theory of rods frequently there is used the equation of 

fourth order, in which 

- CKJy (<aj) + Cnjyi"(a,). 
Then 

[Cj\ 

(5.13) 

- 0 0 0 0 " 
0 0 0 0 

£»oJ Ctij 0 0 

_ ***7 c*v 0 0 (5.14) 

Discontinuous solutions can be applied both in case of concentrated influences on a 

system, and in the presence of discontinuity-like variation of the parameters in 

different sectors of the system, being described by one and the same differential 

equation (for example, flexure of stepped rod). 

6. Examples of Applying Normal Fundamental Functions 

As an example we shall consider the problem on flexure of a rod of constant 

section under action of given external forces (Fig. 1). 

The differential equation has the form 

(6.1) 

where y(x) is the sag of axis of rod; EJ—the strength of the section to flexure, 

f(x)«—the distributed load per unit of length of beam. 



Characteristic Dolynomial of the homogeneous equation 

F(X)-X* 

has root X»=0 of fourth multiplicity >«~4. 

y 

t(X) 1 

tMf H» M» » t M ftt# »t m i t!!.] 
r~ JX, 

- — — 
a,7 

Fig. 1. Flexure of Pod. 

From formula (2.10) we find (n = 4, m - 1, a - 0) 

From equalities (3.2) we determine 

Kl(x) = ̂ K,(,) = ̂ . 

Of course, this system could have been written by not resorting to total results. 

The function 

At points of applying concentrated bending moments M> and forces P< there are 

discontinuities of the derivatives 

M» = -y, 
1 EJ 

AO) = P-L . 
1 EJ 

15 



On the basis of equality (5.7) we obtain the known equation of the elastic 

line of a rod: 

y (*) =y (0) +j/<" (0) X (0) | p ( a ) J + 

+^«S(-K. a«y)Aj0)+^ S(x, flv)Ay>(* — a,y) + 

* 
^?/(s)ds. 

0 

(6.2) 

In composing the equation it was assumed that the elastic line has in the sections 

<>•< discontinuities of sags, and in the sections an —discontinuities of angles 

of rotation. 

In practice, such a case can be encountered for a compound rod. 

Equation (6.2) will be valid also for a rod with a graduated change of the 

section, if one were to introduce in corresponding sections the discontinuities 

where M(bj) and Q(bj) are the bending moment and the transverse force 

in the section * ~ */• 

The normal fundamental matrix of equation (6.1) will be thus: 

in*)i= 0 1 * fr 21 
0 0 1 X 
.0 0 0 1 _ 

(6.3) 

1G 



WB consider now flexure vibrations of a weightless rod of constant section, 

carrying masses mi and moments of inertia I, (Fig. 2). In these sections t,he-e 

will be the dependent discontinuities. 

EJ EJ ' EJ 
p, (6.4) 

where#- is the angular frequency of natural oscillations. 

The column of the denendent discontinuity is e:.nressed as: 

y(,)K) 
yr){a}) A}'> 

# / ~ 0 0 0 0 

A}'> 

0 0 0 0 

A}'> 
= 0 

EJ 
0 0 

A<»> •>'m ) 

JTEJ 0 0 0 

(6.5) 

In sections, wnere supports are located there will be a discontinuity of the secom 

and third derivative in accordance with magnitudes of reactive moment and forcu. 

W} = Kujy{aj) + K,tJyi"(aj). 
W-KmuyW + KujytHaj). 

In ma jo r i ty of rea l cases Ksti^O and /(J l (=r0; fo r e l a s t i c suDports /(s«;<0, Km 

"ii'i *I,'I — 

i 

Fig. 2. Critical Sneed of Shaft 

The matrix of discontinuity for an elastic support has the form 



" 0 0 

0 0 

KMj K%ij 

Kuj K*i/ 

0 0 
0 0 
0 0 
0 0 

A rigid support nifty be taken into account by selecting the corresponding coefficients 

of rigidity of the elastic support. We note also that a rigid support which 

eliminates the section of linear mobility is equivalent to an application of a 

support eliminating angular turns corresponds to an application Ij-*-oo. The 

solution of the problem in matrix form is expressed by the equality 

aj) [Y(x—aj)] [CJ [y(a,)\, (6 6 ) 

where /~Y(x)_7 i® t-*1® fundamental matrix of equation of flexure of rod; is 

matrix of discontinuity, corresponding to concentrated mass or elastic support. 

Equation (6.6) is useful also for calculating for critical speed of a weightless 

shaft, loaded with separate disks. 
-a-

For the case of forward synchronous precession the matrix of discontinuity in 

section, where disk is located, will be thus: 

- 0 0 0 <r 
0 0 0 0 

0 -»/y 
EJ 

0 0 

mim j 
- EJ 0 0 0 

where my is the mass of disk; /<• —is the equatorial moment of inertia. Thus, 
-a-* 

for example, the discontinuity of second derivative 

*The concept of forward and reverse synchronous precessions is given in Chapter 
U, Section 3. 

**This equality in work of A. N. Krylov, "On Determining the Critical Speeds of a 
Revolving Shaft" (Academy of Sciences of USSR, Moscow, 1931) and later also in the 
work of Sh. E. Mikeladae "New Methods of Integrating Differential Equations" Moscow, 
State Theoretical Technical Publ. House 1951, is erroneously used with the minus sign. 
It follow* from this, that the calculation of gyroscopic moment of disk during a 
forward synchronous precession does not increase, but lowers critical speed of shaft; 
thia is not true. 



In calculating a reverse synchronous precession for thin disks one should consider 

The calculation by equation (6.6) must be made in sequential order, in 

determining 

"° 0=1, 2. 3. . . . , m). (6,7) 

SuDpose there is a certain number of unknown initial n&rameters (in considered 

problem there are two); then the same number of homogeneous boundary conditions 

should exist at x = b. As a result of the calculation we obtain 

= (6.8) 

In this equality, the column contains only the unknown initial parameters, 

and the column [y(6)] — those values of y'*' (b) i*-0,...,n—1), which enter into 

boundary conditions at x = b. 

In considered case boundary conditions are such: 

(y(«»)]=0t 

and then from relationships (6.8) tnere ensues 

-telM-I-O. (69) 

Since the coefficients contain or. then equality (6.9) is the characteristi> 

equation for determining the eigen values. 

Problem of calculating consists, essentially, in deteriming of elements of the 

matrix [J4U]. 

We discuss now in reference to the considered scheme of calculation one method, 

belonging A. N. Krylov (See "On Determining the Critical Speeds of Revolving Shaft'), 

this method makes it Dossible in most cases to simplify the calculation considerably. 

Suppose the element, standing in the i-th line of column of initial parameters 

is unknown (for definiteness, we assume 1—2). 
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Then we introduce the unit column 

I o -
!><«)•] = 

(6.10) 

I 

0 
0 

where all elements —seros, excent standing in line i. With the initial column of 

(6.10) we conduct entire calculation, which determines elements of matrix [/!(»], 

standing in column i. After having made so many such calculations of so many un-

known initial parameters, we determine all the elements of matrix. 

We note that in a majority cases with u3e of equalities (6.7) there is no 

necessity to calculate all elements of matrices (K(a,— a>)], which also 

facilitates the conduct of calculation. 

In calculating the mass proper of rod (or shaft) we proceed from the equation 

where y(x) — amplitude sag of axis of rod; 

EJ 
(here fF —is mass of unit of length of 3haft). 

Characteristic nolynomial of equation (6.11) 

has the roots 

On the basis of formula (2.7) we obtain /unctions, introduced by A. N. Krylov 

yl*>(x)-m'a*y(x) = 0, (6.11) 

" = — X i « s i a ] / u > , X , = — i s 

V»x + COS a y^o)*); 

M-*)=2"4~ a Vmx+sln 8 Va,x)' 
#-o 

3 (6.12) 

"•W-S T - ^ - 5 ^ 
»-o ' 

y<»x — sin i V*x). 
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The functions K0(x), K, (A), KJ(.V) also can be obtained by means of 

recursion formulas (3.1). In using relationshiD (3.1), we will find fundamental 

matrix of equation (6.11) 

IK(*)| = 
M<) y, (*) f'.w 

®s«4Ks(.r) K0(O Y\(X) 
u>W,(*) K0(.v) 

M A ) 

Yz(x) 
YA*) 

(6.13) 

»VK,(.t) w*a%(*) wVK,(.r) Yt(x) 

All preceding results relative to vibrations of red remain in force, if o:,ly 
-* 

instead of matrix (6.3) we use matrix (6.13) . To the same degree this refers also 

to calculating the critical numbers of revolution. 

We nresent an examole , referring to determination of critical sneeds of shaft 

with one disk (Fig. 3) in calculating the mass nroner of shaft. 

*If the mass of rod becomes vanishingly small (a-*0). then matrix (6.13) 
transforms into matrix (6.3). 

This examnle is found in work of A. N. Krylov "On Determining the Critical .Jneedr: 
of Revolving Shaft", in Sect. 10. However, in tne solution errors crent in and made 
the result incorrect. Besides, the already mentioned error with the sign of the 
gyroscooic moment, in equation (58) of this work and subsequent equations, the ex-
pression for y' ' is written without consideration of influence of discontinuity. 



The column of initial values has form 

U.] = [CO1I.V(A)!-

The column of first discontinuity (x = ) 

0 

y ? (0) 
0 

yW (0) 

~ 0 0 0 0 -
1 0 0 0 0 

IA,] = [C,l(>(a1)] ̂  0 a* ' /1 

EJ 
0 0 

_~EJ 0 0 0 

y ( a i ) 

y(,) K) 
(a,) 

y(3) (<0 

y 

U 

•— a,—-

4 

I -

I EJ 
u>'/ni 

0 
0 

yn(a,) (6.14) 

F ig . 3« Shaft with one d i s k . 

- EJ 

Since boundary conditions at x = 1 

y(0«0, y>(/) =0. 

then there must be calculated in matrixes of equation (6.7) only these two lines, 

and for determining the discontinuities, also y(ax) and y 1 ) (di)- We shall 

have from relationships (6.7) and (6.13) 

|>(o») 

r .> V in \ V.in\ „<n/n\ 
(6.15) 

X y, (h) X Ma»r - 0 
X M«.) X f '.c.) ym (0) 

X X X X 0 

X X X X y(3) (0) 
y («») 

Here, elements of matrix, not participating in calculations are marked x . 

From (6;15) it is evident 

jrM-yM (0) K, (a,)+>»« (0) Ks(a,)f (6.16) 
y«> («,) .yi) (0) K, (a,) +yW (0) K, (a,). 
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For the sec t ion 

Ijrwy 
yo) (/) 

><J) (') 

'x MO x M 0 ~ 
X X X X 

X - V K , ( 0 x M O 
X X X X 

X X c l ) 

X X X X 

x x K 0 ( / - f l , ) 

x x x x 

I O * / ] 

~TJ 
«o >m 

~£7 

0 
y»(0) 

0 
y(3) (0) 

0 
0 

i - y l ) ( a , ) 

Ly(a i) 

Hence 
y (/) = y » (0) K, (0 + y 3 ) (0) K,(/) + - Y, ( / - a , ) X 

X y , ' ( a i ) + ~ L K 1 ( / - « l ) j f ( f l l ) . 

y> <o=y > (0) (/) +y:" (0) y\ (/) + X 

X K0 ( / - a,) j.<»> (S l) + y, (I-ax)y (a,). 

(6.17) 

In introducing values of (6.16) and considering condition (6.14), we obtain 

a system of homogeneous equations 

y» (0) [K, (/) + Kj, (/-a,) Y, (a,) + 

+ ̂ - K, (I-a,) Y, («,)J+y» (0) [K, (/) + X 

X K, (/ — a,) K, (a,) + -=gi- K, (I - a,) K, (a,) j = 0. 

><•> (0) {.W,(/) + ^ L yo (/_ a.) K0 (a,) + 

+ J^LKI(/- a,) Yx (a,)J + y', (0) {K, (/) + Jg- X 

X K, (/- a,) K, (a,) + K, (/- a,) K. (a,)j -0. 

or in matrix writing 

(6.18) 

An Alt 

*̂i An 

y"(o) 
j,O)(0) 

=o. 
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The equality to zero det MJ»1 gives the characteristic equation for determining 

The roots of equation are most simply found graohically by means of, constructing 

the function 
F (•') = — A 

(6.19) 

and in anproaching limits by means of a linear interpolation between the Doints 

F>0 and ^<0.. We note that in matrixes there are calculated elements, 

standing in columns, corresponding to lines in columns of the discontinuities. For 

all intermediate sections there are maintained only lines necessary for calculating 

the discontinuities; for the last section -- lines corresponding to boundary 

conditions. 

With a large number of discontinuities the presented method becomes cumbersome, 

since all the time it is necessary to determine the values l>'(<*«)] by the 

initial oaramsters. 

In this case it is expedient to use method of A. N. Krylov, the application of 

which, we shall illustrate in this same example. We introduce the column of initial 

values 

" 0~ 

1 
0 • 

0 

and then from equalities (6.15) we obtain 

><«.)•= VA°i). 

Then ws shall have 

ZH 



y>(0« 
X K , ( / ) X x " 

X X X V 

x 0»VK, ( / ) * x 

X X X X 

ly»(Q* 
yJ»(/)• 

x x y»(i~a\) 
X X X X 

x x r . (/—«.) V» (/ — «.) 
X X X X 

0 
\ 
0 
0 

0 
0 

«>•/, K0(rt,) 

- ^ L K,(«,) 

hence 

> ( / ) ' = A i - y «(0 + - ^ 1 K1( / -f l , )K e(a1) + 

><«(*)' = /»„ = «*a4K, (/) + K0 ( / - a,) K, (a,) + 

+ ~ j - K 1
( / - a 1

) K 1
(

a , ) . 

Analogously we find and .422 and then function (6.19). 

In taking into consideration the mas3 and moment of inertia of sections of 

rod or during action of constant, longitudinal force, the differential equation of 

the oroblem will have the form 

>«>(A)+/»,y2>(x)+/».y(x)-o. 
(6.20) 

We shall determine the normal fundamental functions of this equation, by using 

results of Sec. 2 and Sec. 3. 

The rootr of characteristic polynomial 

- ± V ~ T+\f'i ->« 
YI 7. 
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we designate 

I*. 

Further one should considsr ths relationship 

,»M -pt. 

Froa squslity (2.8) we obtain 

y f r \ , V «** I 
" ' Jd V+2/*» V + W 

. «" r" m i f i j _ VJCi 
!»•- *• I * §i0t » 

i 

In using, now relationship (3.1), we find 

Iw+ij iW" -fr5[7la'-T „ ; 4 
n w - j f.M— 

Equality (3,1) oaliM it paaaibla to determine all elements ef fundamental matrix of 

equation (6.20). 

7. Other Applications of Normal Fundamental Functions 

Let us consider an axially symmetric deformation of a closed cylinderic shell 

(Fig. u)> The radial displacement of points -tf'Mle surface we designate as y(x), 

y 
. •«» 
Hull, T?i fTiitti 

~7 
w 

• . 
~7 

w 

• . 
8j — 

U. .vxially symmetric defoliation 
of a cylindrical shell. 
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The differential equation for the function y(x) has the form 

>(4) (*)+4p\y (*)=/(•*)• (7.1; 

In this equality 

Eh 
r*D ' 

/(')=i [«+ y - o (i + f) £. . 

where 12(1 —1»*) is cylindrical rigidity; 

is the coefficient cr linear expansion; 

M*) — temperature of middle surface of shell; 

drop in temoeratures between outer and inner surfaces 
shell. 

Equation (7.1) conforms with the equation of flexure of beam on an elastic 
•H-

foundation, for which for the first time there were widely used by A. N. Krylov 

normal fundamental functions. We shall obtain an expression for these functions 

using the general formula (2.7). 

The characteristic polynomial 

>.• + 4?' 

has the roots 

*.«P0+0; *» = PO-i); *•— -PO—0; *.= -P(i+0-

A. N. Krylov, On the Calcuation of Beams Lying on an Elastic Foundation. 
Academy of Sciences of USSR, Moscow, 1931. 
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Furthfrmore, 

1 (*• 0+0^ +^(i-/)x + (.-   (i-O* +e-»<,+'>']««*•<, PJC -OS PA; 

I   (-/(l-f'M      fl(«-')4       ^»(I_OJ ^-»(1+0* 

ß(i-,) Pd+O 

- i^*» ?■< sin fx +*4P^ cos p.v); 
2P 

r'.2, 

•-0 ' ^0    ^        ** 

VIT/ 2/ 2/ ^2/ J~ 

s   i^/i; -/ 

_ i r    /('^ 
"sp»!       u/ 

^(1+0*         #»(l-/)x          -J (l_/),              _|(i + ,)^ 
-~ + -? +-  

1 
-^»»A Pxsinpjr-*i/>3.tcosp.*). 

Tho normal fundamentÄl matrix of equation (7.1)  is determined on tho  basis of 

relationshios (3.1).     It has the  form 

in^)i 

Y.{x)  ' J'.W J'.W ^.W 
WY.ix) Y>{x) Yl{x) ^.W 
4P'K,(x) -4?^,(x) YA*) Yx{x) 

WYti*) -^•K.W -4?4Kl(x) K,(x) 

(7.3) 

A. K 



The oarticular solution of equation (7.1) 

(•*) = J y-i (x- S +a)/(s) ds. (7.4) 

If onto the shell in the section x=a, alont3 a circular contour there are 

anplied concentrated bending moments Af, and forces P,. then in this section 

there exists a discontinuity of second and third derivative y(x) 

Hyl 

" 0 
0 
*7 
D 

. D 

Fig . 5. Plane problem. 

Solut ion of equation (7 .1 ) i s exnrr^se 

by equa l i t y (5 .10) , where matr ix [K(-*)] 

taken from r e l a t i o n s h i p ( 7 . 3 ) . 

I f s h e l l in the sec t ion x=flj has 

r e i n f o r c i n g diaphragm ( d i s k ) , then the d i s c o n t i n u i t y w i l l be dependent, in which 

the matr ix of the d i s c o n t i n u i t y w i l l corresoond t o the matr ix of e l a s t i c suDport. 

The fol lowing exanrole r e f exs to one problem of theory of e l a s t i c i t y . 
* 

We shall consider the generalized problem on a plane strained state . We 

assume that the external forces act in the middle of olane of a thin nlate of 

variable thickness (Fig. 5). 

Squations of equilibrium of element of nlate will be 3uch: 

*<M) d(xsyh) 

ay dx 

(7.5) 

The more general statement of oroblem will be used later on. 

Z<i 



In assuming that mass forces are absent and in introducing the function of stresses 

d • J 
A 

J_ d'!'_ 
A dx*-

*y 
1 ** 
H dx dy 

we obtain from condition of continuity of the deformations 

dx*l.£A\ dJfl dy1 / J dy*\Eh \ dy* dx* j \ 
( 7 . 6 ; 

dx dy \ En dx dy J 

For a nlate of constant thickness with constant oarameters of elasticity and 

with an absence of heating we arrive at the well known biharmonic equation 

v44>(*. y)=0. (7.7) 

In investigating the state of strain in beams-walls the solution of equation 

(7.7) is sought in the form 

«(x.»=,lnvUw-
cos ay) 

In introducing the value •(*, y) into equality (7.7), we obtain the following 

differential equation for the function •(*): 

V4> (x) - (x) + (*) = 0. (7.8) 

The characteristic polynomial has two roots of second multiplicity 

X,= «. Xi=—<*• 

For determinating «V»(x) WB use formula (2.11). 

We have at a -• 0 
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Further on basis of equalities (3-2) v/e find 

= a.Umka.t, 
2a* 

V, (JC) = ~ (3»«h ax — zxetkax), 

V, (JC) x= — (2ax—ajomfca.*). 

The apDlication of normal fundamental functions introduces into the considered 

oroblem a number of simplifications in satisfying the boundary conditions. The 

use of the general method in Sec. 5 makes it Dossible to construct a solution in 

the nresence of a discontinuity-like variation in the thickness of the olate, sine, 

for each of the sections, equation (7.8) remains in force. 

8. Normal Fundamental Functions of Euler's Equation 

We now consider the homogene is Euler equation 

><•>(*) +—y<—(JC) -h . . . +^y(*)=0 
X 

(8.1) 

or 
a 

(3.2) 
(c, = 1. y<0)(x)=y(x)). 

where Ct— are constant coefficients. 
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ny substitution 

aquation (8.2) reduces to an equation with constant coefficients: 

(8.3) 

1̂ -̂0(5) = 0 
(a. k) 

The characteristic polynomial of equation (8.4) 

/>(*)-J/*-. (8.5) 

The coefficients Pi are the simplest of all to determine by using the identity of 

characteristic polynomials of equations (8.4) and (8.2), if there ij introduced 

into the latter 
y(*)=*\ 

In decomoosing the characteristic polynomial of equation (8.2) by degrees of X, we 

obtain the values of Pi-

Suppose there is given, for examole, an equation of fourth order 

y4»w+*-/»> w++•*• *<•> w+w=o. 
The characteristic polynomial of this equation 

F(X)-X(X-1) (X-2) (X-3) + X(X-1) (X-2) c, + 
+ X(X— l)tft+Xc, + c4. 

After decomposition by degrees of X we obtain 
F (X)-X* + X* (—6 + c,) + X« (11 - 3 c , + ct) + 

+ X ( - 6 + 2 f j — + 
Thus, we find 

W-'»0)=o. 
brn0 

* o » l . 
—6 + f l t 

p%= 11 —3cj + c». 
Pt •• —6 + SCj — f j + f|i 
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WB shall consider the solution of equation (8.1) at the values (a>0 

since x = 0 is a singular point of the equation). Suppose the value x = a 

corresponds to 5 = a, a=ln a. 

For equation (8.4) on basis of indicated earlier formulas, there may be found 

the normal fundamental functions and then 

Then arises the question, will the functions Yk(%), if we assume in them t=lnjt, 

be the normal fundamental functions of equation (8.1). 

It is possible to establish that this will take place for equations up to the 

second order inclusively and it is found invalid for equations of higher orders. 

However, in any case 

and therefore even for second order equations functions Yo(*) and aYj(x) will 

form the normal fundamental system. If there is an inhomogeneous Suler equation 

y(D= sy*»(a)yto). *•=0 

in which |1 i = k 
[0 i * k. 

M 

g iLy-o (*)-/(*). (8.6) 

then by substitution (8.3),it reduces to the equation 

£w'"-'>(5)=/<9, (8.7) 

general solution of which has the form 

y o)=VW«) co+S Y*~ .t -«+»)/(») (8.8) 



[W 

fp^ 
Fig. 6.    Flexure of disk with a 

ccsinusoidal load. 

Lst us consider the follovring examnle (Fig.  6).    The differential ©quatior. of 

the flexure of a circular nlate of constant thickness under action    of cosinusoidal 

load h «s the form 

where 

V^w^-^-cose. 

dr*        r*     d9« /■» (>/•' d6«       /•     dr* 
 2^  (Ttp 4     d*u 1    d'» 1   du; 

f*   drdS   '   /■<     do« W   dr* r*   dr' 

D — cylindrical rigidity. 

In assuming a solution in the form 

w{r, 6 )•=?(/-) cos 9, 

we obtain for  9 (')     the 3uler equation 

T<«)(r)+J-^)(r)_A?(3)(r) + Af(.,(r)__3     ^^^(0 
r rm r* n      " n 

By substitution 
r««*4 

it reduces to following ordinary differential equation of fourth order: 

%-*%+*%+^~*-^ (8.9) 

The roots of chAracteristic polynomial 

are: 

*.-!.    K = 2).   ^=-1.   X.-S 
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(root '• has second multinlicit.y). 

From formula (2.11) we obtain 

Q, (S) = — — f —-(t ) + < , w 1! di \ (*. + 1)(A — 3) /x =i 4>-> — 12A.* + 4X + 4 

,*«-•> , i i t 
— = — - (t_a) ei— — L <>-<(—> . _Le3<•:-,) 

4X»_12Jl»+4X + 4 4 V ' 16 T 16 

A (5—) 

!=»-! + 

By means of equalities (3.2) we find 

(0 = -7- «*"• + ~ (; — 0)e'~-% + — — L ^ 4 4 16 16 

(?)=-1««-+-1 (; - a) ei~* _ 1_ e-(£_o _ _L a -.) 
Z 4 1G 16 ' 

(0 = — A (; — 3) e:— + — *-<£—> + -L e3<£~*> 
4 4 16 16 

The narticular solution 
1 

(0=j (5 - S + a) -iM. 

(8.10) 

(8.11) 

Thus, 

* <9-£*<«(.>•. <9+ •.©. 

Let us anply now the obtained solution for a plate (disk) of variable thickness 

For this purpose we shall divide the plate into sectors of constant thickness with 

sections £=«» (/=0, I ). Me shall designate the cylindrical rigidity 

D{*J—0)=*DJ-U 

D(<XJ+0) = DJ 

and correspondingly 

(«y— 0) = 

?(«y + 0)-=<?,. 

From condition of equality of the bending moments per unit of length of cylindrical 

section m obtain 

l«P>a> — (1 — H) "p}0-"!1?/) = Dj-x (?)!>, — (1 —1») ?JL\ — (8.12) 
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Owing to the continuity cu deformation 

end then from (3.12) we obtain 

From condition of equality of t.ie total transverse  force we find 

It follows from this 

A}J>- ^- fji». = (-^ - l) Nft - 2^, - (2- f.) ?<'.', + 

+ (3-p)?/-il+2^=.^l-ljx 
(Ö.13) 

X [*£',-(4-3J0*)!.', + 3(I-K) <?/--. 1 

Thus, we shall have 

IT0))-1^(^ fly) (^(;-«y)j(Cyl('f(ay)I+ (<!>. 0)1 (8.14) 

Here   [♦»C6—a/)]   — is the normal fundamental matrix of the homogeneous equation 

(ft.9).  Its elements are determined from the relationship (3.1) or by direct 

differentiation of equalities (8.10). 

The matrix of discontinuity has the form 

'^iir-'] 
0 0          0 0 
0 0          0 0 
-H -O-p)   i n 

_3(l-p) -(4-3,0   0 1 

In equality (8.1A) into h(ay)I the   left-hand values enter 

l?M = l^-'l- 
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MB shall dwell on determining the column of a Darticular solution. At 

from equality (8.11) we obtain 

/-i 

= 2 J + el'ds + 
i»t . *-i 

t (8.15) 

+ f *•(*-* +«)•£*£-*«»**. 
V-. >-> 

-2£J 
In determining the elements [<&«(?)] one should not forget that all connonenta/ri>-

the/ 
hand side of/equality denend on 

9. Application to the Integration of Equations 
with Variable Coefficients 

Sunpose there is a linear differential equation with the variable coefficients 

i#»,<*)y-,,t*>-/<*) , 
(9.1) 

[Po(x)-i, yo>(A)=y(x)i 

and there is sought the solution of equation in the interval d<x<b. The mea: 

values of coefficients can be determined for example, in the following manner: 

* » 

Pi <p = f Pi (•*> dx-
OUt/ m (9.2y 

Vie write/equation (9.1) in the following form: 

ihvJp-'Hx) -/(*)+ 5 (Pi«p-A(*))y"-,»(jr) 
* 4 *1 

(Poc0=1. y o , w=^w>. (9*3) 

Suppose Yk(x) (fc—0 r«— 1) —are the normal fundamental functions of 

equation with constant coefficients: 

SAc^-"W«=0 (9>4) 

(with the initial section x = a). 

Solution of equation (9.3) with an arbitrary right-hand side is written out as: 

ylx)='jlyl>)(a) ?*(*) + ̂* (•*)+? (*—* + «) X * A » 
X £ (plc?-pl('))y{m-,)^ds- (9.5) 

* ep equals average. 



wher« 
y*(*)~iy*~i(*-s+a)/{s)U5. (9.0) 

In diff«rtntUting equality {(Ki))t we find 

•-I 

><•>(*) - ^o (a) K<" (A) + K;-) (x) + JP'-j, (V - 5 + a) X 

X[il^«»-A(*)>'<-',(*)^]        ('-0. I n-l). 

By introducing,  as nreviously,   the column-solution 

bWH 
yi*) 1 
yW(x) 

^0 

(9.7) 

(0.8) 

we shall write  out system (9.7) in  following form: 

bWl-lKWlb^I + I^^I+n/CCv, s)][yis)\ds. 
a 

Equation (9.9) represents the matrix integral Volterra equation. 

The matrix is the nucleus of the equation 

(/C(X. 5)1 = 

y-i(*-s + a)ip,tp-pm(s))...yn_l(x-s + a)(pu--pl{$)) 

(9.'^) 

LKi-T,,(X-1 + ö>^cp-^(s))...fc-,,(^5-fa)^cp-pUj})_    (91u) 

3quation (9.9) 4-3 solved by method of successive anproximations, in which the 

orocess is convergent, if all coefficients  p.(x)    are limited in interval 

a<x<b. Furthermore, it is possible to show that solution of equation 

(9.9) results in determining the normal fundamental functions of the homogeneous 

equation (9.1) and the particular solution, satisfying the zero initial conditions. 

Sunoose it is necessary to determine the k-th normal fundamental function of 

equation (9.1) VkOO- 

Ws shall assume in the column of initial values all y{,){o),  ('*-*)     are 

«»qual to «ero, and  y<*,(o)x=l.    From equation (9.9) at,    K.C*)-^       g^ä, 

consequentlv,  /(x)«-0,    V'B obtain 



!>•<*))= [K4(<)] + J (K(*. s)II^(s)]</s. (9.11) 

The f i r s t approximation is 

lf*(i)W]«=[K»(*)]; (9.12) 

second approximation is 

|K»(J,(JC)1 = fc(x)M \K(*> [M*)U 
a 

(9.13) 

et cetera. 

The presentation of solution in the form of series leads to the same result. 

Calculation is terminated, when the difference between two successive approximat,io 

can be assumed to be negligibly small or with the use of equalities (9.lO, when 

considered terms of the series is small in comparison with the sum of preceding 

terms. In the process of successive approximations there is no necessity to 

calculate all the elements of the column [M*)]; only the elements, for which 

Pitp—Pi(s) =£ 0. will be subject to calculation. Others required t 

calculating the derivatives *̂(-*). are computed from equation (9.11) after the 

indicated elements have been determined. 

We shall consider as example the Bessel equation of order £: 

I r* <•*)] = (9.1/.) 

in which 

(9.13) 

y* >(*) + yy"W + (l - £)y (x) = o. (9.16) 

We shall seek an approximate solution of this equation in the interval 

The mean values of coefficients by formula (9.2) are equal to 

Pi cp •= — In 6, 
(9.17) 



Tht normal fund*m«ntÄl functions of the equation with constant coefficients 

.>'<,'(')+/W,l,(*)+/>,tp>'(*)-0 (9.18) 

will be such: 

where 

21/    *J!     „ 

9l/     '"P 2y ~ 4 ~P"p 

«-.^i 4.1/" ^p   „ 

/■¥- 

CP' 

Plcp 
Pu, 

(9.19) 

Tn the considered case 

In considering (9.17), wo find 

a = 

- 1       - o.:u:? 
K,(x) = —1-r 

' 0.8549 
(-.•) 0.8549 cos 0,8.549Lv- n I 

+ 0.3422 sin 0.O549 (x -~A], 

f 

y 0.8549 ^  6 /sin 0,8549(x---) 

fh shall determine the normal fundamemal function       Vo(r) 

From relationship (9.11) we shall have 

of equation (9.16)^ 

y^i*) 
+ y, (<) 

hlti*) J 

^(x-s-fa)^--]-].   M-v-s-fa)^-!^ 

^,)(x-i +a)(/»,,,-j-). Ki'^x-s + a)^-! +^) 

K,(s) 
n,,(5) 

ds. 

-H? 



Hence the first approximation for the function ^(v) 

Ko«„(x)=K0(.r). (9.20) 

Second approximation 
.r 

Kop,(x) = K,(x)+fK1 ( x - s + a)X 

X[(Pup-"f ) Y. (*) + (Pnp-1 + £ ) hl'(s>] * (9.21) 

In Table 1 the calculation of second annroximation is explained. In the 

calculation the interval "£"• * is divided into ten equal sectors. For compiling 

tables of values of the functions K,(x—s + a) is calculated as soon as first 

column. 

Since s = a, then into the column tne values y,(*) are entered. All other 

columns are filled in such a manner so that the elements on secondary diagonals are 

identical. 

This ensues from the circumstance that in the division into equal sectors for 

these diagonals the magnitude .v—s+a remains constant. 

In column 12 there is introduced an expression, standing in equality (9.21) in 

brackets. Furthermore each element in column 12 is multiplied by the corresponding 

value y,(x s+a) an<* t̂ e reault summarized by the trapezoidal rule 

for all values in a given data line. This sum is contained in column 13. In 

column 14 there is given the value 

K.«> W = 

then — value of the magnitude y#(2)(x), yc<n(.v) arid the accurate 

value y,(x). In the given case, a third approximation gives an accuracy, 

adequate for a majority of engineering problems (Fig. 7). 

Sometimes it is expedient to apply another variant of the presented method, 

which consists of the circumstance that equations with constant coefficients strive 

to obtain a form as simple as possible. 

<7/ 
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We shall turn to the generalized problem of a olane stress condition and shall 

assume that /i = h(x) (See Fig. 5). Then for ^ (A) we obtain the equation 

f4»(*) -2B*$<"(*) +py (x) (*) = 0, 

W h 6 r e 

By transferring the term, containing into the right-hand side of equalitj 

we arrive at the equation 

•<*>« (x-s)pt (s)V»(s)ds. 

where >I'4(x) — the normal fundamental functions of equation (7.e). 

The first approximation in this 

problem expresses the stress condition in. 

a Dlate of constant thickness. 

In conclusion, we shall say several 

words on another method of using equations 

with constant coefficients for solving 

equation (9.1), which sometimes is aonlied 

in engineering Droblems. In this method, 

the total interval of variation of x is 

divided into sectors within limits of 

Fig. 7. The Comparison of accurate 
and anproximate solutions 

which the coefficients />*(-*) are assumed constant. And here the use of the 

solution in form (1.7) gives an essential advantage. 

Thus, determination of [y(Ml reduces to the multiplication of matrices, 

corresponding to individual sectors. 

* To accurate value. 
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CHAPTKR        t 

NORMAL FUNDAMENTAL FUNCTICNS OF LINEAR DIFFERiiNTIAL 
EQUATIONS WITH VARIABLE COEFFICIENTS 

There are considered two methods  of anproximate determinati-m of normal 

fundamental functions:     method of successive anproximations and method of I:near 

anoroximation. 

Both methods are used for solving the normal integral equation,   to which a 

differential equation under initial Cauchy conditions reduces. 

1.    Statement  of Problem 

There is given a  linear differential equation of n-th order with variable 

coefficients 

v^OO+AWy-"^)-!- +pA*)y {*)=/(*)        (i.i) 

It is required to find the solution of this equation in certain interval of 

variation of x(a^x4b). 

The functions      /M*) ('"'• •   ••./»)       and     / (x)     are assumed  limited  in the 

indicated interval. 

The set of n(linearly indeoendent)  solutions of the homogeneous equation (1.1) 

{K4(.t)}, k = 0, I, .   .   . . /i- I. satisfying the condition 

(i. Ä-0, 1. .      . , n-l), 

^V 



is  called  the normal  fundament.al  aimultar.e-ius eqiiatio.-i  (1.1) with  the   ir-itia] 

sect,ion  x      a. 

If  it   is kmwii that     K, (A) — I; a riartic.iiar solution  ')r equation  (1.1), 

satisfvinF zero initial conditions 

r''(u)-ü,   t    0, ],     .     . n     1, (1#3) 

then the  solution of  the equatior   is  nresented as: 

where     yi*) la) are values  of function '/(x) and  its  first n-l derivatives  In 

section x - a. 

We shall now nrove  the  converse assertKj.n.     If the solution of equation  (I.J 

under arbitrary initial conditior.s and   if the arbi • rary  function f(x) can  te 

nresented  in the form 

/i-i 

where   ^« (x)     0 at /(.r)  0,  then function /^(.v)  are the normal 

fundamental functions (homogeneous) of equation (1.1) 

z.(v)    r,(.v). d.o) 

and  function    Z. (x)       is a  particular solution  of equation  (l.l),   satisfying  7.er 

initial conditions 

Z*(x)  - )„ (,v), (1>7^ 

For nroof,   let us assume at  first    /(.v)=0     ., : :.i'..  ■;     .; 

conditions  in sucn a  form: 

Tnen,   from relationsnin (1.3) 

y{x)^y{*'<i)Ztix). 

By differentiating, we  find 



In vitw of th« dependwce of (1.8) at x«« we now obtain 

/(»(a)-/1   '"^ 
* (0  l*k, 

which orovti equality (1.6). 

Suooot« now the initial conditions are zero: 

/O(a)-0 (/-0 «-!). (1.9) 

Then fro« relationship (1.5) it follows 

but in view of dependence (1.9) equality (1.7) proves to be valid. 

W» note still a subsequent result. If under the above-indicated conditions 

^(XH'SVM **(*)+*•(*). (1.10) 
then 

•.w-»'rw- (LID 

2.    Determination of Normal Fundamental Functions 
and of a Particular Solution b> the Method 

of Successive Approximations 

In designating 

y->(x)-9W (2#1) 

and in considering relationship, being obtained after rspeated integration of the 

equality (2.1), 

**, '«-,-1 

+ Jj   '   '  '    J     tC'«-»)^«-» .  .     äXi 
mm m 

•— times 
(»-0.I.. . .,/i-l). 

« shall from equation (1.1) 

^ 



where 

'-«   2 t (2.3) 
'tints 

/.w—s^)';::';^ •       (2.o 

At   x-»a    equation (2.2) reverts to an identity by virtue of equality (l.l) 

aquation (2.2) reoresents the normal integral equation . 

Cursa established it in another form, the solution of equation (2.2) can b-; 

nresented as: 

?(^)- xy^M-o+^Of). ( c) 

In this equality 

*M~h+Nfk+Wk+ •      -2^'A. (2.6) 

where      "V»""    signifies s times the reoeated application of operator N, where 

(/v%-/*)- 

Correspondingly 

♦.(*)-/+"/+"'/+ ... - S/v/. (2#7) 

The series (2.6) and (2.7) converge uniformly and absolutely. 

By virtue of equalities  (1.11), formulas (2.6) and (2.7) solve the nosed 

nroblem. 

For a determination of function       Yk(x) and its derivatives one should 

use equality 

♦Theory of normal integral equations is considered in Chanter j. 
**S.  Cursa,  Courje of Mathematical Analysis,  Vol.   3,   Jtale Theoret.  Technical 

Publ. House.    Moscow-Leningrad,  193^* 
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(2.8) 

!—«.i lUtft 

(/—0,1,. . . ,#1—1). 

Equftlitl«8 (2.8) makfl it possible to determine all the elements of e normal 

fundamental matrix of equation (1.1). 

Now we oreeent an example.    The equation of stability of rod of constant 

section on two end knucklp bearings has the form 

The initial section a s 0; 
y»>(;0-f(x). 

From equalities (2.3) and (2.4) we obtain 

(2.9) 

i'i 
"«Times 

m-**ih(*t)ä*tä*v 
00 

/.w—^AW-^f—••. 
4-3 

t 

Equation (2.2) will be such 
i-i 

* *i 

?(jf)--«»J ^(jc^^t.rfjr.-^^a'-y'CO)«^. 
u o 

According to equality (2.6) 

W 



*. w-n^) =--«•+^y-^4+ 

' 3f   5! 

(^.10) 

\ 3! T 5!      / 

For equation (2.9) the accurate solution is 

y0 (x) = cos xx,    K, (JC) =  - sin a.v 
a 

and furthermore, 

K^(je)»-«'cos«A-,    K<2)(A)=-«slnaA-. (2.11) 

By comparing formulas (2.11) and (2.10), we readily note that in given cane, 

each term of the series (2.6) represents a corresponding term of the exoansion of 

accurate functions into a oower series. 

We shall make several remarks of a mactical nature. 

The magnitudes of     N*/>      should be determined by using aoproximate methods of 

calculating the integrals of which the simplest is trapezoidal rule. 

In calculating the iterated integrals with a variable upper limit, an esseniiäl 

decrease in computing work is obtained by subdividing the interval into sectors of 

equal length and use of the  'Ring rule'   (Table 2). 

Into the column are entered three numbers,  being encompassed by the arrow;  for 

obtaining the true magnitude of integral the values in the column must be multinlieri 

by       [-- A I ,       where   i -is the  length of sector,   n-is  the number of integration 

onerations. 

For determining        N /*(s    I. 2, 3,..,)       the integral oneration N is completed or 

function        A/'   /», the values of which already are  in corresnonding column of 

the calculating table    (A/0/*^/*)- 

4<t 



Ttbli 2. Diagram of Inttgrttlon on basis of tht Ring 
nils 

M* cuW 

Jmma 

L 

f(*} h /(*,)&! m 
u 

r/(xjdxjx, 

l .\' a*) 

€ ^axc 

w f(sJ)tiidxtdxl 

(U) 

a 
□ 
□ 

KEY:  (A) factor. 

3.    Discontinuous Solutions 

Lit us assuns that in the solution of equation (1.1), there are given, in 

addition to the initial conditions, discontinuities of first order of function y(x) 

and its n—1 first derivatives in the sections  Jf"fl> (/""' m)      Part of given 

discontinuities can have zero values. 

Mi shall designate 

A-0.1 «~l,\ (3.1) 

The initial values slso may be considered as the given discontinuities after 

assuming 
y(fl)-A(0) 

•      t      •      •      •     • (3.2) 

Mi shall introduce a single discontinuous function S(x,c), determinate by the 

equality 

So 

"V 



lO   x<c, 
S^'Hx   x>c. 

(3.3) 

If   f (*) is the arbitrary integrand,  then 

'S S(*vt)/(*x)ä*i~S(x,c)U{*i)<t*i (3.4) 

and furthermore 

H - - - ] S(x„c)/{xjdx,.  . .dx^ 

~S{x,c)[l\     .'Jl/(x,)dx,.  .  .dx^ (3 5) 

rnsnr 

In particular, at   /C-*)"8* 

JJ. . . js(x„c)dx,. .  .dx^Six.c) <*-'?,    (3.6) 

If   f (Jt)-   is an arbitrary differe;,Liable function, then 

~[S(x.c)9ix}]~S(x,c)£(x). (3.7) 

For a discontinuous function we shall have 

jf(jf)= J Af 5(jflay) + ;y.)(^)(/Xl        (3.8) 
j*> o 

and further 

yvW-ltySix.aJ + 'Sy^ixJdx^ (3.9) 
/•o 0 

By introducing (3«9) into equality (j.f') and by using dependence of O.U), w« 

obtain 

y(x)~ HfSi^aj)* lL</>S(xtaj)(x-aj) + 

• 0 

Successively by anolyinf this metnod we shall find 
«-I    m 

(3.1C) 

[x-a,)k 

J'W-SS*«'^.*,)^; 
»-0 /-« 

(3.11) 

+JJ. • • J y^K)^.    .^ 

' tines 

SI 



In difrtrtntitting «quÄlity (3.11), m establish 

a M% '«-l-« . (3 • 12) 

(v-O.l «-!)• 

In dtil«n*tlnf /"»W-f W 

«nd by introducing «quality (3*12) into equation (1.1),we shall obtain 

f-^T+ 5 *S VA/(.*)+/M (3.13) 

where Nf is given by equality (2.3), and 

/vW—S^^W^Sf- (3-14) 

Equation (3*13) is a normal integral equation, equivalent to the differential 

equation (1.1) together with initial conditions and given discontinuities of the 

function itself and its n—1 first derivatives in the sections Jf"fl/ (/* l,."»m)- 

If the indicated discontinuities are absent, then equation (3*13) and (2.2) 

agree by virtue of equalities (3.2). 

The solution of equation (3.13) will be such: 

t (x) - 5 " J V»'*,, (x) + *. (x), (3.15) 
/.0*-0 

Khere the function     ♦t/(*)        are determined by the equality 

♦*(*)-/»> + */* + "»/„+ .   .   . - VTVy^; (3.16) 
,-0 

and the function      ♦•(-0       is given by the orevious formula (2.7). 

It is nossible to establish that 

(k~0 n-\\ KJ'in 

(y-o. . . ..m    I' 

where K4>(.t)'—is the k-th normal fundamental function of the homogeneous equation 

(1.1) with the initial section .v=ay. 

For an equation with constant coefficients 

sz 



M')-^-^). (3.18) 

Normal fundtmenttl functions      KA(.v)       with An initial section x E a can be 

designatad now y„(x) (k-O n-i). 

All other functions      }»;(*) can be represented, as linear combinations of 

the functions  K4(-<)'• 

w-'i'Mi (3il9) 

where the constant coefficients   q^      are determined from n equations n 

The exnediency of the method of determining y  (A)   at  /^-l  Z~by means 

of the series (3.16) or the equality (3.19)_7 ^^ *» determined by peculiarities <i 

the nroblem 

Solution of equation (1.1) with given discontinuities of function y(x) and its 

n-1 first derivatives in m sections x = aJ   has form 

y(*)~ v 'isix.ajnyy^ + y^x), (3.20) 

U.    Application of the Linear Approximation Method . 

Vite discuss now another method of determining normal fundamental functions, 

based also on the solution of equation  (2.2). 

For determining    <I),(.v)= ^»"'(-O    there is solved the equation 

iU.l) 

*Other methods of linear approximation will be considered  in Chanter 3. 

S3 



whtr« tht solution of «quAtion 9(.v)tgrae8 with the function      *»(-<). (In determining 

• MrtieuUr eoXution, •ttiifyin« tero initial conditione, wt proceed fron the 

equation     f"A^f+/). 

Vto shell divide interval of variation of x into a number of small sectors and 

will designate the boundary sections   <!■»«*„,.*, *,, . . .,x,mmt. i/ithin 

limits each sector ws shall assume the function f (.t) as linear. 

For first section    (A'I<X<A'I) 

t(-«)-f. + *t(x-.v,), 
where 

In introducing values of ?(-?)   into equality (4.1). ws shall obtain at xmx% 

or, by introducing the value    ft,, 

t.—^— -»•S^'^-^'+A. 
<-• 

'  (4.2) 

Here, and henceforth the following abbreviated designations are used: 

The equation (polygonal) of the function   «?(JC),     valid within the limits 

jcc<JC<Jr«,      can be exoressed in the following manner: 

tW-fi +*! [Six,*j)kjU~*i)- 
/-* 

-5(x.jr/+,)Ay(x-xy+,)l. (4.3) 

where '       *y-2±^. 

and the single discontinuous functions are determined by the equality (3.3). 

In introducing values of f (A) from equality (4.3) in equation (4.1), vie shall 



obtain at x — x, 

(»-1,2 r), 

where 
a 

(A./f) 

'-I (4.5) 

In the latter equality 

*l~-*t-\ ^^^-öTTTfp 

Jf/+,--Jfy      J (4.6) 

(i<y<v-i. i<i</i). 

For • ./■■0an7"'1'-   we shall have other formulas: 

i r . K-'C)'-M-(',-'I)'+II  ^-7) p'(<0)-(7TiF[(/+,)(^-^)-^  J' 
M^-Öi*''-^' (4.3) 

Let us note that coefficients  a,y   remain identical during determination of 

all fundamental functions and of the particular solution. 

Of prine practical interest is the subdivision of interval into equal sectors. 

Here 

*.-*,=* (v-y). (4>9) 

«rhere  A   is the length of a section. 

Equalities  (4.6),  (4.7), and (4.8) nnw will acquire the form 

(l<;<v-l.   l<i<n). 

P'^0)"^1^^0"^^^"1^11' i4,:L1) 

A' 
Mv'v)~(TnT!' (4.1^) 

The latter formulas are convenientl,y nresenLed as 
A' WJ)-~^J), 



wher« the coefficients     lA'J)       remain one and the same for any (linear) 

differential equations. 

Mt now present, as an example, these coefficients for an equation of fourth 

order and for subdivision of the interval into ten sectors (Table 3).    The matrix 

of coefficients      lii^J)      is triangular.    All elements of the main diagonal are 

separated by a heavy line, equal to unity. 

Sleraents, standing in secondary diagonals, with the exception of those belonging 

to the first column, are identical; therefore,  calculation will subject only the 

elements of first two columns.    The tables remain valid also in the subdivisirn into 

a smaller number of sectors. 

Below there is nresented a diagram of the calculation (Table 4).    The first 

oart of the table contains the values      a,y, in which the coefficiertj    «„      are 

differentiated   by a heavy line.    The values /*.    are known.    At    vc=0 ?o~/»«- 

Furthermore the magnitude 9»    is multiplied b;r elements of column 0 in the tab^e a«; 

and is entered into the column 0 of table    a.yfy. 

For obtaining    "?•     there are summarized all the terms, standing in the line   '• 

and they are divided by the magnitude 1— 0»»'        After obtaining   ?»   column    *  is 

filled in the table     a./T/ et cetera. 

The values   K^'H^J  O^O.I, .  .   . ,/i—1)    are determined from relationships (2.8). 

♦Since here the integral operations are conoleted,  then the accuracy of calculation 

increases. 

In the considered methods of approximate integration of differential equations 

there exists an effective method of verification. 

The approximate value    9 (*)      is introduced into the integral of equ«it.lon (2.^) 

and there is determined the difference between the left and right sides which 

constitutes the error of the solution    •(*)• 

By interrating     •(*)    in accordance with equalities  (2.8),  we find error in 

•'unction      YH(X) and its derivatives.    From nhysical considerations there is 
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established the admissibility of ariy one  error. 
errors/ 

We note that a majority of engineering problems /    of an order of 2  to bt 

are entirely admissible, since they correspond to the acciu-acy of the given initial 

magnitudes. 

3. Method of Moving Origin 

The effectiveness of previously presented methods decreases with an increase i- 

the lenpth of interval of x variatior., in the elongation of which the solution is 

so'ifht. 

This circumstance is neouliar to almost all methods of approximate integratio' 

of differential equations. 

In using the method of successive approximations the converfence fir larre x 

values deteriorates. 

Thus, for example, in equalities (-^.10) there is obtained an exnansi-v by 

dep" !es of x, which converges at any x values, but a small number of aonroximatinns 

gives good accuracy only at  ajr<.'V^2. 

For the method of linear approximation the accuracy increases with a decrease 

in the length of sector of interpolation, but an increase in the number of sections 

results in a large increase of codiouting work, Lhe indicated reasons make expedieri 

ohe application of a special method of calculation, to the discussion of which we 

now turn. 

We shall consider at first the met.hod nf successive aonroximati^ns. 

Suppose, for example, there is determined the k-th nurmal fundamental function, 

i.e., equation (U.l)  is solved. 

Furthermore from the calculatio: it IG ascertained that with three to four 

approximations the values 9 for x^a,     apreu with the required accuracy. Then, 

by means of formulas (^.8) all  y'*' (a») (*= 0, ...n-I).    ire fot,nd> NoW it i3 



nossible to transfer the initiel section into x ^ a, and to make the calculation 

according to the equation 

where 

—rw 

(5.1) 

I««-* 

thus equality (2.2) is valid at an arbitrary value a. 

Briefly written, equation (5.1) has the form 

where 

a-l 

/u- 2y*>(al)/,(<r) 

is a known function. The subsequent stage of the calculation repeats the nrecedin; 

For determining the particular solution ^ ix)     there is solved the equation 

;n second section 

/here N|? and fs{x)       ^re the sane a«? in equality (5.1). 

Ws now establish an evaluation making it nossible to determine a, nrior to 

oomletion of calculation. The matter reduces to an evaluation of terms in the 

eries (2.6) or (2.7). 

Ws shall give a very "rigid1 evaluation, which will assure the condition of 

aoid convergence in the nrocess of successive anproximftions. 

Sunpose 

i4->max {' IA (*)l. 

P^-maxlp^jf)!. 

Cr 



Then 
'i-\ 

where 

I-I   •      m l-l    '   (5.j) 

A-«i-«. 

m        M 

l*l  « 

5.Aj 
<-i 

and in general 

W/.Kt&P.-fj. 

Under the condition 

r... ',' 2nt<' <5-5) 
series  (2,6) and (2.7) will be raoidly convergent which can be established  by 

comnaring an evaluation made more strictly. 

From the latter it follows, as already was indica'edjthat the series  (2.6) ar. 1 

(2.7) are absolutely and uniformly convergent  for the finite values A and    P.,    ,  :-. 

which one  is readily convinced after nresenting N in the canonical form of a 

Volterra    onerator. 

V.'e now nresent some examples, relating to equation (^.9).    For determining 

<l> (x) W,B 30lve  the equation 
•»   »! 

lix)~~a*tt<r(xi)dxtd.xl-*1. 
o o 

we s^all have 
A^a\    f>t     »? 

Kvaluatinns of (5.3) and  (>./*) pive 

'', 
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condition of convergence (5.5) 
W i ril<1../t<>/2. 
a   - •   • (5.7) 

The more accurate evaluation 

l/v/;<.^'   :yV/J<a. ^ (5.Ö) 

established convergence of nrocess of successive apnroximations in an arbitrary, 

but finite interval of variation of x. 

At    *••/,     , real value        I^V»!        is 6 times less than the evaluation (5.6). 

Condition  (5.7) assures a raoid convergence of the nrocess of successive 

annroximations  in the interval     a<*<7,. 

However,   in practice,  an accurate evaluation of the magnitude a-,   (limits of 

ranid convergence),  is not required since it is ascertained in the nrocess of 

calculation with an arbitrary value a,; it may be found onXv that some of calculations 

at larpe x values, will aopear to be superfluous. 

This is virtually established after the first two anproximations. 

We note that selection of magnitude a^ and  "linuting'" number of utilized 

annroximations  is determined by peculiarities of the operator A^?. Obviously,  the 

more simple the structure of the operator is the greater number of approximations 

can be applied and the rarer can the transfer of origin be used. 

Method of moving origin with»-   t any changes is extended to the method of linear 

approximation,  where the use of more  than ten sectors becomes unwieldy. 

6.    Quasinormal Fundamental Functions 

The differential equation of the  tyoe 

d' I     .       ,.» rf'' .        V        <f * ,        V l ...        v ,    . (^.1) ^1"'"   „.. /»I (*)">(*) 

we shall call an inhomogeneous binomial equation;  correspondingly at f(x) - 0,  it is 

homogeneous.    To equations of this tyoe belong a large number of equations, en- 

countered in engineering problems. 

cz 



We shall assume that. 

P*{x)tO 

*t     \<i<jta<x<b. 

The sum       *•■>■ »1 + ...+»i"=/i determines order of equation (6.1). 

We call the magnitude 

a quasiderivative of the  function of order m,  whe:'i 

The designation of A quasiderinative is si^oplied by the superscrint in bracr.e1 

In writing out equation (6.1) in the  forrr. 

and integrating both sides of equality n limes («=<!-.      •-}-*) 

from a to x, we obtain 

with th«  limi' 

where 

• -1 

*-o (6.3) 

'•.-i '•.+••-> 
yyy-ff.   .   .    f~i—f      .   .      f    —1  

'«-.y-l 4«-l 
J       .   .  .   J  qMy(*n)d*n       .dxu 

r times 
(6.4) 

(-r-fl)* 

•' « 

(6o) 

(6.6) 

•     J      ■ •  •    J   /i*,)dxm.     .dxt. 

Quasinormal fundamental functions are determi'.ed by the series 

(*-=0,I. .      ..n-l). (6.7) 

(nJ 



These functions satisfy the equality 

The narticular solution of equation (6.1),  satisfying zero initial conditions, 

is exoressod by the series 

r,{x)~F+NF + N1F+ .   .   . (6.9) 

As an examole we shall consider equation of flexure of a beam of variable 

section on elastic foundation: 

-f^W^I + '^W-'W' (6-10) 

Here y(x)is the sag of axis of beam; 
£j(x)i3 the strengtn of beam to flexure bend; 
k(x)is the coefficient of elasticity of foundation; 
/ (x)is the distributed load oer unit of length of beam. 

From equation (6.3) we shall have 

where 

0 0 0 0 

C^iasiderivatives have following physical meaning: 

y'Hx) ~y>>(.) ^ ^ . y"i*) - *x (^ S)-<? (-)■ 

where M(x) and Q(x) are the bending moment and transverse force in section x. 

The solution of equation (6.1.0 is written out as: 

y^x)-  i y*'(0)K,W + K#(x), (6.12) 
»-0 

where the  functions    Yk{x)     and    Ym{A     are exnressed  by the converging series 

(6.7) and  (6.9). 

Equation (6.11) may also be solved by the method of linear anproximation. 

^ 



As previjusly,  in a number of cases it is exnedient LJ ase the method of the 

mobile origin section. 

Integral equation (6.3) may be annlicable for the solution of nonlinear 

equations of the form 

dx' 
Pi («)     y (x) - 'f(*.y)^fi*) (6.13) 

To an equation of this tyne,  belongs the well-known equation of M. 7. 

Ostrogradskiy 

^-fav + Py^O. (6.14) 

which is a subject of analysis in works of a nuniuer of outstanding mathematicians. 

Equation (6.3) remains in forcr,  if only in equality (6.4) VOB reolace 

Q{x)y{x)    by ^(Jf.y). 

We note 4hat the annlication of method of succe^sive approximations together 

with method of moving origin gave a solution of equation (6.1A), entirely 

satisfactory for engineering aoplications. 



CHAPTER      3 

BOUNDARY AND NORMAL INTEGRAL EQUATIONS 

Modifiad Fredholm and Volterra integral equations, which are called boundary 

and normal integral equations are considered. 

Origin of these terms will be clear from the discussion later on. 

It is nossible to show that the boundary integral operator reduces to a 

Fredholm ooerator, i.e.,  it is expressed in form 
* 

Ky ) G{x.s)y(s)ds. 
a 

and normal onerator is equivalent to the Volterra ooerator,  but the  oresentation 

of considered integral equations in form of classical integral equations frequently 

is difficult, and the nrincinal—comoletely unnecessary from the ooint of view of 

nractical use. 

It is necessary alsc to consider that the origination of Fredholm or '/olterra 

equations frequently dense is fouid to be a very comnlicated matter,   whereas 

boundary and normal integral equations naturally er sue from differential equations. 

For an illustration of statement above  it suffices to turn to the  problem about 

stability of a rod,   for which construction of Fredholm equation requires a number 

of artificial reasonings and computations.    It  becomes intelligible,   why the 

classical Fredholm and Volterra  integral equations which proved to  be a very 

effective apparatus for a general and qualitative  investigation, were not widelv 

used in solving engineering problems. 
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BoundAry integral equations were used also earlier for solution of theoretical 

and applied questions. 

Usually these equations ensued as the refill of annlication of method of 

successive approximations during the solution of differential equations.    However, 

with such an approach there was lost the generality,  neculiar to the anparatus of 

integral equations. 

As an examnle,  it is possible to noinl tu the method of successive annroximatioMS 

in problems of stability (Vianello method), which is a combination of particular 

methods including, graphical-analytic operations. 

'Ate shall present another example. 

For calculating a beam on an elastic foundation A.  N.  Krylov used process 

successive approximations,  which can be represented as the solution of a boundary 

integral equation 
y-lKy+f 

by the method of simple iteration.    Parameter of equation   X-—I. 

It is easy to establish that the homogeneous equation    y-X/Cy 

corresponds  to the problem on the vibration of a br«am with a certain distributed 

"masses'■ and has all positive eigenvalue values U *t. •   , The process of simple 

iteration is convergent at      —  <l. 

/. N.  Krylov detected the divergence of the process only by a direct analysis 

of the obtained series.    For the case    IM<|^|    in the work  "On Calculating Beams, 

Lyinp on an Elastic Foundation'   the process of successive approximations,  is proposoc: 

it did not give,  however, satisfactory results. 

Meanvhile,  the use of theory of integral equations makes it possible to 

construct effective convergent processes,  to establish a comprehensive generality 

between problems on strength,  vibration and stability of rods. 

Works of the outstanding scientist A. N.  Krylov have promoted development of 

method of boundary integral equations. 



In article by P. F. Pankovich , which continues the work of A. N. Krylov , 

there is indicated the process of determining the ei^enfunctions and eigenvalues 

now widely used,  somewhat earlier a similar method was used by V.  P.  Vetchinkin 

The method of boundary integral equations  in the works of E.  P. Grossman, D. Yu. 

Panov,  P. M. Reese, and 3.  A. Tumarkin,  is further developed. 

It is necessary to note the works of Sh.  c,".  Mikeladze,  in which there are widely 

used the Volterra equation and in individual cases,  a transition to normal integral 

equations is observed. 

A consideration of boundary and  standard equations an a general mathematical 

device  for the first time was done by the  Soviet scientist Yu.  7.  Henman 

Equations,  similar to the considered equations,  Yu. V.  Renman called    equations 

in indefinite integrals". 

In the nresent chanter there are considered elemerts of theory of boundary 

and nor.nal integral equations,  there are indicated methods of solving homofen^    s 

and in homogeneous boundary and normal integral equations.    Much attention will o^ 

ruven  to systems of integral equations, which are nresented in the  form of matrix 

integral equations. 

The ccnsidered methods can be anolied  to any engineering nroblems,  which red ice 

to ordinary differential equations or their systems,  and also to nartial differential 

equations, which reduce to ordinary after a seoaration nf variables. 

»P.   F. Pankovich,  Concerning the Question   ^f Anplicability of the  Process 
mccessive Annroximations  for  the Flexure of heams  on an Elastic Foundation,   "Annlaei 
lathematics and Mechanics",  Vol.   1,  No.  <!,   193J. 

♦♦A.   N.  Krylov, On Calculating Beams,  laying on an Elastic Foundation,  Academy of 
Sciences of USSR,  Moscow,  1931. 

***V.   P. Vetchinkin,   Theory of Jcrew Propellers,  MosCvW,  Zhukovskiy,   V.  VIA Pubx. 
'ouse,  1926. 
****Yu.  V. Repman, On Determining Critical  Forces  by Equations of Stability, 
ransactions of Laboratory of Engineering Mechanic3/ Engineering Publ.   House,  Moscow, 
9U2. 
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1. Classification of Equations 

Equations of the form 

y-Ky+l/Ay+f. ( l . l ) 

. . Liy where y is an unknown function x; Ky is a linear integral operator; is a 

linear functional; /* and f are the functions x (in the interval a<x<b)\ X 

is a parameter of the equation, we shall call on one-narameter integral equation. 

Here and henceforth there are considered only real values of th? functions and of 

the independent variable. 

In a general case the operator Ky can be presented in the form of a table 

*> = ?• 11 J qiny (xl)dxl + 0OU J fc.. q*xty (xt)dxtdxx+ . . . 
« • » «on 

• +Ptu J Piny (xjdxi+pm j pxlt r p%xty (xjdxtdxt + . . . 
O.I. 

9 x M 

' • • J <lniy ( V|) dxx -f qnn j qlti j" qltiy (.\t) dxtdx, + . . . 
*m* "c i t On. 

• • • +Pm*JPuiy(xl)dxl + p0it j put $ Pt»y(xt)dxtdxl . . . 
a,H 

(1.2) 

In this equality and P"k are given functions of x, <>ni and brsk ar 

constant numbers. The subscript "r" is connected with place of function or para-

meter in the integral expressions; the subscript "s" indicates the line in tabular 

writing (1.2): the subscript "k" is equal to the number of column. After the line, 

containing the function q, comes the analogous line (with the same number), con-

taining function p. 

In a brief form, first form of presentation of integral operator /"equality 

( 1 . 2 ) 7 wil l-be: , 
Ky*= 2 1 (<?«,* j <7UA • • • j 9ksty(xk)dxt . . .</*!+ 

#—1 * - 1 V 

i w * 
+ PM$PU*- • P*-!.«.* S Pksky (**) dxk . . .dxj. (1.3) 
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Fonnulms (1.2) and (1.3) «xnrass a boandarv integral operator.    If all the 

constant limits of integrations are identical 

then the  integral operator (l.j) we agree to call normal 

•-«*-'    • • (i.O 
the/ 

In acrordance with this we shall -liffereniiait! /    boundary  intepral equation 

(equality  1.1) and normal integral equations 

y~ Wy+ l/Ay+f. (i.5) 
/-« 

From the nrecedinr  it   ia clear  that  the  normal eqiations  .^re a narticular rase 

of the boundary,   similarly as the  integral  /olterra equations  are a narticular case 

of Fredholm equations;   however,  essential peculiarities of  the normal equat: ,rij ma. e 

a senarate examination of them exnediant. 

Equations  (1.1) and  (1.5) contain linear  functionals     L+y. i.e.,   narame^ers, 

denending on y.     As  Ltf      usually there are used values  of the  function .v(x)  or   :; ^ 

derivatives at certain noints (x^a,)    or  values  in fixed sections  of the  integral 

expressions,  entering into Ky. 

The selection of functionals  for a boundary equation is  not  obligatory,  since 

they in essence already are contained  in boundary integral operator.    Therefore,   i, 

the  basic  form of the  boundary integral equation it is possible to adapt the 

following: 

y=My+f d.o) 

Solution of the equation satisfies all boundary conditions of the problem. 

In rarer cases,   the  boundary integral equations are  used  in general  form  (1.1). 

For normal integral equation,  the general  form is ^iven  by the equality (lo). 

Let us present an example. 

The differential equation for the stability of rod of variable section, 

suDoorted at ends on hinges, has the form (Fig.  8). 

„jfW*   EJix)   ^^ (1.7) 

7c' 



where y(x) is the sag of axis of rod; 

EJ(x)—strength of section of rod to 

flexure. 

From equation (1.7) we obtain 

*JL ix) « - P f dxx + ̂  (0). dx V ; J EJ(*\) '* o 

By reoeating the operation of integration, 

we find 

>w—pfJ -mtdx'ix>+*'£*»• a'3> 

The obtained equation is a normal integral equation for the stability of the rod. 

If one were to determine —(0) from a boundary condition y(0=0» then, 
dx 

we arrive at the boundary integral equation 

u - 9 ) 
\ • 0 0 0 ' 

Operator Ky, entering into equation (1.1), is linear, i.e., bounded operator, 

possessing oroperty of additivity: 

f(y»+yt)=Kyi+Kyt. (1.10) 

where y, and y, are arbitrary integrands. 
1 

Boundedness (and, consequently, the continuity) of the ooerator ensues from the 

fact that all the functions <7*.* and />„* in equality (1.2) are assumed to 

be bounded. 

The linear operator is also homogeneous: 
f (»*y)= 

where |i is an arbitrary parameter. 

Also the functionals, entering into equation (1.1) also possess analogous 

properties. 

A boundary or normal integral equation we call homogeneous, if it admits a 

11 

Fig. 8. Stability of rod. 



triviAl solution 

Thus,   for «xtinnle,  equation (1.8) and  (1.9) are homogeneous.    By virtue of the 

homogeneity of operators and functionals,  entering into equation (1.5) and (1.6), 

the latter vfill be homogeneous only in the case,  if 

In solving homogeneous boundary,  equations 

y-x/Cy 
is determined soectrum of eigenvalues      (*'•     and their corresoonding eigenfuncti'jr.a 

{yt}. A homogeneous normal equation  of the form 

y=XNy 

does not nossess any other solutions, excent an identity equal to zero. 

Ir solving inhomogeneous equations (boundary '.r.d normal) the narameter I     is 

given. 

In a number of cases it is convenient to use the second form of integral 

onerator: 

where Qt, Qt* ***       and p,    are given functions of x, 

a*       and ^s'   are constant numbers. 

With identical constant limits of integration v« shall have a second form of a 

normal integral onerator: 

Ny~ iQt]<lty{*>)<**i (.  ._. 

As a rule, more simply the integral equation is obtained with the first form »f 

onerator; this form is more convenient also in solving the integral equation by 

method of successive annroximations. The second form has the advantag! with the 

use of certain other methods of solution (for examnle, »nethods of anproximation). 

In practical problems there may be encountered systems of integral equations, 

which exnediently are nresented in matrix form. Thus, a matrix boundary value 

integral equation has the form 
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M = M*][>') + [/). 

where the matrices—columns of the unknown and given functions 

(1.14) 

yr /r 
y« / . 

[y] = * . 1/1 = 

_y„_ 

and boundary value operator 

!%]•! 

Ku 
Kn K-u 

-K*\ • • • ̂itnJ -J*«. 

yi 
y% 

(1.15) 

(1.16) 

Finally, the matrix integral equations of the following structure are of 

interest : 

• y ' 
y n 

L 

*oo 
Kl0. . .Ku 

. . . K„ 

- y - r /o] 
y( 1) + / . 

J y(,). 
(1.17) 

or in short form (jpl-MWMbl + l/l-

Here matrix-column /~y_7 will be formed by function y(x) and its derivatives uo to 

order inclusively. 

Equations of the form (1.17) are encountered, for example, during calculation 

of shafts for the critical speed with a calculation of the gyroscopic effect of the 

distributed niasses. 

•Equations of this form may be called integro-differential. However, their 
distinction from integral equations is immaterial. 
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2. Formation of Integral Equations 
from Differential EquAtiona. 

Suppose we hare a linear differential equation of n-th order with variable 

coefficients, given in the closed interval a''x<b: 

yw+M-oy-"^)* .   . +/',coy0'(*)-/(*)     u.i) 
with linear boundary value conditions of general form 

(*-0,l n-l). 

(0    v^*, 
0,A = 0,1..   .   ..n-l). 

then conditions (2.2) are Cauchy conditions  (at x ^ a there is given the value  of the 

function and its n-l first derivatives). 

As the fundamental variable in composing the integral equation we shall take 

In considering equalities 

y-"(jf)-iy-"(a)4-J?(JC4)^1 et cetera (2.3) 
m 

we obtain from equation (2.1) 

f/Vf+'iVw. (<)+/(<). (2^) 

where 

1-1 « m (2.5) 

(2.6) 

Equation {2.k) is a normal integral equation. 

In another form (viz.,   in the form a Volterra equation^  it was encountered 
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# . . . 
earlier • Squivalence of normal integral equation and Volterra equation in a given 

case is readily established by means of a Dirichlet identity. 

f f J'~' * i i JJ • • J A~~~<?(s)ds. 

Owing to the linearity of operator the solution of equation (2.4) in a 

general case can be presented in following form: 

<p= S ̂ (t) (*)• (2.7) 
*- o 

where the function (x) is the .solution of equation 
+/*, 
(*=0,1,..., n-l), (2.8) 

and function *•(*) satisfies the equation 

*«!¥?+/. (2.9) 

Suonose {K4(jr)} (*=0,l,...., n— 1) is the sequence of normal fundamental functions of 

equations (2.1) and is the particular solution of this equation at zero 

initial conditions. It is possible to show the validity of the equalities 

4>,(JC ) = K<«>(x). 

*.(*)= K<">(x). (2.10) 

Thus, the solution of the normal integral equation results in a determination of 

normal fundamental functions of the corresnonding linear differential equation. 

If the initial Cauchy conditions are given, the function on right side of 

equation (2.4) is known, then,the solution of the normal integral equation (2.4) 

determines the solution of differential equation (2.1), satisfying the indicated 

conditions. If there are given boundary conditions of a general form ̂ "condition 

(2.2)_7, then by using equality 

*E. Gursa, Course of Mathematical Analysis, Vol. Ill, Moscow-Leningrad. State 
Theor Tech Publ. House, 1934; Sh. 2. Mikeladze, Certain Problems of Structural 
Mechanics, Moscow, State Engineer.Publ. House, 1948. 
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(»-0,1 n-l). 

we shall obtain on the basis of condition (2.2) the system of n-equat-ions relative 

to the n-unknown     y"*^)- 

In solving this system,  we find 

- I erU ...   I 9{x,)dxf    .   .dxx ^'ll) 

f*i      *» j_^ 

»tioes 
(» = 0.1 n-1). 

The coefficients  ^p«  are determined by coefficients, entering into boundary 

conditions (2.2). 

By introducing, now the relationship (2.S) into equation (2.4), we obtain 

»-0 f-l        •   ^ 

f timmo 

where ,_, 

ft-0 

Equation (2.12) is a boundary integral equation 

9~K9+f, (2.13) 

where operator     ^9       is expressed in first form /"equality (1.2 )_7.    The boundary 

integral equation (2.13) is equivalent to the differential equation (2.2) under 

boundary conditions of a general form. 

Ifve note also that the boundary integral operator is expressed in as the sum of 

% 



normal integral operator and linear series of functionals and given functions. 

This result can also be established directly from equality (1.2). 

In practical problems of boundary conditions frequently they have a more simple 

structure. SuDpose, for example, the value y<*> of the problem at *e=°k 

y(t) («») = T* (2.14) 
(* = 0,1 n— 1), 

the sections a* usually coincide with ends of interval. 

Boundary conditions of the form (2.14) we call simple. For obtaining a 

boundary integral equation it is sufficient in equalities (2.3) to select each time 

a lower limit of integration in such a way that condition (2.14), is satisfied. 

For example: 

(x) = I + I ¥ (xi) 
°/i-t 

y(.-2) (j() = -j,. 2 + T, - i (x -an- 2) + ̂  J ^ ̂i 1 (*«) d** dxi-

(2.15) 

If conditions (2.14) for certain derivatives are not given, for example, for 

y(,), then the integration is made by assuming a. =a, and initial value y('Hfl) 

is determined similarly to that, as was shown for a general case. 

In certain cases, equation (2.1) is conveniently reduced to a matrix integral 

equation (1.17). 

In making the integration in the intervals from a»-» to x, we find 

y * ~ u W - - f Pi(*i)>("-,)(c,)̂ vl- ] pt(xjy-') (JC,)</JC,_ 
•-1 -1 

- I 1+7.-1 + f f{xt)dxx. (2.16) 
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Furthermore on« should consider the dependence 

J 

J yw-j/^'w^i+T/    ('-0.1 «-^ 
•/ 

a-y»^). (2.17) 

The system of equations (2.16) and (-«M7) can be presented in matrix form: 

_ ro Ktl 0               0 
y 
yUi o   .   o     /r,,          o 

y*-i) 

y«-i) oo               o /r,.,..-, 
1 ^•-1.0»    Ka-].i,                           f(»-i,M-i 

r          -i '      0 
Ti 

0 
Ti + + 

0 » 

"" ••-i 

y 
yd) 

yi'-i) 

yli~l) 

(2.18) 

where 

(1-1,2, .  .   ../j-1). 

0 = 0, 1. .  .  . ./i-1). 

In enfineerinf oroblems frequently there are encountered binomial differential 

equations 

-9(')>W-/(^)- (2.19) 

dJt 

The formation of integral equation reduces in this case to a successive 

integration with proper selection of constants of the limits of integration. 

Usually in practical nrojlems 

7^ 



P, (*) * 0, 
a = 0,1 j. a<x<fc 

in a converse case the coefficient in the Drior derivative equation (2.12) vanishes 

at a certain noint and the solution must contain a singular Doint. 

Sunpose, for example, there is given a differential equation for the vibration 

of a rod 

£[EJ <A) W'V W' (2.20) 

where y(x) is the amplitude sag of axis of rod; 

SJ(x) is the strength of section to flexure; 

f is the density of material of rod, 

F(x) is the area of cross section, 

p is the angular frequency of the natural oscillations. 

We now consider a cantilever rod (Fig. 9), for which the boundary conditions 

have the form 
*(0)-<x y»(0)=0, ><»(/) =o, ̂ (£/y<2,(*))L, -o. 

îg. 9. Oscillations of rod. 

By integrating both sides of equality (2.20) from x to 1, we obtain 

J- \EJ (*) j - - p* J PF (*,) y (*,) dxx. 

By repeating the operation, we obtain 
< < EJ ̂ 2 = I j *F ̂ y ^d dxi' 

* *i 

By transposing EJ(x) to the right side of equality and by integrating twice from 

0 to x, we find * -«i t i 

W-'f Juwf f "X" 
0 0 

(2 .22) 
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Equation (2.22) is widely used in engineering comnutations,  bepinr.inr with the 

works of P. F. Psokovich,  E. P. GroMman »nd othsrt.    It is a homogeneous boundary 

interral equation. 

There exist also other methods of formation integral equations frc«n differential 

equations;  they are reviewed later on in connection with applications. 

3.    The Solution of Homogeneous Boundary Integral Equations 

Let us consider the solution oi  the equation 

y-^y- (3.1) 

Operator Ky is assumed to be symmetric, positively determined and the equatior 

possesses the real eigenvalues  Ai, X|, lt.... and the corresnonding eigenfunction- 

ai9 yi. yi. y«. 

The sequence of the eigenfunctions will form an orthonormal system in the 

interval a*x<b: 

J 10 i fj, 0.2) 

where h(x)  is a given nositive function. 

The indicated sequence  is not,  in general,   comnlete,  but if f(x) is an 

arbitrary function with a square being integrated,  then on basis of theorem of the 

Gilbert—Schmidt function. 

''*' (3.3) 

is expanded into a uniformly and absolutely converging Fourier series 

g{x)~ v e^,, (3.4) 
(-1 

where 

Condition (3.3),in essence,  denotes that the function g(x) may be an arbitrary 

boundary continuous function,  satisfying the boundary conditions of the  oroblem. 

For solution of equation (3.1) there can be used with necessary changes, 

methods of solving honogeneous Fredholm integral equations.    The most effective in 

90 



practical problems is found to be in most cases the metnod of successive approxi-

mations. For determining the first (minimum) eigenvalue and first eigenfunction the 

calculation is made according to the scheme 

(3.5) 

where *<0 and yo) are the i-th aoproximation for eigenvalue and eigenfunction. 

The magnitude X(i) is determined from condition of the very best "proximity" ol 

initial and subsequent approximation. 

In equating norms of the functions 

ll>(')|| = ll>(i-i)l!» (3-6) 

we obtain from equality (3.5) 

11 * (3-7) 

More accurate results (for a given approximation) are given with the use of a scalar 

norm of function 

\?hdx. Ml—j/i 
(3.8) 

but more simple are the calculations oeculiar to determining the norm of the 

function 011 basis of the maximum 
Hgil-max \g\. 

(3.9) 

If we present the initial approximation y«o> expanded into a series according 

to the eigenfurctions 
» ) *= I c„yn, 

m~- I (3.10) 

then with the application of scalar norm we shall have 

No 1 1 / u ( ^ ) v 

^ -en;,)'' •(v;;C:r- •• 
"""'v °-u) 



At i —* oo —> Xj, where anproximations give for x. , an evaluation from above. 

.Jith the use of norm on basis of maximum we obtain 

y. . . 
' i y\ "-'m I1# 1 . 

|u-Si 2s.iL, 
yt <i yi 

• 

mm L 
. +Ss.ia.h. 

'i yt 

l'+-1 <» ££)'• • • • 11 y i \ i » ! 
I 

(3-12) 

In these equalities, signifies the abscissa of section, corresoonding to 

the maximum ly»o>|, *»i is the same for the first approximation y(1> 

et cetera. 

If function y does not vanish at one of the Doints xm et cetera, 

then with an increase of i. 

In practical calculations the indicated limitation is immaterial, since the 

noint Xmi tend to the ooint, where yo> has a maximum value, and the first 

annroximation always can be selected in such a manner that yi(x„#)̂ 0. This 

method may be called the method of comparing ordinates. The values l<o may be 

larger or smaller than x, denending for axample, on the selection of the initial 

anoroximation. 

During the calculation it is convenient to assume 

Then by virtue of equalities (3.6) and (3.7) 

V.- ' „ . (3.13) 

Suopose, for examnle, there is determined the frequency of flexural vibrations 

of a rod and equation (2.22) is used. 

In selecting initial appraxlaation in the form 
*• 



we obtain with the aoDlication of norm on basis of maximum 

a>- — 1 
"(I) I jr| , 7 . 

J J EJ(xt) J | PF(X*) ~ dxi dxs <tx\ ' 
0 0 

Usually <•'(!). determinate from tnis formula, differs from the accurate value by 

3 to 5%. 

With the use of the method of successive anoroximations ̂""equality (3-5)_7 th 

eigenvalue can be found from condition of the minimum of square deviation with a 

"weight" h(x): 

• = JCV(o—>'c n)5 h dx^~ j —y(i-n)*hdx. 
a a 

From tho condition dc _ ̂  
d*(0 

e> 
we obtain J-V(«-n*->\i-i)''rfjr 

= • x x 

](Ky{ll)yhdx (3 .14) 
a 

In using equality (3.10), we find 

°'l5> 

whence it follows that at i-*^o, be giving always an 

evaluation from above. 

A rapid convergence, peculiar to the above-indicated methods, is exnlained 

also by the fact that usually in equalities (3-12) and (3.15) coefficient c^ 

significant larger than the remaining. 

Let us turn to determining the second and highest eigenvalues. 



It i» possible ss prsviously to procssi fron the equstlon (3.1) in solving 

it by the method of successive »pproxinetlons, but, as is known, the process of 

orthogonalisetion must be used both for the initial, and also for ' i« subsequent 

aporoxiinatlon. 

It is more convenient to use the transformed equation 

y-**iy. (3.16) 

for which first eigenvalue is equal to the second eigenvalue of equation (3.1).    In 

the theory of integral equations it aopears that the equation possesses these 

nronerties # 

in relation to equation 

>(jc)-XJG(jr.5)A(l)y($)^. 

In anpllcation to boundary value integral equations we shall have 

m 

However, this operator ensures the orthogonality for function y only of the initial 

anproximatlon and therefore it is not useful for practical calculations. 

Ws shall indicate the structure of operator K y, which in solving equation 

(3*16) by the method of successive aoproxiaations 

always assures orthogonality of a subsequent approximation  CV*'"   for the first 

eigenfunction independently of the selection of initial approximation. 

This operator aas the form 

i*jyik<* (3.1ß) 

^•K-^-.y.-H-  

*v 



I t i s readi ly establ ished 

i • jyo)ythdx = J K%y[i-\)ylkdx-^0. 
m a 

We note also that function y^ is not assumed to be normalized. 

Equation (3.16) is solved by the same methods as equation (3.1). 

In determining the j-th eigenvalue (and eigenfunction) there is solved the 

equation 
y = Wjy, 

J-I 
where w ' * ZJ Kyyihdx 

y, a-t . 
- j" y]ndx 

t - \ 

We will now consider the solution by the method successive approximations of the 

matrix equation 

The eigen "functions" of this equation will designated 

1̂1 = y,a 

(s=1.2.3 ). 

They satisfy condition of orthogonality (3.2) and normalization 

b / n 

!>,))-J(2̂ ^y,Jh>V*"(j 
• \t-1 / 1 

Equation (3.19) is solved on basis of the scheme 
[y<ol=^> 

where 
y«-n.i 
yo-D.J 

. [*ll.v<«-.>! = 

2 KXJy{i-»,i 
m 

jlKtjyv-u.j 
m 
2K„jyu-i)./ 

(3 .19) 

(3.20) 
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In dtUmining th« 1-th approxixaatlon for the first eigenvalue fro© the condition 

IIIxoIIIHKJ'c-ulll. 

we obtain 
t„,- ii (-'■-■iP 

In enolylng the norm on the basis of maximum (method of comparing ordinates) 

y /(I-D. i •♦•/(<-i ).»•*• • • •♦•/('-I). • 

'~'Ml 
(3.^1) 

or 

(3.22) 

rM< 

where x^r  is the value x, with which magnitude 

maximum value. 

With the application of the scalar norm 

/J/.-„., 

(3.23) 

dx 

has a 

Less accurate results (for a given aoproximatlon) are given by a more simole method 

of determining X(,),  based on comoaring one of the components [yu)J.  for examnle, 

yd).'- 

Wt shall have  y(<).f-^o('Ci>'«-i).i+^>'(<-i).j+ • • • +^m>'(/-i).«) 

and further 
»        JV/-!).' 
*(<)■■-n  

/-I "•'ml 
0.2U) 

K 



where x^ is the section, in which |3'(,_n,r! nas a maximum value. 

It is Dossible to show that oroceases of solution by formulas /~(3.22) 

(3-24)_7 converge to a minimum (in absolute value). 

For determining the second eigenvalue, there is solved the equation 

Lvl-Mtf.ib]. 

where 

In these equalities 

(3.25) 

[y 1= 

y\ 
y» 

- y. 

y u 
y i» 

. IJMH 

-.y i» 

In a developed form, the matrix equation (3.25) is equivalent to the system cf 

equations 

>»•=*(,itfi/J'y-P.J'iij. 

i Ktjyj-hyx^. 

(3.26) 

Coefficient fi is equal to 

p, = (KILy). (>il) = i(j.(y|A,y'yy)-yt'h-J 

l(Z/u*j)dx llb-.il 

dx 

Above-stated solution can be applied for calculating the flexure torsional 

vibrations of rods and in other problems. 



Let us consider, now th« solution of homogeneous integral equations (1.17): 

«x A|» .     .     . /C|t 

> (0 
y"(.t) 

(3.27) 

or more briefly written as 

l»-M*'-'IW. (3.,8) 

We shall call a scalar,  nroduce of an order of   »    functions   j   and £ with a    weight 

h,   the  following magnitude: 
* « 

In the considered case,   tne  functions M^). (/-0.   •v^       can be also negative, 

We shall assume that matrix operator of equation (3.27) is symmetric: 

(I^'MI/I. kl)"»-^!. IA:(,,11/I),,>. 
(3.^9) 

For elastic systems this ensues from condition of reciprocity. 

If operator /~Ky_7 is positively determinate, 

(I*"')!/!. (/])">> o. (3.30) 

then equation (3.27) possesses real and positive eigenvalues. 

Eigenfunctions of equation (3.27)    yi   and    y/    by virtue of conditions  (3.29) 

are orthogonal and normalized 

Equation  (3-28) is solved by the method of successive annroximations: 

LVol-^I^'MU'-n). (3.31) 

Let as consider first line of this equality: 

J'o-NoAJ'^,*-!,. (3.32) 

v< 



By the method of comparing ordinates 

we obtain 

'̂r — I • (3-33) 
K^V \M=X * *0 r * ml 

The process thus constructed converges to the least eigenvalue in absolute value. 

In determining the second eigenvalue the calculation i3 made by equation 

LvHMKr](>>]. (3'34) 

llLvilii* 

In solving equation (3.34) previously indicated methods are used. 

4• The Solution of Homogeneous Norma1 Integral Equations 

The indicated equations have the form* 

y = lNy + S / M 

The number m, entering into this equation, corresponds to the number (of homogeneous) 

boundary conditions, which it must satisfy in the considered problem. It is necessar. 

to remember that part of the boundary conditions (at x = a) is satisfied already in 

constructing the operator Ny. 

Suppose, for example, there is considered the oroblem of flexure vibrations of 

a rod /"equation (2.20)_7 with boundary conditions (2.21). In taking a constant 

limit of integration 1 we obtain from equality (2.20) by successive integration 

t i i i 

y (•*) - * J J — ~ ~ j$pF(xt)y (*«) dx 4 dx% dxt dxx + 
(L 2) 

+y (O/oW+^'KO/.w, 

*We recall, that by our def ini t ion the equation if called homogeneous, i f i t 
admits a t r i v i a l solution, y = 0. 
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wh« re 

TV *«r two conditions (2.21) alreAdy were taken into account in the formation 

of equation (4.2). 

Equation (4.2) is a normal integral equation. 

Lty~yiO), L^-yvHO) 

The solution of equation (4.1) by virtue of the linearity of the integral 

ooerator is presented in the form 

(4.4) 

where the function     Q, (x)     are exoressed by absolutely and uniformly converging 

series 

(i-O. 1.    .   .«). (4-^ 

By introducing the relationshio (4.4) into nn-l boundary value conditions,  «^ 

shall obtain nH-l equations relative to the same number of unknown parameters 

Liy {i — 0,...,'n): by equating to zero,  the determinant of the system, ws 

find characteristic equation for determining the eigenvalues. 

The indicated scheme in its basic features was used by Sh.  E.  Mikeladze. 

We shall consider a practically important case, when equation (4.1) contains 

two functionals.    This makes  it possible to formulate also certain more general 

results.    For definitiveness we shall consider equation (4.2). 

The boundary value conditions at x - 0 (Fig.  9) 

y(0)-0.   y'(0)=0 

results in a system of equations 

y{Q**m+y{i)iO*iiO)~o, 
>(0^,,(0)+y,,(/)«>i,,(o)-o 

and to the characteristic equation 

♦. (0)  O, (0) 

<?o 

«0. 
(4.6) 



In determining the functions /"equality (4-5)_7 will retain terms, 

corresponding to the "k-th approximation". 
* k 

In this case (0) = 51 a») ", (0) = v 
*•̂ 0 «-«0 

•J" (0) = 2 c,r, «>(')(0) = I b,K\ ^u'7) 
«̂o 

where 
C. = £N'U di — N-fx; b, = ±N*fx. {U Q) 

We note that for determining the derivatives $.(*) special calculations are not 

required, since their values already are contained in calculation tables for 

determining <!>.(.*>. 

From equalities (4.6) and (4.7) it is evident 

Ja.k' J W - If.X' £ = 0 (4.9) 
*•0 »—0 «^) «-s0 

or, by expanding into a series by degrees of x, w® obtain 

F*(X)=0, (4.10) 

where the characteristic polynomial 

/7*0-)= I A. <*>*". (4.11) • -0 

i4. <»>' 
1-0 

0 < « 
» - « 

2 (dk-ibn 
1-0 

-k+l — ck- idn-k+l) 

In a l im i t i ng case at k-*oo we s h a l l have 

(4.13) 

Expression (4.13) is a Fredholm series for the considered problem on eigenvalues. 

The roots of the equation 

W 0 (4.1A) 

Xt, are all real and positive which ensues from symmetry and positive 

definitiveness of the corresponding boundary operator. 
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Let us assume, as usual, to number these roots (eigenvalues) in increasing 

order. Coefficients Am    with even n are positive, with odd, are negative; A%~i 

From the equality 

'w-no-Trhi;^' 

the known relationships  follow 

i-j 

1--VJ- 

 § 

(4.15) 

^-2:2^7 
et, cetera 

The roots of the characteristic nolynomial (4.1i) are approximate values 

^« (,=:'.2 )       anci nossibl;/,  in general,  both real, and also conjugate comnlex. 

Tr.ere exists an imnortant relationship,  valid for equation with an arbitrary 

number of functionals;  the characteristic polyncmia]  of the k-th anproximation has 

k-" 1 first coefficients,   in accuracy conforming with corresoonding coefficients of 

the Fredholm series. 

Thus, for examnle, at k -■ 2 

^MD^AI^I.    i4i(j,= i4,,    A2(i)*=Ai, (4.16) 

but    AMJ)^! et cetera. 

With the use of following degrees of operator Ny, variations occur only in the 

terms with    «>*+l. 

This circumstance is important in practical problems, where it is usually 

required to determine several first eigenvalues, depending essentially only on 

first cjefficients of the Fredholm series. 

For seeking eigenvalues,  i.e., roots of equation {U.lk),  it is expedient to 

annly Lobacevskii met.iod;  by assuming a lack of multiple roots,  we obtain for a 

first evaluation the approximate equalities 

Q2 



*2(1) — 

*-3(1) ; 

A* ' 

dl. 
A, ' (4.17) 

ensuing from relationship (4.15). For the second evaluation 

>*m-y -jp. 

*m~V -*?>• 

(4.18) 

Coefficients /t<̂  are coefficients of the expansion 
F(1)(0 = F(>)F(->)=|o^>(^-. 

These coefficients are determined by equality 

^I?,-,£A2.-MJ(-I)'. 

For seeking the accurate value A'M2) • there is required the use of the approximation 

of an order k = 2n. Ws note that equality (4.17) and (4.18) give in practical 

problems sufficient accuracy for the determination of the first two values. 

It is possible to use in the calculation also some of the 'inaccurate values" 

(following directly after accurate values in the characteristic nolvnomials) and 

then the matter reduces to seeking the first roots of the indicated polynomials. 

Here, there may be used different methods, of which, in addition to the 
V * Lobacevskii method, v» shall give attention to Newton's simple method and the 

msthod of graphic construction of function 



In order to Judge about accuracy of the calculation there should be made 

analogous calculations for the polynomial  f».i(M. 

It is oossible  to use upper and  lower evaluations for the first and second 
« 

eigenvalues  . 

5.    The Solution of Inhotnogeneous Boundary Integral Equations 

Lst us consider methods of solving the equation 

yiKy + f. (5.D 

where   X     is a piven «Tarameter;   /    is a given function   x{a^t<b). 

Method of Simple  Iteration 

By anplyinp usual nrocess of successive annroxiinations,  we shall have 

>(M-^,>'('->) + / (5.2) 
(i-1.2,3..   .    )• 

For the n-th annroximation 

y{»)-f+U(f+VKtf+ .  .  .+VK»-ifi-VK*ym,        (5.3) 

where /C'/   is the i-th degree of the operator Kf: 

*f-K*-'n   „..,2.3.   ..). <^ 
The nrocess of a simnle iteration will be convergent,   if the sequence of      y(*) 

converges to an accurate solution 

■■-<■ 

VM shall explain adequate conditio .s for the convergence of the series 

«-o ( P . 5; 

Let us consider norm of the integral ooerator K,    For a continuous  of   rator 

II AC/IK C||/i;. (5'6) 

where 
H/r/jl-maxlA'/l.       ll/H-maxl/I. 

*3. A.  Bei-nstein;  Fundamentals of the Dynamics of Structures.    Civil Engineer, 
Publ. House,  Moscow,  1941; A. F.  Smirnov,  The Static and Dynamic Stability of 
Structures,  Railway Transport Publ. House,  Moscow,  1947. 
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The minimum value of the constant C, assuring inequality (5.6), is called the norm 

of the integral operator 

Thus, 
C...-11*11-

II*/ ll< II *11H /II- (5.7) 

In accordance with equality (1.2) 

| |*| |<max(|?01 ,[ | + Jkn t l / \ q M \ d x t d x t 
' I I " •» «IH 

-H^eiil I J \Pwi\dxx +\p„„l\y\pt»\ l\pt„\dxtdxt + . . .) . 
I * « ' I »ii« «in I 

+ 
(5.8) 

Let us give an example. 

Suppose 

Then 

* / — j [7 (*») dx% dxlt (0 < JC < 1), 

/<*) = -f • 
J 6 18 

f l * / l < 1 1 dxtdxt m a x \ f ( x ) 
O<JKI 1 2 1 3 

| | * / | | = m a x | * / | < m a x | - £ _ * J - L ; 

| |* | |<max -—JC o<*.. il 2 

In turning to a general case, we assume that 

IM-ll*H = ?<»- (5.9) 

i . e . 
IM< 1 

11*11 (5-10) 

In accordance with this 

max | X'*'/Ml W/II <*'11/II-

By virtue of the latter equalities the majorant series for £ converges, in which 
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11,1K-J/L., 
I-HIIKII (5.U) 

* 
This ijnnortAnt result ia a conaequenc«  of Banach's  theorem    established for 

functional equations with linear operators. 

Thus, under condition v5.9) the series (^.5) converges uniformly and absolutely; 

function, being expressed by the series (5.5), satisfies the integral equation (5.1), 

in which one may be convinced by direct substitution. 

Further we shall establish that 

for an arbitrary(bounded) function    y   )     thus,  the  solution does  not depend on 

selection of the initial approxloation. 

In connection with this,  hencefore,  we shall assume usually y -,, = 0    and then 

yo)-/- 

.fe now turn to an evaluation of the error of successive annroximat io;,3   > •'■ 

••■=y—y(,«>. (5.12) 

where v is the accurate solution of equation (5.1). 

From equality (5-3) at y(0) ^ 0   and exnression (5-5) we obtain 

ta~W/ + »+l/(*/+ .  .  . - f x/A-//. 

By virtue of (5.9) we shall have 

max|.JH|.J(<l''i«l. i>-^) 
m<M<i 1 — 7 

It is of interest to establish also another evaluation for magnitude   «•- 

We shall designate difference between two successive approximations 

In the basis of equality (5.2) 

Ay<.)-=^A>(-) + /-v'-,: (5.U) 

,he magnitude    Ay(m)      is the error in satisfying the main integral equation. 

♦L. V. Kantorovich.    Functional Analysis and Applied Mathematics,    Advances 
n Mathematical Sciences", No. 6,  1948. 
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From relationships (5-12) and (5-14) we establish that error e> itself 

satisfies the integral equation 

+ (5.15) 

Now, by virtue of relationship (5.11) 

II Jl <, __ |X,||/fn= i 1 (5.16) 

which establishes connection between difference of two successive approximations 

and the error of the solution. 

We consider now the practically important case, when the operator Ky has real 

eigenvalues X« (»= 1.2,...,°°) and their corresponding eigenfunctions y*. 

If error of the initial approximation is presented in the form 

e, = (f C&, (5.17) 

and there is considered the relationship 

—i. (5.18) 

ensuing from equalities (5.2) and (5.1̂ ), then we obtain 

(5.19) 

From the l a t t e r equali ty, there ensues a well-known resu l t : the process of simple 

i tera t ion converges, i f 
IMCIM. (5-20) 

where Xv smallest (in absolate value) eigenvalue of the homogeneous integral 

equatioi. 

y-WCy (5.21) 

We note that in considered case (the homogeneous equation possesses infinite 

spectrum of eigenvalues) the solution of equation (5-1) may be obtained by the well-

known expansion into series by eigenfunctions 

v * (/. yi) L .-f y,. (5.22) 

i-t 
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The use of this solution is very imnortant for a theoretical analysis, practicaliy 

it is lass effective, than the annlication of method of successive annroximations, 

since a determination of at   least  several first  eigenfanctiona is required. 

Method of Comnlex Iteration 

Let us now consider the case 

m>iM. (5.^3) 

Of great practical value are eqiations,  for which      KO.      but all the eigenvalues 

Xk    are oositive (flexure of blades and turbotr.achine disks in the field of 

centrifugal forces,  the  flexure of beams on elastic   foundation et cetera). 

Thus, 

y^KKyt  \>o     (^-1.2.3..     . .oc) ^-'^ 

Process of complex iteration was shown by Viarda ^"Integral equations' ) in 

connection with -»roblem on longitudinalXv-transverse flexure of rods.  According ■ 

this method 

^c-t-D^a^o + PCZ-MAj',,,). (5.2o) 

where   a     and    3    ar0 narameters,  identical for all anproximations. 

In accordance with equality (I).26) each subsequent anproximation is a linear 

combination of the two preceding,   obtained by the method uf sixiple  iteration. 

Process can be penoralized also for the case,  when there is used a linear 

combination of several preceding anproximations. 

The error of the i-th anproximation 

•i^y-ya)-f-vKy-*y{i.{)-p(/-tKy{ '„)        {^ui) 

can be presented in the following form: 

•i-Mi-i-pj^Vi-Kl-a-p)^. (^..8) 

From this equality it follows that th3 necessary condition for 

'.-*0 (5.29) 
■ ■•• 
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will be such: 

A+P-l. (5.30) 

Now we obtain 
•ja*0*{_i — ^ 1 * '•°°)* 

In presenting the error of initial approximation in the form (5.17), we find 

••=2 <'(-'£)»• (5-31) 
i=~\ 

Equality (5.29) is found to be valid, if 

I« - ~ | = < 1. 
I I 

or by taking into account the relationship (5.30) 

l1_pi4r~ <1 <5-32> 
(i«=l, 2 3,. . . ,oo). 

It remains to show that there can be found such a value 3, that all inequality 

(5.32) will be satisfied. This condition is essential, since at u<0 and 

such a value is impossible to find. 

It is possible to establish that inequality (5.32) at will be satisfied 

0 < P < ^ - . 
(5.33) 

where x»- is the minimum eigenvalue. 

The value 9 expediently is selected with such a calculation that it 

corresponds with minimum values ?•. i.e., most rapid decrease of error. The 

solution of this question depends on relationships of the coefficients ci, i.e., on 

the character of error, but also on the magnitude . If it is assumed that the 

coefficient of expansion of error by first form c> is considerably larger than the 

remaining, then one should select 

(5.34) 

Then q^ = 0, also at fairly large *'(X, >{*) 

* (5.35) 
,T*7-
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Viarda reconroends the valua 

^^i' (5.J6) 

with which for i -   1 also for fairly large i 

q'm"^l- (5.37) 

In accordance with equalities (5.^6) and  (5.30) the calculation is made 

accordi'.f to equation 

(5.J8) >^+i)-(l-p)y(.)-}-P(/~f<vtl,). 

In assuaunp   y{o)^0,      we find 

or.   by usi-.f {;.}U), 
Mo)-* —-. 

U-f- (5.J9) 

In solving the oroblem or. longitudinally-trar-sverse flexure of rods,  we snail 

nave 

4 A (5.4") 

where -f —is the sag from effect  of a transverse  load;  N-is tensile force,  acting  ^ . 

the  rod;     P-,  — critical  force according to Suler.     Formula (5./*0),   possessing 

rreat accuracy, is used in engineering calculations.     It could have beer obtained 

also  from equality (5.-^),   i-f it is assumed  that  functions   j    and y    agree with an 

accuracy un to factor  (ciiWe  of flexure  from lateral load is similar to the  f^rst 

Tonn for the loss of stability). 

Process of complex iteration  for the equation (5.^-+) is convergent at any 

values    ji     but at    u '   Xi       the  convergence is  obtained more gradually since      >Ji 

is close  to unity /~3ee  (5.35 and  (5.37)_/. 

Method of Complex Iteration With a Variable Parameter 

A gradual convergence with  large   il<  ir. the preceding method is associated 

■/ith the fact that parameter H    was taken as constant for all approximations, 

rocess of comnlex iteration /equality (5.38)_/ can be written out in the  following 

"orm: 

loo 



>(»+» -=.y<i>+P*y<o. (5.41) 

where 

Ay(i)«=/—><«)• (5.42) 

Magnitude Ay(<) is the difference between two successive approximations or error 

in satisfying function >(0 of equation (5.24). 

Process of complex iteration with variable parameter is expressed by the 

equality 

(i —0, 1, a . • •). (5.43) 

where the parameter p, can be determined from the condition, so that the function 

>('+») in the very best manner satisfies the main integral of equation (5.24). 

For generality we shall return again to equation (5.1) and then 

Ay(i)=/+^y<o—yo-

From the condition of minimum of the square deviation with the "weight" h(x) 

/"the function h(x) enters into the condition of orthogonality of the eigenfunctions/. 

(5.44) 

where 

• A>(i+i)«=/ + X/fy(j+l)— (5.45) 

we obtain 
^ I A 

H i ( 5 . 4 6 ) 

From equalities (5.45) and (5.43) we find 

* n = AjM>-M4y<«>-fcff4y<o) (5.47) 

and by virtue of (5.46) 

f ty(l) <̂ >(0 ~ *KAy(J)) * 

}(Ay(0-UAjr(1))>*rfx 
m 

It is possible to establish that 

^ < 0 

(5.48) 

l o j 



and therefore conditions (5.46) determines minimum of the error. 

Ms note that in determining it is found necessary to calculate K&y<o> 

which immediately is used in the following approximation: 

J'C+D
 1=2 f i)+P<+ 1>-

The magnitude &y(i+o is determined from equality (5.47). The proof of the 

convergence of this method, as also of several subsequent methods is made difficult, 

however, it is obvious that if Drocess of the solution converges, then it converges 

to an accurate solution. 

The latter immediately ensues from equality (5.43), since, if 

l><H-»)—><<) I <8, 
then 

ft*0' 

and the function ym satisfies the integral equation with an error not exceeding 
» 
IM ' 

we shall show also that if function on the right side can be expressed in 

form 
/«=c»y«. 

then already the first approximation on basis of equality (5.43) results in an 

accurate solution (initial approximation is, as usual y(0> ~®)-

MB shall 
yo 

j f(/-u</)kdx §»(y'-i;y')kd* 
• • __f 1 
n • 1 •> , • 

Uf-lK/VMdx ./ I \» J _JL 

m 

This result ensues also from equality (5.22). 

Ws note that it is valid with the arbitrary function h. In practical 

calculations (for simplicity) it is possible to assume 

h{x) = \. 

loZ 



In oroblem about the flexure of turbomachine blades, propellers, the indicated 

1*1 -process gives ent i re ly sa t i s fac tory resul ts at ~ < I 0 . 
*1 

Method of Similar Iteration 

Let us assume that an approximation y c a n be improved by multiplying be a 

certain coefficient i.e., can be assumed as the initial approximation 

= (5.49) 

The subsequent approximation is determined from lhe equality 

.y<i+i>=/+PM><i> (5.50) 
(i = 0, 1, 2, 3,. . .). 

The coefficient p, can be determined from different considerations. In assuming 

that the initial and subsequent approximations coincide at the point xm(a-^xm^b), 

where yo) has a maximum value, we obtain 

JV+ofoJ->&,(•*•>• (5.51) 

whence , L 
y(D — V(y{l) 

Relationship (5.51) is equivalent to the condition of equality to zero of the 

error of integral equation at x = xm, if inco this equation is introduced 

"an improved" approximation: 

a*;,, (*,)«= o. 
The process of successive approximation constructed in this manner converges 

usually at 
A I 0*j | < *• • A similar method was used by V. P. Vetchinkin. 

The significantly best results are obtained in the case, if P, is determined 

from the condition 
)yo+»dx=)y't) dx (or J Aj)J0 dx = oj. 

•In this section of instructions on convergence of processes are given on the 
basis of an experiment of their application during calculation of turbomachine 
blades. 
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which gives 

J f*x 
l - r 

JOto-UOW*. (5-52) 

The process of solution, given by equalities (5.50) and (5.52), we shall call 

a similar iteration by the equality of areas. Practically this process converges 

I— < 10, where it is esnecially effective at < 5. 
• "I A| 

The raoidity of convergence increases, if as an approximation of >('>('>3) 

there is taken the half sum of two nreceding approximations: 

y(')"=— (y<i-u+.y<f-2)). 

Finally, on® can determine and from the condition of the minimum of 

the square deviation of initial and subsequent approximation 

'iJ Cy<H-i) ̂'i))* dx 1^, = | > 

i.e. for equality 

*>! 

which gives 
J/Cv(i) — lKy{lj)dx 

Pj * * 
JOco-UCy(l ,)»** (5.53) 

One of the important variants of the method of similar iteration (on basis of 
A 

equality of functions) oointed out by S. A. Tumarkin . Lst the functions >'<'+») and 

y*0 coincide in all sections. This is possible at 

**>«)' (5.54) 

If y<n conforms with the accurate solution, then the parameter «, will be 

constant; in reality, equality (5.54) determines the magnitude, depending on x. 

In using in an approximate solution, equality (5.50) established for 3i*34*)), 

we shall obtain 

•This method was communicated to author in a personal visit. 
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('=0, \,2,. . .) 
(5.55) 

The nrocess of successive approximations converges in practical problems at 

Relationship (5.55) loses meaning, when the denominator of the expression 

tends to zero which virtually is encountered fairly rarely. 

Ws now shall point out that for all variants of method of similar iteration 

the following is valid: 

A. If a process of subsequent approximations converges, then converges to an 

accurate solution: 

B. If function j is similar to one of eigenfunctions, then already first 

approximation results in an accurate solution. 

Suopose, therefore, 

JW.) (5.56) 

In order that y^ u tends toward an accurate solution, there must be in 

accordance with equality (5.50) 

(5.57) 

Sunnose, for example, the process of similar iteration is made on the basis of 

equality of areas: » 
)/dx 

yo+ a—*A>«) i—- + / . 
j c ^ d ) — ( 5 . 5 a ) 

By integrating both sides of equality from a to b, we obtain 

» ifdx C C ?/ 
I *1+1) I yo)dxt i -
J J S^(0~' **>«))d* m « • 

By virtue of (5.56) 

• » 
\yv+udx-*[ywdx, 
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whence also there ensues the relationshin (5.57). 

If the solution is constructed on basis of equation (5.55),  '^hen from (5.56) 

there ensues 

i.e.,   the function ■^("   lends toward an accurate solution of the  problem. 

We shall now indicate the validity of the second assertion. 

Sunnose 

where   yn   is the n-th eiper.function of oneraior Ky. 

Then,  by assunüng, as usual,   ^(O)*»/,    we obtain from equality (5.5H) 

ywf+T-cj, ? j « —^ - . 

m 

An analogous result  is obtained from equality (>.55). 

We note that "quality'■ of the aoproximation can be evaluated also by the 

magnitude      0».        With a good convergence of the nrocess already for second  or 

third annroximation      S«^1- 

We shall dwell briefly on the solution of matrix equations 

\y\~HKy\[y\ + \f\. (5.59) 

We shall assume that the corresponding homogeneous equation has the eigenveiues 

Xi. X|, Xj,... 

The nrocess cf simple iteration for equation (5.59) 

converges, if 

ixKlx.l. 

At  |X|>|Xi|     thsre are constructed orocesses of iteration, analogous to the 

previously ind'cated nrocesses. 

We shall consider as example the application of the method of similar iteration, 

In this case (j^ul-Wni-Vol + (/l- 

loG 



The magnitude Pî  is determined from following condition: the corrected 

approximation 
Wol-M-Viol 

in the very best manner has to satisfy equation (5.59). 

The error of equation (5.59) 

Thus, 
— ft 
* jLKijyv).i+f\—P^o. i 

lAtfol 
PA ILKtjyw. / + /»—P/>v>. J 

PA 2Kmjy^),n + /„—P<y(i).« 
/—I 

(5.60) 

The absolute value of the error 

IIKolI= j/j, (&(> ,?*•)+/.}". 

By determining J, from the condition of minimum of square deviation *,=» J| (Ay*0U!d.x, 
o*t __n 

i . e . from the equality dft~ we obtain 

2 f/» (y(i)."~* £ *»/-*<•). /) rfj 

P» - i « * / i l ' ' = ~ r ? « s — 
2 S(><*.•~x 2«./'(»./ <* 

»—t a \ • y - i / 

If we take 

Mo] 
Pll.V(l).l 

P<a>(0.« 

then for the method of similar iteration on the basi3 of the equality of functions 

ws obtain the system of equations (at /.̂= 0) 

A-VfO. . >('+!). *™ 

(*«=1,2, . . . ,n). 

(5.61) 
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There exist also different methods of annroxijnation,  reducing the nroblem to 

solution of a system of linear algebraic equations (Fredholm method, method of 

ffloaents, method of collocation and others).    In nractical problems,  these methods 

usually are inferior to the previously indicated metrods, 

t.     The Solution of Inhomogeneous Normal Integral Fquations 

In the solution of equation (1.5) its component  funct-'onals are considerad  as 

narameters and for brevity are designated 

L*~Ci (6.1) 

In solving a normal equation by the method of succesjive annroximations 

we obtain 

where 

*i-/l + XN/l + VW/l+ .... (6 

(6.3) 

The narameters   C»   are determined from boundary conditions  of the nroblem.    Series 

(6.4) and (6.5) converge uniformly and absolutely with an arbitrary value    X.       L. t 

us note that   if calculation is made on  basis of equation  (6.2) and the parameters 

^    are determined after each anproxiroation,  then process  converges only at 

UKU.i. 

In "decinhering" the C»    values in accordance with equality (6,1) the normai 

equation acquires all the orone-ties of a boundary equation. 

Sometimes it is convenient for the series (6.4) and (6.5) to be used in another 

form,  for example, 

wtore 
•i^UV^c-.,,    (5 = 1,2.3..   .   .).    («,(0)«/,). 

Jok 



In above mentioned series each term of the series is the difference between 

two successive' approximations. The calculations are stopped, when a new term of 

the series is small in comparison with sum of all the obtained terms of the series. 

In evaluating the convergence of the orocess of successive approximations it can be 

established that the terms entering into the series (6.4)-(6.6) diminish with an 

accuracy up to a factor, as . For large values of the oarameter X 

and of the interval of determining the function, the convergence deteriorates and 

in a number of practical problems even at I "jj" 1^® becomes gradual. For 

improving the conver^nce, it is possible to aoDly method of'mobile origin", with 

which the function is found at first in the fairly small section a<x<au which 

assures a raoid convergence. Further, the solution is constructed for the 

following section (in normal integral equation it is assumed Q^a,) and initial 

oarameters in section x~a« are determined from the preceding solution. The 

condition of "rapid convergence" of the simple iteration process for a normal 

equation can be reconmended in such a form: 

IMIIMIO. (6.7) 
In a number of problems in structural mechanics under condition (6.7) there is 

required not more than three to four approximations. 

Analogous results are obtained in solving matr-LX equations 

UHMAMlvl+JC/l/il + l/ l 

by the method of successive approximations; we shall 

i 

:I*I1-I/,I+M^II/ II+X«[/V]«[/J+ .... 
!•]' - i/i+* Mi/i+v w i/j + • • • 

the functions (©J and f$] can be nresented in the form of a series, for 

example, . 
(•)-
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in which 

l*(/>l-xMl®«/-i>). (•to,) —1/1. 

Into shall now consider the application of the linear approximation method, in 

which there is used an approximate integration by the trapezoidal rule. 

The indicated method for boundary integral equations results in the necessity 

of solving a system of algebraic equations; for normal integral equations the matter 

is greatly simplified because the values Y(xi) (/"0, 1, 2,...) can be 

determined successively one after another. 

Suppose the normal equation is given in form 

>(*)- £ Q. (*) ] 1, (*i) y (*|) dxt+/+ v cj„ (6.8) 
• — l a i^) 

/"parameter \ is contained in the function Q« (•*)]. 

Solution of equation (6.8) will have form (6.3), and, for example, for 

determining function <J>(x) there must be solved the equation 

J 2 Q , (*)/*,(*»)>(*.)<<*>+/• (6.9) 
M a 

Now we consider first variant of method of linear approximation, we shall 

subdivide the interval of x variation into k sectors with the sections *•=<». 

The length of a sector 
•Xj—Xj-l -» Ay. 

ws shall designate 

y (xy)"">y. Q, (Xj) - Q,j, / ( x j ) - / , , 

y -o , t. 2,. . ., k, 
S ® li « . i It, 

On the basis of equality (6.9) we shall establish 

T W I I * * 
^ I ' " ' A + A»+|) + yyAy 
L <-i 

+//. (6.10) 

t/-i. z. 



Hence, 

In f i n a l form 

yr m 

1 — 2|j 

±2«. 
« - i 

1 

IsoYo^l + ( ^ + r l ) + /> 

n-1 

where 

''=Tr^7 2*'•'• + /< \*-° / 
( / - I . 2.. 

m 

' ~ ~y +^*+0 
i — i 

C/«= 1. 2, . . ..A; »= 1, 2, . . 
a 

a / » " 4 ~ y QS/I**Q ••I 
l y r T ^ j ^ 4 / ' 

* ) . 

- .y—i). 

(6.11) 

#—1 

Calculation by equation (6.11) is convenient to make according to scheme, shown in 

Table 5. Magnitude y»™ f* is multiplied by the column "0" of the table 

and the result is filled in column "0" of table a !»/••. By sunmarizing the numbers 

in first line and by dividing by 1 — an. we find y . By multiolying y by coliann 

"1" of table «/• et cetera, we find all the values yi-

A simplification of the calculation is attained by subdividing the section 

into equal intervals. 

With equal intervals, in addition to a linear approximation (integrating by 

trapezodial rule), there may be used integration by Simpson's rule et cetera which 

1.11 
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results in the appearance  of corresnorulinf factors  for the  coefficients    3M- 

The internolation formulas by Chabyshev and Gauss are not successfully annlied  in 

a similar manner,  since f )r different sectirs t.-.e noints of internolation vd 11 not 

be common. 

;.Ve now discuss  the second variant   >'.'  the  linear annroximation which  leads  Lc 

another scheme  of calculation.     We  snail write equality  (6.10)  in such a form: 

«-I 

where 
A.y'»A.y-i+  , ^/^(^ t ^H). 

0-1. 2. .  .    . k    \). 

From relationship (6.12) we shall obtain the calculation formula 

ThU3' ^.-/o. 

yi — r h— (Y c?',/,,+/, 
i 

2 ^ 
■i        v »-I 

*-i        \ i-i 

(Ai^^-t-y^.^fi.-f A,)). 

(o.l3) 

y^~T   Ä     VQ^.j^ + fj   . (6.U) 
'    ; V- J 

U=\. 2.   . .*); CVo = /o). 



With A snail numbtr of calculation sactions   (*<•)       the mort convenient is the 

first variant of linear approximation osthod, with a large number of sections, 

the second variant. 

Mi now consider the application of tho linear approximation method for the 

solution of matrix normal integral equations 

\y]~imyl+[/l 
As an example we take the equation 

ia-£ aMi 
The mr'nitude of the known parameter   X  is included in the operators. 

If normal operators are given in the second form /"equation (6.8)_J7,  then in 

an exnanded writrng we shall have 

yt (') - 'i Qu (*) I «u (*t)yt M dxx 4- 
* 

+ 2 Tu ix) j tu (x,) yt (*,) dxl -I- /,. 
«»I a 

yt (x) - i; (?„ (or) f ^ (A-,)^ (,*,) dxx -f 
««■I a. 

(6.15) 

As earlier, we shall briefly designate 

y\i*j)-yiji   Qu{*j)~Qufi   <fi,(x,)=<fi,j'-     •   •     et    cetera 

In using the second variant of the method, similar to relationship (6.12) we obtain 

yv - 2 ^ (yi.V/-. + 7 Wv Ay)+ 
-I t 

+ £ Tuj (Ail/-, + y ^./Ay) + /.>. 

(6.16) 
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wh«rt 

(/-I. 2.. . .,k-\), 

and t. p. 

Equality (6.16) will be written as: 

where 

•ti/J'iy 4 «ityy«/ - ^i/. ( 6.17 ) 

■ 

i 
"II/

0
 ~ YAy^ ^»v'uy 

«—I 

«•y-y^^Qt./?,,;, 
•i 

«My=l - y A/^j 7«*Aiy 

Frcm equations (6.17) ws obtain the calculation formulas 

yx.wm , 
•ny«»; —•»/'»I/ 

*njHij — "iiy^ny 
(y=1.2. .        .*). 

As nrevicusly, the values y^x) and yt(*)  in each calculation are determined 

in sequence. 
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CHAPTER     4 

APPLICATION OP BOUNDARY AND NORMAL INTEGRAL EQUATIONS 
TO PROBLEMS OP STRUCTURAL MECHANICS 

1.    Plwcur« of Rods in 4 fi%ld of Cwtrlfugal Forces 

This probltm has a number of engineering applications in calculating for the 

strength of blades of steam and gas turbines, ccnpressors, blades of propellers and 

helicopters.    The application of method of successive approximations and boundary 

integral aquations in calculating for the strength of propellers is given in works 

by V. P. Vetchinkin, D. Tu. Panov, P. M. Risa, S. A. Tumarkin. 

Pig. 10.    Flexure of rod in a field of centrifugal forces. 

In Pig.  10 there is shown the system of coordinates being used.    The y axis 

coincides with axis of rotation, the f axis is   directed radially and passes 

12C 
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through the etntar of gravity of the root section of rod. Axis of rod is assumed 

in the form of space curve, deviating little fron a radial direction. 

The origin of the local axes x^y.. is placed at the center of gravity of cross 

section; principal axes of the section I. T*  are turned by an angle a    in 

reference to the local system. 
« 

Equations of the flexure of a naturally twisted rod have the form: 

*• \£J^       EJ%I    'lT 2 U;,  EJJ J'|, 

where u and v are the elastic disnlacements of axis of rod along the x and y axes 

respectively; EJ%       and Eh     —are the orimary rigidities of section during 

flexure. The bending moments iAn  and ^»i during flexure of rod in a fi^iÜ of 

centrifugal forces are equal t©      « 
Mtx (r)~MMX (r) +po.

,f {v (rj-t» (r)) r^(r,) dru 

M,t W-=^i (') ^-P"', I (r.u (r)~ru (rj )F(rl) drx, 
(1,2) 

where p- is the density of the material; «  is the angular velocity; F ~ across 

section area. . MMx{r)      and M^if)      designate bending moments from a transverse 

load PM  and P,     and the initial distortion of axis /"its coordinates orior to 

deformation ^{r)  >•('') I: 

MMl (r) *= -lip, ('i) ^i dr, + pw» f (yt (r,) ~yt (r)) r,F (r.) drx, 

A»,» (r) •= H PM i'J dr*dr* + f""* 1 (rixo (r) - ^o (''.)) /= (''i) ärx. 

Equation (1.1) which takes into account relationahins  (1.2) will furn. a system of 

integro-different ial equations.    We shall tra.isform it into a matrix boundary 

integr&i equation. 

As the chief unknowns we shall take the comnnnenu   .•r ; he curvature 

^-f(r). d.^ 

^3. A. Tumarkin, Equilibrium and Oscillation of Twisted Rods, Transactions of 
the Central Aero-Hydrodynamic Institute, No, 3/,l, 193?. 
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By MAM of inUfrfttion by ptrtt trm rtlatlonfhipt (1.2) m find 

wh«rt 

^•«-^«^fcwftw*,, (15) 
t 

9 

C(r) it tht etntrifufftl feret, acting in tht ■•otion r. For a rigidly fix»d blade 

in tht root toetion , 

A-ftft)*, 
(1.6) 

By introducing «quality (1.5) with a confidaration of tha depandance (1.6) in 

aquation (1.1), «a obtain 

whara tha paraaatar of aquation 

f 

LtJ 
(1.7) 

and integral operators ara determined by the equalities 

(1.8) 

#f,,*"T(^'""^J,,,iaiJc,(r|)|*(r,)'r,</r,: 

#f,,T
-T("£7~^),in28'rfc,(ri) ?{ \r*M***'*''   (1-9) 

The magnitudes   f    and    t   signify the components of en elastic curvature 

caused by the momsnts   MMi    end   Af,i    ; they ara obtained from equalities (1.1) 

Ut 



tft«r rtoUcing MM\   and M^     by MaX    and MvX.      * Tht calculation by 

•quation (1.7) is simpl«, since it contains only two integral operators (with an 

accuracy up to a factor). In a number of practical problems (for example, in 

calculating the blades of turbomach Ines) it is oossible to ignore the flexure in 

the plane of maximum rigidity, since  A>A- 

In *.hia case, from equations (1.1) we obtain 

^-3 cosa; (1.10) 

 «= —^^slna, 

where Af^^Af^.cosa-Af^sin« (i.il) 

is the bending moment relative to axis with a minimal moment of inertia. 

From equalities (1.11) and (1.5)  there ensues 

Af, - /if, _ o.« sin a (r) J C, (r,) ^- (r,) dr, - 
r 

-••cos.(r)rJc.Cr,)^ ^f)drx. (1.12) 

In considering now relationships  (1.6) and  (1.10),  we shall obtain a boundary 

integral equation relative to the bendinp moment ^ : 

Af,.~XOf, + Afn. (1.13) 

where 

KM, - sin «(r) f C. (r.) f -^ sin . (rt) drt dr, + 

+ co$ a (r) r j -^- j  r, --^-- cos a (r.) Jr. rfr,. {1M 

For a blade,  secured to cylindrical hir.^e,  axis of which coincides with axis v- 

for the root section,  the integral equation will be such: 
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where l a » — . . 

where KM, and A#, have th^ former meaning, and 

(r) *=&tfi (/„) sin a (r) J C, (r,) dr, + cos a (r) rrQ j &r\. 
' 9 

A further simplification can be attained, if it is assumed 

tan««=ar (1.17) 
* 

(vane or blade of constant screw oitch ). 

Coefficient a may be selected equal to: 
»cp tan ac 

r cp 
a-

where rt> < is the average radius; % = » fop). 

The calculations showed that replacement of re.il angle of installation of 

profile in vane of a turbomachine by an angle, determinable from equality (1.17), 

does not introduce a noticeable error. 

Mb shall have 

drt = dr* 

By integrating both sides of equality from r» to r , we obtain for a rigidly 

fixed blade 

The latter exoression is valid also for a blade fastened on hinges by virtue of the 

equality 
^ M =iWr'«'W. 

Now frop relationships (1.12) and (1.17) it follows 

, i Af, (r) - At, (r) - «• sin «(r) | (l + -L - ) C, (rj £ (r.) dr, 
f 

-*«--•'-n'wjsggiryw*- (1.18) 

•D. Yu. Panov, Calculation of a Propeller for Strength, Transactions of Central 
Aero-Hydrodynamic Institute, No. 288, 1937. 
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In view of the dependence 

7-/fW*.+?(rJ- fÄ«"«W«+^W     (1.19) 
relationship (1.18) can be presented in the form of a boundary integral equation. 

By  introducing equality (1.19) for rigidly fixed blade (;J^"0)   in relation- 

ship (1.18), we obtain 

Af, (r) - Af, (r) -«.« sin a (r)  f -^flL f -^ '^L-sIn . (r.) drtdrt.  (1.20) 

Integral equation for the curvature 'HO is obtained from relationship (1.16), 

if both sides of the equality are divided by  £7, and dependence (1.19) i3 
•in« 

taken into account: 

t(r)..?W.-.'-^a f.JdM.'f.Hr.),,,.*,    (1.21) 
£/,(/•) J tln*a(r,) J 

Integral equation relative to the angle of rotation has the form 

^(r)«^ (r)-«.« f^Mf-^L^LÜL (r|)rfr|rfri.     (1.22) 
*-     dr y ' J  £A  J $ln»«(r,) dr v "  '  ' 

Equations (1.20-1.22) correspond to one and the same problem, however, they have 

their own oeculiarities from the ooint of view of practical use.    The difference is 

found to be also the norms of operators, entering into these equations. 

Influence of the centrifugal  forces on the flexure depends on the dimension- 

less naramwter of the flexibility of rod 

•I 

where     ««^Xi —first eigenvalue of the homogeneous equation    (•*r      is 

the value of the angular velocity of rotation, with which centrifugal force?, 

redirected to comnression, cause a loss of stability of the vane). 

With small  /alues of the narameter of flexibility      (^O.l)      the effect of 

elastic defomai""  -^ ^ the rod can be ipnorad by assurung 

If the bending moment    M,,   from a  lateral load  (and initial displacements of axis 

U I 



of rod) ■ 

whtro M%%i9  tho distribution of tht bonding moments with tht first form of the 

rod'f loss of stability; o is a eoofficitnt, than, 

<*• 

i.e., with largo flexibility paramstors, tne offset of elastic deformations in a 

field of centrifugal forces may be very freat. 

The method of solving the boundary integral equations waa iiscuäsed oarlier. 

We present results of the calculation, relating to the problem on the flexure 

of a rod of uniform ssction under tho effect of diatributotl transverse and axiai 

loads of constant intensity (Table 6). 

Tablo 6. ~^-     Values for a Hod with a Flexibility Parameter ?. '3H 

W M«TOJ| ptWtHMN ♦""Hi I   5 I   J     « 

(4)    CJOJKHI« NTtpauHi no ßiiapx« 

**   CMMTHIR  impauHi   c   nepeMtHHMM 
oapiMerpoM 

rUtaoSHM   NitpiuH«   no pateHciay 
BAOUUAel 

noaoflitat NTtpaaNt no KiaApaTM^Ho» 
My OTMONtMNO 

noaoOH««   mepauHi   no   paMnemy 
tyNKKNl 

TOHHOt' 
peiurHiie 

0.412 
0.413 

0.4t2 

0.412 

0.412 

KEY: (a) Method of solution; (b) Formula; (c) Approximation; (d) Accurate anlution 
(e) Comnlex iteration by Viarda; (f) Complex iteration with a variable narameter; 
(r) Similar iteration by equality of areas; (h) Similar iteration by quadratic 
deviation; (i) Similar iteration by equality of functions. 

Note: Numbers of Formulas Indicated are for Chajter 3. 

2, Vibrations of Rods 

Problem has had numerous engineering apolications, especially in turbomachinos 

in calculating the vibration of vanes. Following presentation reiera mainly to 

problems on vibration of vanes, blades of propellers et cetera. 

We shall coneidor at first the natural vibration. The boundary integral 

equation of flexure vibrations of a cantilever rod (vane.-O relative to amnlitude 

J21 
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fUxviTM haa tht form /"Stt Ch*pt6r 3, equation (2.22)J7 

wher« P is th« angular frequency of the vibrations. 

In deriving this equation, there is used the equality 

Af, (r) -/»• ff P^t)% M dridrx- 

(2.1) 

(2.2) 

(2.3) 

Equation (2.1) is valid at a(0 * const or in a general case in ignoring 

the influence of natural torsion which is admissible in determining the first 

frequency. 

From relationshio (2.2)   * r, 

'. rt 
(2.4) 

for a rigid fixing of the root section 

dr 

From equality (2.3) we obtain a boundary integral equation for amplitude bending 

moment 
Af,(r)-/,» 

f   r, r, r. (2.5) 

or in a bridged form 

M,~p*KMv (2.6) 

With a hinged fastening of the rod from equalities (2.4) and (2.3) wo obtain 

where »/_,   . 

ß(r)~IJpF(rt)irt~rQ)drldri. 

Methods of solving homogeneous boundary integral equatior.s are reviewed in 

Chanter 3. 
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We shall nresent results of the calculation nertaining to rod of constant 

section. The frequency is determined by the formula 

n->_L , / ,r 
(2.7) 

The k values are given in Table 7. The values *,---3,52. fcj —22,03; *,-—61,7, ar* 
accurate. 

Table 7. Calculation of Firs t and Second Frequencies 
by Means of Boundary Integral Equations 

0^|1epM8 MCTOT» 
C^Meto* pirini ffinpwl . .i»cHHc 

(d) CpiMCHHC OpAMHIT 
( 0 PawNcrw c impNi l 

KOfUW 
( - { ) MIMHM/H KMXpiTH«H»> 

0 f0 OTKMHCMMI 

1 

3,31 
3.55 

3.52 

9.83 
3.53 

3.52 

Tonioe 
peuieHii* 

3.52 
3,52 

3.52 

(c) B top ix i i c r o t a 
I npHfi.-.nixeKKa 

1 

24.8 5 
23.07 

22.64 

22.8? 
22.76 

22.91 

22.90 
22,73 

22.92 

TGIHOfc 
{MoteHHe 

22.03 
22.03 

22.03 

KEY: (a) Msthod of calculation; (b) First frequency; (c) Second frequency; (d) 
Comoariaon of ordinates; (e) Equality of scalar norm; ( f) Minimum of Square deviatir 
(g) Anproxiaation; (h) Accurate solution. 

The initial aoproximation was selected in the form 

Mi(ot * I — ^ 

where t™ ~ /
 1» where, 1 i s length of rod. 

In the calculation the rrd was subdivided into 10 sectors and the integral Ion 

was made by the trapezoidal rule. Sufficient accuracy is obtained also in dividing 

the rod into 5 sectors. 

Condition of orthogonality for equation (2.1) ha3 the form 

i 

( i * > . <./«»,2,3 . •); 

for equation (2.5) correspondingly 

f rfr-0. 

(2.8) 

(2.9) 

The determination of the second frequency and form of vibr i, ia pointed 

out in Sec. 3, Chao. 3. Thus, for example, equation relative to bending moments 

IZ-i 



has the form 

Af,=p%A%. 
R J *«,«». h;* (2.10) 
f <>k 

Results of the calculation are given in Table 7. 

From the table it is evident that the error due to use of trapezoidal rule 

(with 10 sectors) is larger than error from an ''incomplete" converg3nce of the 

process. 

Application of normal integral equations 

!=/>W; + *(/?)/.+ 5 (R)A (2-11) 
Of 

has been considered in Sec. 4, Chaoter 3. 

For a rod of constant section we obtain 

mi *<C)=PtJrr- f f f + 

The functions G) and <T»i £) are equal 

».<Q-I + ̂ - C H +,'^»' + . .. 

®.(C) C+z iL-JI + ^ 

where y—/>* 
EJ 

• (2.12) 

The frequency equation for the first approximation /"in the series (2.12) are 

retained by two of the first terms_7: 



*= 1 - 0,08334* + 0,000147/- = 0. 
L i I.JL 
13'' + 4! 

The fir»t fonroxijnation for the first frequency 

- . - , f I 1 . /PJ n Aft ! i f~EJ 
*" X "£S3H"Sl i'f "MC47.|/ ,T 

1 "Tars from -he accura te by 1.7'"'. 

In the second annroximation f o r f i r s t three f r equenc ie s , wc obtain values of 

the coe f f i c i en t , k / " e q u a l i t y (2 .7)_7: 

4i(j>—3,52; Ai(j)>wJl,3; *.K;) —33,6. 

In the thurd annroxijnation 

4.(3,-3,52; *,,,,-.91.95; A,,,, *65,13. 

We s h e l l consider now the v i b r a t i o n s of a n a t u r a l l y twisted r<>4. 

I f «( ') and v(r) a re the ainolitude displacements of noin ts on the v a r a ' s 

ax i s a l o i f the axes x and y, then the bending moments 

B * 
(r) « ~P* j J fF (r,) v (r,) dr% dr, 

r '• 
ar <1 

( f W J jf fFtjx) U (rt) dr, rfr,. 

(2 .13) 

In accordance with equality (1,11) w» obtain 

Af,(r) mf* | c e i« J j f-F (r,) a (r,) drt dri 

+ lie • J J f-F (rt) v (r t)dr t drx ) . 
' ' 

B.' i n t e g r a t i n g equat ione (1 .10) and (1 .11) and i n t r o d i c i p the ^ g u J t i to 

ty (2 ,13) , we s h e l l have 

\ ' r> t , >, 

—- cos 3 (rt) dri drt dr._ • 7, 

(2 .14) 

¥ ' i 

t4r,4ra i-i 
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If anrle   MO comt,   then equations   (.'.I/*) and  (,;.')      »incide. 

At an angle of natural torsion of rod of an order of 30-400,  the torsion 

insignificantly increases the  first frequency (tu li) and considerably lowers the 

second  (15 to ^0^);  this  is confirmed  by exnerimental data. 

The determination of the  second  frequency  is made by equation  (2.10)  v«dth the 

operator    KMni     ,  corresponding to equation  (ü.iJ*), 

In calculating both rigidities  for  flexure  the  problem reduces  to a homogeneous, 

boundary»matrix integral equation. 

We  shall nresent   for thiü  case t.\w  .-"ondi'-luna  of orthogonality 

liupj + v^pFdr^O, 

{l + J.   i.y-1.2,3. 

The calculation of torsional vibrations  of rods also reduces to solution of 

homogeneous boundary or normal integral equations. 

The  boundary integral equatior; for amplitude angles of rotation has  the form 

•^"^J-C^J-JP^^.)«^)^.^,. (2.13) 

where        GT{r)       is strength of section cf rod  to  torsion;   /^(r)     is the polar 

moment   of inertia of section relative  to me  center of rigidity. 

Corresponding equatior.  for amniitude  torques   is  such. 

".w-^wj-£;;;;-^. (-MM 

Fig.   11.     F >v   ler ] ving 
equations of flex ire- 
torsional v;trat.ir,3 of r 



Conditions of orthogonality are written out in the form 

0; feuj^Ur-o. 
* '• 

The normal equation for torsional vibration* 

I(r)- 1-Q—y |P-̂,('») • ('«)d't drx + 8(/?). 

Ws turn now to the calculation of flexure-torsional vibrations of a rod (vane). 

The origin of the local ayetem of coordinates is placed at the center of 

rigidity of section; coordinates of center of gravity in this coordinate 3yatem 

will be *•" (Fig. 11). 

In designating the amplitude disDlacement of center of rigidity «• and ut. 

angle of rotation 8, we obtain a system of three differential equations 

~ {- {BJ% - £7,) sin e eos's ̂  + (EJ\ cos* e+£7, sin1«) 0 ' ] = 

£{(£7l»m*e+£7,eo«»«) (fyt-£y,)«in«cos 

(2.17) 

( # p y " + ~ • 

This system is equivalent to the homogeneous matrix boundary integral equation 

y 
• 

*iu "If <f ] 
K" K" K" S ' . *»| *»» J I • J 

(2.18) 

where — 

Equation (2.IS) is obtained by previously indicated methods, and the value of 

operators is not written out here. 

In calculating vanes it is possible usually to ignore the flexure in nlane of 

the maximum rigidity, whereas the flexure-torsional vibrations are described by the 



following equation relative to the bending and turning moments: 

(2 
K„ i r A U 

l«.J ' I*,. K„ |[ Af.J' 
R R r, r, 

where - cos « J J ?F (r2) J J cos a (r4) dr, dr, drt drx + 
- - v ' '% r, r. 

R R r, ^ +sin • J* J W J J sin a (r«)dr*dr* dr% dr» 
' r, 

Jf Jf ' 

KltMm = sin « J J eMl (r,) PF(r,) ? dr, dr, dr, -
r ' i % 

-co" 1 <'•> <'•> J 
' ' l ' « 

M , = | ( r j pF (r.) | j sin « (r,) dr, rfr, rfr, 

- f ' , i ( ' . ) p/7 (r») f j* cos a (r,) dr, drt drt; 

r '» '• 

The calculation is made by the equation (See Chap. 3, Sec. 3) 

l̂ W«(oJ ''1. 
Under the condi t ion of normalizat ion by a s c a l a r norm 

«'> y^S 

]/ Jl ^ + or ~Tr 
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Second frequency of flexure-torsional vibrations is determined from the equation 

KM* ]-*[£:,}• 
where 

We now consider the fle*urt vibrations of a naturally twisted rod in a fiela 

centrifugal forces. They art described by the following system of differential 

equations with respect to enplltude flijtures: 

~[-(£/»-f/Oll i i tWM fiS+(jr/ctosU + £/,«in*«) £?]-

~ |(£/i + W, cei '«)~" (£/| — ffy,)nn • COJ « ~ j «• (2.20) 

• •̂ «+y(cw|)+P«»a 
where C(0 is the tension in the eeetion of the rorl. 

In the particular casei M will have vibrations of an untwisted vane in axial 

plane 

by integrating this equality, w find 

eJ% fH (') •*'' f f (rt) V (/•,) drt dr, -
M (2.21) 

"•* J (rl) % (ri) rf'j. 

In considering relationahlp of fom (1.4), we shall obtain a boundary integral 

equation for a rigidly secured red 

< 2 - 2 2 ) 

JJ30 



where 
« « 

V * " J | P F ( r J | j J ^ L d r . d r t d r % d r t 
r f, r, r. 

liquation (2.22) is a two-parametric integral equation. 

It is nossible to show that if equation of flexure of vane 

Af,—Af,— «a#C.Afv 
#»» 

where Af, is the bending moment of the transverse load, and the equation 

Al, = 

corresponds to the problem on vibrations of non-rotating rod, then integral equatio 

of vibration of rod in a field of centrifugal forces has the form (2.22). 

In composing equation (2.22) there may be made assumptions of a different 

nhysical nature relative to the operators K Mn and KmFor example, in 

determining the first frequency, operator KpM<, can be taken without considering 

the natural torsion (2.5), and the operator X-M, nay be taken the same, as for a 

vane of constant screw pitch (1.20). 

In solving equation (2.22) by the method of successive approximations WB 

obtain 

By using the norm of function on basis of maximum (method of comparing ordirates) 

we find 

*?«' M^ (/—!)•• M, (i~l* 1 
* 1> 

The Drocess of successive annroximations is unconditionally convergent with the 

oarameter of flexibility »<l. For nore flexible vanes one should apply 

corresnording iterative orocesses. Thus, by applying methods, similar iterations, 

we obtain an equation of ordinary structure 

Af,(D=P?,AA,*«-»' (2.2U) 
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where by similar iteration on baeis of equality of functions 

by similar iteration on batia of equality of areas 

*AI, (,_u—«' j — 

by similar iteration on basis of minimum of square deviation 

f (i-l) W, (I-1) + (,-,)} dr f% X 

X/C.Af, (i-i). 

In solving equation (2.24) there are used methods, indicated for the vibration ox 

non-rotating rods. 

Above were considered the natural vibrations of rods. Let us turn now to 

nroblem about forced vibrations, at first without taking into account the forces of 

damping. 

As example we shall take the flexure vibrations of a rod. 

Suppose onto the rod is applied an external excitation load. 

(r)cos v /. 
The equation for amplitude flexures of forced vibrations has the forir. 

or in abridged form 

(2.25) 

liZ 



where f is the flexure of vane's axis under action of distributed load q(r). 

Process of simple iteration 
5(i)= ',ACE(» -D+/ 

2 ^ j 
converges, if v <Pv where />, is the first natural frequency. 

At one should apoly the previously indicated iterative processes. 

Raoidity of convergence detiends on form function f and at it is 

obtained usually entirely satisfactory. 

The very best results in a number of oractical examoles ware given by the 

method of similar iteration on basis of minimum of square deviation. 

We now consider question of determining the coefficients of dynamic rigidity 

of rod of variable section. 

Suopose onto the root section of rod there are applied dynamic (Fiw. 12). 

Q=Q# cos v t, 
M=Af0cos *t. 

This will cause a vibration of entire vane, with which in root section there will 
di . 

be a flexure 6 and angle of rotat ion $r ' 
5 = t0 cos <t 

iUs0cos.(. 

There exis t the l inear relationships 

Qo = an;o + a»*;o' (2.26) 

At0 = 3:»'o" 

The coefficients are called coefficients of dynamic rigidity. They possess the 

oroperty of reciprocity 

a0 = V 

0, %• 
• 

Fig. 12. Determination of Coefficients of Dynamic Rigidity. 
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W® shall writ® out th® normal integral equation for considered case in following 

form: 

where 

I - <W; + Ec/o + l0/i + Mt/t + QJt, (2.27) 

't 'i 1 r, 

/o"!: /j = r—ri; y, = —J*j*rfr,<fr(. 

'» 
pF (/"«) {(r4) </r4 drt drx drx\ 

11 

The solution of equation (2.27) will be 3uch: 

< = S04»« + 50«>1+AV^+Qo^r (2.23) 

where •,-/,+»W/< + »w,/i+ . . . 
(i = 0, t, 2. 3). 

By introducing the values (2.26) into the boundary conditions 

Q(/?)-0; ilf(/?)=0, 

we arrive at equalities (2.26), where the coefficients a„ become known. 

I*t us consider now forc®d vibrations with a consideration of linear damping. 

The differential equation of the problem is written out as: 

£ (£y,S) +•h (r) IT+9F (r) w =q <f) cos v'-

By nutting the solution in the form 

I—w (r) cos */ + z (r) sin **, 
We arrive at a syst®m of equations 

£ 
4r* (£7, - *\F (r) w (r) + (r) i(r)=v (r), 

^ (r) ® (r) - » V (r) z (r) - 0. 

(2.29) 
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For a rigidly secured vane this system is equivalent to a inhomogeneous boundary 

matrix equation 

[:]-[£ £i:m 
where i 'A , 5 * A 

Knw = v'j*J £ J ^ j f pf (rt) w (, t) dr< drs drt dr 
r,'% 1 

-"if S f * w 1 wdr> "'<• 
r , /, 1 'i f, 

*•••1"'' 11 T/',;,r 11 * ('<> ̂<rJ "r* ̂ "r': 
' • 1 r, 

*»*-"' II 11pf (r,) 1 (r<> dr>dr" 
1 rt r, 

R R 

r. ' 'I r, 

/t-0 

Equation (2.30) at »<j)» is solved by the method of simple iteration, at »>Pi 

there can be applied the method of similar iteration (See Sec. U, Chap 3). 

3. Critical Speed of Shafts 

The determination of critical speed is important for many high speed machines, 

expecially turbomachines. 

Let us consider the general case of the processional motion of shaft (Fig. 13). 

Sunnose the plane, containing elastic line of shaft, revolves with angular velocity 

V, and the shaft itself is rotated in reference to this plane with an angular 

velocity 

The kinematic model of a similar motion is shown in Fig. 14. 

Angular velocity of shaft is equal to 

(3.1) 
•=*'+!X. 
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Th« tngulAT v«loci*ies »    and    i   are presented in the following form: 

* 
whare   •   oerhaos,  in g,*- ral,  is an arbitrary (real) number  . 

(3.2) 

to 

Fip.  13.    Precessional motinn 
of shaft. 

Fi^.  lU'    Kinematic model of nro- 
cossional motion of shaft. 

(3.3) 

The disk acts on the shaft with a stress and a moment 

Af4-.«p,y(6,). 

f -±/ where mi is the mass of disk;   '/  2 '   i-3 ^9  equatorial moment of inertia 

of disk. 

The equation of the stability of revolving shaft with distributed masses n(x) 

and moments of i.iertia I(x) has the form 

^(£y(x)S)~B,f,,m(x)>'(,:,^8(2-,)£^^-v'^J^0 (3'^ 
Kquation of flexure vibrations of shaft with a calculation of inertia of turn 

At   l{x)*=0 equations (3.5) and (3.6) coincide. 

Solution of equation (3.5) can be used and as solution of equation (3.6), if 

it is assumed t~     ' (reverse synchronous precession) and to decrease An the 

magnitude of l(x) by three times. 

We now turn to composing integral equations of the problem,  let us consiaer 

♦The nrecession is called synchronous, if („I-I,)   In in identical direction 
wand »the nrecession is considerea forward, with a diiTerent direction—reverse. 
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as an exanrole a shaft on two pivoting bearings (Fig. 13), carrying the distributed 

masses m(x). The solution can be applied also in the presence of individual 

masses, if the mass of the disk is distributed along the length of corresponding 

section. The gyroscopic effect we disregard, and the parameter g = l. Bending 

moment in section x will be equal to 

At (x) = Rxx + «is f j m (.t,) y (,ra) dx, dxx. 
t 0 

Bydefcermining r eac t i on in the l e ' t suDport from condi t ion M(l) = 0, we f i nd 

M (x) — (IPAy, 
where 

' ' j I 1| ^ 

(•*•) y (*•)dx* dxi—-j J J m (v«) y (**)dx* dx\' 
oo oo 

<fy M (x) 
By using the equation of flexure dx" EJ(x)' we obtain, 

y (X) = •• jj-jj~- dxt dXl +/ (0) AT +y (0). (3.7) 

By determining y'(O) from condition y(0=0 (magnitude ŷ Q)=0). we arrive 

at a homogeneous boundary integral equation 

-JJ-0 
y—%Ky. 

&L dx, dx, — i f f A>ix,) dxt dxv 
(3.8) 

WB now consider the general case (Fig. 15), when there are considered the 

distributed and concentrated masses. The transverse force in section of * 

Q W - j ? (*i) dx i +£S (x, b,) Pt + 2 (x, a,) R„ ^ 9 j 

where the unit function, for example, S(x, b,), is determined by the equality 
s(*. *,)«(° x<b'' 

(1 x > bt. 

In considering the dependencies 
q (JC) = u)*a (x) y ( t); a (x) = Cm (A). 

P,=<°\y (b,)' 
We shall write out expression (3.8) in the following form: 

Q (JC) - v'Aly (x) + S 5 (X, a,) R, (3.10) 
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and for the banding moment 

Af (JC) - (x) + S S (x, a,) R, (x - a,). (3.11) 

where 

— x 

Fig. 15. Shaft on two pivoting hearings, 

*x, (x) «= J «(x,) y (x,) dxk + V S (x, b,) a,y (b{). o 
* *« 

i—i 

« (X») y (X„) dxt dxx + Ij? (AC,) y' (xx) dxx + 

+ £ S (X, bt) [a,y (bj (x-b) + p y (&,)] 
i - i 

IP (x) «=>« (2 —t) / (x) J. 

(3.12) 

In I reaction and from conditions 
Q (/)«=0, M ( 0 e 0 , 

we obtain M (x) (x). 

(3.13) 

where * (x) «= (x) + S(x, a,) -£nf!_ [4, (I) ( / -a , ) - ( 0 1 + 
a*—ai 

+S<x'fl«)~55"M«rC/)-^(0(/-fl,)|. (3.1A) 
In determining in equality (3.7) the magnitudes y (0) and y' (0* from conditions 

y(a,)*=0 and y(aj*= 0, we obtain a system of in tegral equations 

<3.15) 

where W-jj-Tj 

d5L. 

dxt dxx [JJ " {-*£-dxtdxy 
t) * 

«f *» dxt dxt —t—Lf "$ — "l I J J ^(*t) 
dxt dxx • 

i 3 f < 



— a, Ifr (',) EJ(xt) 
dxtdxx (3.16) 

K[l)y = ( Jbi*LL dxx + —1— f ? Ay (x,) dxt dx y J EJ(Xi) ' « , - a , J J EJ(xJ ' 
• It o 

- f f A> (x'> 
J J «(*l) 
0 0 

(3.17) 

Calculation by formulas (3.16) and (3-17) are very simple, since they contain all 

two integral operations 
M 

I Ay (*l). d X l and £J(x,) * J J 

Equation (3.15) expresses the matrix integral equation 

lyj 1*,. 
where 

K„y+K9ly™=/q>"y. 
K„y + Kiyi> = K["y-

In abridged form, equation (3-15) is written out as: 

[jr]su>'[#C(I>] [j'l-

In solving by the method of successive aporoximations 

First line of this equality 

By method of comparison of ordinates 

yu-D 
to rOt 

(3.18) 

(3.19) 

(3.20) 
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where is the abscissa of section, corresponding to the maximum value LV(i-t>|-

After determining ' we find y(0 and yU) and further *?i+n-

Practice of calculation showed that there is sufficient not more than two 

approximations (second approximation is for control). 

Thus, there is determined the minimum in absolute value eigenvalue. 

We shall dwell on one circumstance associated with the calculation of systems 

with strong influence of the gyroscopic effect (for example, with disks, located 

near supDorts). 

It may be found (in Dractical cases extremely rarely) that "*i<C0. 

This means that real angular velocity will be greater than |»i| and must be 

determined by taking into account corresponding condition of orthogonality (see 

determination of second critical sneed). 

If true value is <»^>0 

but in the first approximation in view of unsuccessful selection of y<0) there is 

then one should continue the process further and it will converge to a real angular 

velocity «i. 

In engineering problems, the indicated cases may be encountered as exceptional, 

and only with a calculation of gyroscopic effect. 

For a number of problems encountered in practice of (rotor with large number 

of disks, calculation of mass proper of rotor et cetera) the calculations of the 

discussed method are found to be significantly less laborous, than calculation by 

other methods (for example, requiring the determination of influence coefficients). 

Wa now turn to determining the second critical angular velocity. Condition 
* 

of orthogonality in considered problem ha3 the form 

•In the presence of concentrated masses and moments of inertia, integrals ara 
taken in the sense of Stieltjes. 

obtained 

(i y y. u « i , 2. 3....). 

1^0 



where «(*) and 3(x) depend on distribution of the masses and moments of the inertia 

along the length of shaft 
«l*) = i*m(x)f &(*) = «( 2-t)/(x). 

The calculation is made by the equation 

(3.2I) 

. «"iw.W» . 
IlLvUH* j (yja - >'?) dx 

Above there has been considered a shaft (rotor) on two pivoting bearings. 

Analogous equations may be comniled also for other cases. Suppose, for 
-> 

example, the supports of the shaft are elastic, then there exist the dependencies 

(3.22) 

where Kt\, Kdt is the rigidity coefficient of the support. 

If the suoport is a complex system of masses and elasticity, then the magnitudes 

and Kdi are dynamic rigidity. 

Relationships (3.10) and (3.12) remain in force, and from conditions (3.13) 

the magnitudes and R^ are determined by Aiy and At* 

The magnitude y(0) and y*(0) in equality (3.7) are found from condition 

(3.22) which results in a corresponding integral equation. There are no great 

difficulties in composing the equations and in other calculating cases (shaft on 

several pivoting bearings). 

Lst us consider as an examole, a shaft with large number of identical disks 

on two pivoting supports (Fig. 16). Per unit of length of shaft, there should be 

a mass A end moment of inertia 

*In the presence of a connection between the supports, y(«,) and y(a,) are ex-
nressed through the linear combinations R-, and R2. 
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Equations (3.15) have the form 

'M-|f J 
** — [ f • 

By virtue of equality (3.14) and (3.12) 
A, (*) «= \ (x) - A,y (/); 

«(*t)y (*,) dxtdxj + jp (*,) y (x,) </*„ 

where for forward synchronous precession 
a (x) = «; p (x) = /. 

As an initial approximation >'<0>(JC) for a 3haft on two pivoting bearings, 

it is Dossible to take 

jji o) = C(* <*»)(-* "i)< (3.23) 

where the constant C expediently is determined from the condition 

In accordance with equality (3.23) \ jiiiiiniiiJi 
y„ W-ci2x-(«,+<i01. ? 5 jiiiiiiiimii, 

V Shaft was subdivided into ten sectors and 

the integration was made by the trapezoidal 

d 1 * rule. The ratio is — 

In the first approximation there was obtained 

«(D«= 10,76]/^ 
X ml* 

(if there were made an accurate integration «><!>= 10,56 

-A 
Fig." 16. Shaft with uniformly 

distributed disk3. 

In second approximation 

•>„,«. 10,93 j/ Si-

l i t 



The problem has an accurate solution 

l/l-'-V ml• 
/— = — -= JL\ 
U ' * = 16 /» 61/' 

From the calculation it is clear that first approximation gives a deviation of 

an order of 1.6%, and the inaccuracy of the second approximation (1.8̂ ) is ex-

plained by error in the approximate integration. It can be removed by the selection 

of a greater number of sectors, however, a great accuracy in the calculation is not 

required. 

U. Stability of Hods 

The application of integral equations in problems of stability are especially 

effective, since for practical purnose there is required a seeking of only the 
* 

minimum eigenvalue . 

Wt. shall consider the stability of a rod of variable section under the effect 

of concentrated and distributed along the length. 

The differential equation of the problem has the form 

(4.1) 

where P(z) 
SJ 

compressive force in section z; 
minimum strength of section to flexure. 

Equation (4.1) is valid for any fastened ends of the rod. 
1/ 

Fig. 17. Stability of 
Cantilever Rod. 

Ws shall take as an example a 

cantilever rod (Fig. 17). Since a trans-

verse force in section z — 1 is absent, 

then order of equation (4.1) can be 

lowered: 

i(£yS) + P«2>f-a <*•*> 
•The application of boundary integral equations to problems of stability were 

for the first time given by Yu. V. Repman. 
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In the considered case 

P(z)=\q (zj + 2 S (*. ai) Pt. 
M '—I 

where P* is the concentrated force in section z=ai. 

The single function S(z, a() is determined now by equality 

S(r. «,)-{ J 1 z<at, 
*>at-

If the stress P* is directed for elongation, then into the calculation 

equation it should be introduced with a minus sign. In problems cf stability, 

external loads contain as factors, parameters subject to aetenrination. 

Thus, r W B V t W + 'i/iW+ • • • 
(4.3) ™ JQ (*i) dz\, ^\f\ •* 5 (z, a,)Pj. 

For the concentrated forces as narameters X, usually there are taken the 

magnitudes Pi< i . e» ^-i — Pi (<*=!.• . . J>)- Frequently as Xj i t i s convenient to take 
> Pi'* the dinensionless parameters, for exanmle */=-—• 

bJ 

For concrete calculation ore should note denenaence fcetwue narajiietsrs '.i so 

that expression (A.3) contains only one independent parameter V (for examnle, 

X# X, X, =0.5X, X, *» 1,2/ et cetera). 

.As chief unknown we shall take the v&la 
•£<*)-*<*>. 

Equation (4.2) now will be written out as: 

><) I -h(EJ%)-"<(*)[< 
By integrating both sides of equality from z to 1 and considering the boundary 

condition ^ (/) «= 0, 
d* y 

we obtain 
' " 

EJ % — *o j <P i) /., (*i) d*t + (z, at) j f (*,) dz 
« i-i j (4.4) 

Ms note that on the right hand-side of the equality is the expression of bending 

moment. It can be determined also directly from consideration of Fig. 17: 

At(*) -j? (*,) [y (zt)-y(z)\dz+SiP,S(*. a,) [y (a,)-y (*) 1; ^ ^ 



since 
xo/o = W(*.)<fci, 

9 

Then equations (4.4) and (4.5) in accuracy agree. After dividing both sides of 

equality by EJ and integrating then from 0 to z = we obtain the 

integral equation « = (4.6) 

Ooerator = '• J j / , (^,) ? (~2) <**: dzx + V <tB (z, aj. 

where 

>,=.% (—0,1.. 

B (z, a) = 

,) dz%dz\ z O / , 

C __L_ f « (z,) dz, dzt z > <V 
J EJ{*) J 
o *i 

One of the coefficients may be taken as arbitrary (for example, 

7 
>JSm. 
0 

n •»» 

b) <-) 

Fig. 18. Stability of Rod of Constant Section. 

Expression for B(z, a*) it may be written out also in a simpler form 
»<aL at 

0 I, 

if it is agreed at z"2 0i to maintain the same value of the function B(z, at). 

The integral equation (4.6) ha3 a simple structure. 
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It is interesting to note that the use of differential equations would re-

quire the construction of solutions in each sector and a linking of the solutions 

with a calculation of boundary conditions. 

Let us consider several particular cases. 

Suppose we have a rod of constart section with force at end (Fig. 13,a). 

For this case, equation (4-6) will be such: 

* i 

o r f 00 ** ~f J j? (zt) dzx dzl 
0 *, 

w h e r e 

/>/• g 
E==T* accurate solution is ). =2,467. 

As the initial approximation we shall select 

<P(0)=E-yj3, (4.7) 

satisfying main boundary conditions <i (0) =0. % (1) =0. 
* 

By the method of comparing ordinates 

= 2,500(1,34). i — *(0) = 
{-I *1(0) 

By the method of minimum square deviation 
I 
f T(0)̂ T(0)̂  

= 2.467 (0,00). 
J WW* 

In the following anoroximation by the method of comparing ordinates 
*.(2> = 2.471 (0,16). 

If even we select a rougher initial approximation 

*«»-•. (4.Q) 

then by the method of comparing ordinates 

*<„ =3,000 (21. 6); >.(2) = 2.503 (1.34); X(3) = 2.471 (0,16). 

In oarentheses is shown the error in %. 



If one were to apply approximate integrating by trapezodial rules, as is done 

in practica1 calculations, then by subdividir. cnto ten equal sectors we obtain 

*<!>•= 3,008; #.(2) = 2,511; X(3) = 2,482. 

By determining with the initial approximation (4.3) X(I) by the method of 

minimum square deviation, we find 
X<D = 2,470. 

For a rod, loaded by a d i s t r i b u t e d load (Fig. 18, b) , equation (4 .6 ) w i l l be 

such: g | 

? « - i, J j (l - »J t (',) dz, </*,. {U9) 
0 *, 

since the compressive force in section z 

^(*)=>o/o (*)=?(/-*) 

In converting to dimensionless form, 

where 

* EJ 

After taking a rough initial approximation in the form 
9(0) = Et 

we obtain by the method of minimal square deviation 
X(D =9.05, 
X(ji = 8-01, 
X,3) = 7.93 

with an accurate value 
X - 7,837. 

For a rod under the action of two concentrated forces (Fig.18b) from equation 

(4.6) we will have 

? ( * ) = — W EJ j J <? (*2) dzx + f f ? (2S) dzz dzx 
(4 .10) 1 0 '« u ,, 

By setting uo an initial approximation ?<°> = w e obtain by the method of 
P comparing ordinates — = 2,67; X(2)=2,12S. 

The accurate value > =2,068. 

We consider now the integral equations of stability of thin-walled rods of 
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constant section. 

In the presence of distributed longitudinal and transverse stresses the 

problem is described by the following syslem of differential equations, obtained 

by V. Z. Vlasov: 

EJ,t» - [N (;' + a,0')\' + (MJi)' --=0. (4.11) 

EJj%n~[N (V - aMV)|' + (Af,®)' - 0 . ik.U) 
EJm*» — GT%' — [(rN + 2}yMx—2$xMy) 6'|' + \qx (ex-ax) + 

+ 1,(e,-ayW-a, {N\'Y + a, (VV)' + Mjt' + AfyT(' = 0, 

where I and tj- — are components of displacement of center of flexure along the 

orincinal axes x and y arising with the loss of stability; 

6 — is complementary angle of rotation of section during loss of 

stability; 

N, Mr — are the normal (tensile) force arid the bending moments in the 

section of rod under action of external load; 

Jm — is sectorial moment of inertia; 

T — is the geometric rigidity to torsion; 

9, p, gy— are comnonents of transverse distributed load; 

e* j er— are coordinates of point of aoplication of distributed load in 

plane of the section; 

at and a»' — are coordinates of center of bend; 

rt PM and V — are geometric characteristics of section. 

In comnosing the boundary integral equation as the chief unknowns it is 

exnedient to take 

*5-J,; -"1 = 0. 
dt' T Jz* dz 

life now consider for example, cantilever rod (Fig. 19) with free upper and 

r ig idly fixed lower sections. In this case, we shal l have 



V (z) = ] ? (z.) dzx- e (*) = } J ? (^) rf2j rfZi. 

1 ( z ) ~ ) •{• (*i) dz,; ij (*) = j j (»a) dZidzi\ 

•W-Jo (zjdzt. 

Fig. 19. General case of 
s t a b i l i t y of th in-wal led 

rod . 

We s h a l l wr i te out equat ions (4 .11)—(4.13) in the fol lowing form; 

f + •(*!)</*,V (4.14) 

)̂] (4.15) 
* " j 9 (Z,) dZl^j ~ a* ̂ N J * (*•) J + r* (ATI)' j -

*'+ ~ ({2?yM< ~ 2?A)»)' + 

+ (?* - a j +9,(e,~ «,)) J » (*,) dzx 1 + (4. i6) 
• J » 

In integrating both sides of equalities (4.14) and (4.15) twice from z to 1 

and by considering boundary conditions at z = 1 we obtain 

?«' — -JJf (*i) ( ( ? (*») (*,) j </*, 4-

(4.17) 

+ (*)' (*«) M* (*«> dz* ~ aJ> (*i> j + 
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+ 7£i M» »0 »̂>dZl 1! • 

r L. ^a>|' (zs)dz* - a„ J * (zt) dxt + r'8 (z4)J dzx -

(̂ '? (z,) + ̂  (*«> ) dz> dzi + J -

- 2 M ; ) 8 (*i) dzx + f ( qx (eM - a,) + gy (ey - lty)\ ( I) (zt) dzt dz, 

(4.18) 

cr j a (z,)<fc,. 
M 

By integrating equality (4.19) from 0 to z, we find 
• i i » , i , 

• — W dz>~a' j * todz* + 

(4.19) 

^VP (*j) + 'W/J' (*,) </z, rfz,rfz, + 

• i 
+JJ 2Mf,)» (*,) A .+ j j I v, (*,-aJ + 

or 

< i 

[/. 
• i 

+«r (fr~«P j j f (*•> dz* dz>~ fjr J J » to dz% dzx. (4>2Q) 

In practical problems , external loads usually can be presented in the 

lowing form: 

* ( * ) = - M i (*) + >,«, (*)• 
MM (Z) r= ltmu (z) + \tmtl (z), 
MP to - V»i, to + \mXy (z), 

9M (*, - a J + q, (ey - ay) -= ktt (,), 

-• parameters I, will be subject to determination. 

Equations U.J7), (4.18) and (4.20) ar» written in matrix font 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

r»l v f*/» KJ» * ? ' 0 0 0 • f + 0 0 0 • ft 0 0 /r0„. 0 
(4.25) 
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where values of the operators are readily established after a comparison of 

corresponding equations. 

If one were to introduce the matrix-column [<i>], then equation (4.25) can 

be written out even more briefly: 

Equation (4.26) is a five-parametric boundary matrix integral equation. 

For a concrete problem there should be known the relationship between 

parameters of load * ~~v' then we obtain the two narametric equation 

[*] + [*.)[*], (4.27) 

w h e r e 

Two-Darametric integral equation already has been encountered in problem on 

vibration of rod in a field of centrifugal forces. 

If the equation [$] =V (/C#l [4>J ha3 the eigenvalue ll»iKl. then for 

the solution of equation (4.27) there can be used the method of simnle iteration: 

[AT] [*(,-„] + [Ko) !•,!-»,]. 

The value *<o is sought, for example, by means of comoarison of the 

maximum values. 
ll*]|=W++•+«• 

for the (i-l)-th and i-th approximation (3ee Chap. 3» Sec. 3): 

ûcoii 
Then we obtain 

H')Wm ll#C| ,11 t—iml ( 4.28) 

If | ^ » l t h e n it is possible to apply method of similar iteration. 

For the equation ). (*] [v] + {Kt] [y\ 

m 
we have 2 *»/*<'>. / 

y{l+l).» =" ̂(0 a yw- '• 
><<>.• — 2 Ko«iyo).i 

»=!. 2, 
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*e shall give an example. Suppose 

it is required to determine the value of 

force P, causing the loss of stability of 

rod (Fig. 20). The force is applied at 

the center of gravity of section. 

In equality (4.21) we 3hall take 

PP 
itt (2)̂ -1; K = • 

Then from equation (4.25) there ensues 

Fig. 20. Stability of Thin-walled (the subscript / — I we omit) 
Rod Under Action of Longitudinal 

Force. f 

$ *» X (A-,,? + /Cjjt + 
• «= 1 (Ktxf -4- Kn']f •+• + Ko3Sb, 

where 

Knf—O; Kn4 = jjtG,)<Ki<r* *u» = - f j » &) * H 

jJT(:,)*** HjfjHI*M 
x-*-^jl* Jj*&>*.«>• 

(4.29) 

(4.30) 

(4.31) 

The calculation of the presented operators is comoaratively simple, since 

they contain only three different integral expressions. If section of rod possesses 

an axis of symmetry, (for example, the y axis), then center of rigidity is 

located on this axis (a*~0). Then equation (4.30) becomes indeoendent 

• (4-32) 

and the two other will form a system. 

The minimum eigenvalue of equation (4.32) corresponds to the Euler force. 
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p „ **£/< (A. 3 '3) 
1 4/» * 

In the solution of equations (4.27) and (4.31) by the method of successive 

approximations as the initial aoproximations it is possible to take 
?(0)(9 = 1—C. »«>,(*) = 

what satisfies conditions . ? (1) =0, 8 (0) «=0. 

Further, we shall have 

9<>> = ̂ >>̂ J j * ( 0 j d < 0 ' 
(4.34) 

»(!)-=) O ) V J If j?<o, (<,)d\x + f^J|o(0)(C.) 
C 1 

OTP 
£J-1 i TJ <><«*.«•• 

In a similar manner there can be considered also more complex questions on 

the stability of rods. 

5. Extension and Flexure of Round Plates (Disks) 

The indicated problem by virtue of its practical importance for calculation 

of disks in turbomachines has been investigated by different methods. However, 
* 

also in it,the application of integral equations makes it possible to construct 

one of the most effective solutions. 

We shall consider an axially symmetric extension of disk under action of 

centrifugal forces and nonuniform heating (Fig. 21). Parameters of elasticity of 

material of disk (E and f ) are assumed depending on radius. 

Problem is described by a differential second ordor equation relative to the 

*R. 5. Kinasoshvili, Calculation for Strength of Turbcnachine Disks. Defense 
Ministry Publ. House, Moscow, 1954; I. A. Birger, Integral Methods of Calculation 
of Disk, Collection MAP No. 6, Defense Ministry Publ. House, Moscow, 1950. 
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rad ia l displacement u(r): 

/W-0+rt«̂ (ln/y)+-̂ :[(l+K)a/]-<l+̂ _ 

-7(0 

(5.1) 

where 
at~ l-c* is the temperature deformation; q(r) is the intensity 

of body force (for case of action of centrifugal forces 
q (r) = pci)V, (5.2) 

here P is the density of material of di3k; o> angular velocity of rotation), or 

system of two first order differential equations (equation of equilibrium ar.d 

equation of congruence) 

-f ;>u»VA = 0, (5«3) -7 M> -ar r 

r£ "•)-"£[y (*-!«,)+«/], 

where •» and «• are the radial and circumferential stresses. 

(5.4) 

Fig. 21. Extension of Disk. 

It is possible to construct different 

integral equations of the Droblem, where 

for practical application it is important, 

so that equation does not contain deri-

vatives of the initial parameters of 

disk (A, E, at). 

By integrating both sides of 

equations (5.3) and (5-4) from a and to r, we obtain 

rxhdrt + ao^ 

t 

— (l—«»)«,—E j,~7̂f"(*,~ 
—E(ef — «.0 + 4" (°«o —»»3«)-

(5.5) 

(5.6) 

IS* 



The subscript a in these dependence indicates that the value of the parameter 

refers to r ® a. By introducing a, from relationship (5.5) into equality (5.6), 

we obtain normal integral equation relative to 

y(r) = at (r) — o,(r). 

This equation has the form 

*«•- -^ 11M *>•-E f^ *<r,) "ri+ 
m • 

f F 

+ ±=±pu)*jrlA</rl-£(»<-«.0 + -^(3««-i,«0- (5.7) 

We shall write it out in following form: 

y (r) «= Qx (r) ]qx (rx)y(rx) drx + Qt (r) [? , (rx)y (r.) drx + ( 5 . 8 ) 

+ / + 
where 

Q.W-—4^. «iM—f. Q.M--* <?»(')=—; 
f 

/ - J r,A drx a.<J. 
m 

For a solid disk ('/«*= 3»«) 

For a disk with an aperture (*,»~0) 

The value 3*> is determined from the boundary condition 

Oc(fr) = OH. 

For the solution of equation (5.8) it is expedient to apply method of linear 

approximation (See ChaD. 2, Sec. 4), which turns out to be in the given case more 

effective, than the method of successive approximations. 

The problem can be reduced to the normal integral equation 

1S5 



H (r) = /Vs* + F„ (r) + o^F^ (r) -f s, aFt (r), 

N<H~ e(r)°(r) j A (r.) 3, (r.) rfr, -
m 

f 

h ( ' l > 0 (r'>3* ( r ' > d T u * 5 * 9 ) 

where 
A . v r dr i . >*(»•) 
O V , " J rxh(rx)E(ry h(r)F.(r) 

m 

Calculation of disk in elasto-plastic strains can be made on the basis of 
* 

equations, valid for an elastic disk with variable parameters of elasticity . This 

remark refers also to the calculation of disk for creep on the oasis of theory ox 

aging. Problem about symmetric flexure of disk (Fig. 22) has much in common with 

problem on extension. 

The differential equation of flexure of disk with a calculating of nonuniform 

heating through thickness of disk and of forces in middle plane, has the form 

g+£<br« + [f-j<"n<-D> + £(*-)-

(5.10) 

f 

_4- AMrHl+pJ + ̂ j? ('.) 'I dr, - (Q. + *„?„)• 
m 

In this equation 

j(r) angle of rotation of the normal to middle plane of disk; 

I* — cylindrical rigidity of disk on the radius r; UKn 120_̂ i) 
— i» the tensile radial force in section r; 

*1. A. Birger, Certain General Methods of Solving of Problem in Theory of 
Plasticity, "Applied Mathematics and Mechanics, Vol. 15, Ho. 6, 1951. 
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no — is the distributed load, perpendicular to middle plane of disK 

A/(r) — is the difference of temperature through thickness of disk. 

Temperature at the point, at a 

distance z from the middle plane, is 

assumed equal 

Fig. 22. Flexure of Disk. 

MO 

By using the equation of equilibrium and 

equation of congruence relative to the bending moments, we arrive at the normal 

integral equation 
U / . \ — KtAA I P / » \ 

(5 .11) 

where 

M,(r) = NM, + F(r), 

'~Jl V* rr /J D('*) 
a a 

r 

-J 
m 

Z7(0 = j[(/ C)-/ (r,)) (1 + v) rf - ~ ^ -
« 

f 

— j Q i't) drx + <?a ]a»f (r) - aNra In y ] + Af„; 
m 

/<->-/( c<^r-" +^Vr-; 

r 

Q W - —7 J * (r«) r> -r "7 a(?«-

^ now turn to a consideration of the general case of flexure of disk (round 

plate). 

The differential equati. on of Droblem has the form 

z v w + — [ 2 — + ^ — - ^ + — — W , dr [ dr* r dr* r* dr r• d8' r* drdfl'J (5 <12) 
. rf>Of d'w . |» dw . |t d*»"| 1 d / . dtr\ 

V 1T. 
r« <M» " q V ' 

isn 



where w(r, •) is the flexure of middle nlane of disk. 

The temnerature of the noint of disk 

»• 

the function At „ 
T (r, 6) = (1 + tO « — D. 

The radial «r and circumferential ®8 stresses in middle plane of disk 

oossess axial symmetry. 

For comDosing the integral equation of nroblem, we shall use the equation of 

equilibrium in integral form 

' ' 't 
• » 

+ -7 J f 1rtdrtdrl + Vrb~ (b-r) + -~ M*. 
r. r, 

where Mt and M,% are the radia l , circumferential moments and torques 

oer unit of length; i s the transverse force on the contour r = &., 

life shal l consider, as example the case, when 

? = ? (r) cos 6. (5. li+) 

Forces are absent in middle plane of disk, and the heating is nonuniform. 

In accordance with equality (5.14) 
w(r, 8) = if (r) cos 6. 

By introducing values Af* and Mrt, expressed by the derivatives
 w< 

into equation (5.13), we shall obtain a boundary integral equation relative to 
C) 

dt* 
r 

• + ('): 

« f 

t £ • 
(O + ^ f r . t (r.) drt drt - J J q (rt) rt drt dr, -

1 m ' '\ 
T77. V* (») V>-r)~ (b) + rD(r) rD(r) 
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If disk (round plate) has its external contour free, and the internal fixed, 

then the magnitude and M,b are given, 

w (a) =0, ^(a)=0. 

Equation (5.15) *-JC+ + F 

is solved by simple iteration, at K'] < 1 and by similar iteration at K 

In a number of cases, already the initial approximation 

•<o> = ̂  

gives a result with an accuracy of an order 10 to 15$. 

Equations, analogous to (5.15), can be composed also for more general cases 

of loading. 

6. Symmetric Deformation of Shells of Rotation 

The problem has numerous applic ations in structural engineering and machine-

building. 

The solution of problem by means of finding accurate solutions of corresponding 

differential equations encounters great mathematical difficulties, especially for 

shells of variable thickness. In connection with this it is of interest to 

establish integral equations of an axially symmetric deformation of shells of 

rotation and to apply approximate methods of their solution. 

The scheme of the shell is 3hown in Fig. 23. 

The temperature of the material of shell is assumed linearly variable by 

thickness 
A A , M 

where t,' is the temperature of points of middle surface; 

A/ is the temperature drop through thickness of wall. 

Ordinary variables are used: angle of rotation of normal to middle surface 

- ii dw (6.1) 
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and the magnitude n=RtQ. 

where Q — transverse force in section. 

(6.2) 

Fig. 23. For Calculating Shell 
of Rotation. 

Relative to these variables the 

following 3ystem of differential equations 

is obtained 

-(t+r7f)!£i'>+F.V+F-U-t-
£̂[°*(£,,n,+l'£co5')]- (6.0 

"D(^cos* + |,S',n»)wT+®'<'>--^ 
f • 

In these equations E and p are 

narameters of elasticity, variable alone 

is the cylindrical rigidity. The the arc of meridan s; 0=* 12(j_f*) 

functions ĝ(3)> ̂ /O) and (s) are determined by the equalities 

, s > 4 f ft, d I P \ P 1 
* ds I 2K cot f Eh Us \ sinj / ** 2R£A»in*? j 

< ( , + I , « L W 
TafAstef \ f f ( J ds \ sin 7 / 2*f A/?, sin' f \ Rt ) 

4t \ (P. \R, ( 6 - 5 ) 
rf*'*1 Ek / \ /?, V f A ^ 1 ' 

Ft (s) - ( 1 - c.e fata - j- ( / ? , < ) , ( 6 . 6 ) 

+t(») — D(l + v)!jcof ? - ^~^-[ /?* s ln fO( l+l»)~]. 
(6.7) 

where P is the resultant of all forces (concentrated and distributed) anplied to 

intercepted oart of shell. In composing the integral equations, we shall select as 

main unknown functions 

ds 

as 

(6.3) 

This makes it oossible in subsequent calculations to avoid differentiation of 

initial geometric and elastic parameters, which essentially j.ower the accuracy of 

l&O 



the calculation. 

Further, one should consider the equality 
(«)* +1(«). 

f (6.9) 
»(«)-/»<» CM*+ *(<»)• 

m 

By introducing the values (6.8) and (6.9) into equations (6.3) and (6.4) and by 

integrating both sides of equality from £ to s, we will obtain a system of normal 
— f i t a t / i t . i t A / I \ . M v + < . t . v » ij<«> = + yVM0<«) + ^ (fl) / „ + ,(•> ( a ) / „ + 

i n t e g r a l equat ions : + •<«>/ , . + * » ( « ) / * + / , ; 

> - ATMV'> + *„»<«> + ,, (a) / „ + V'» («) / „ + 
+ •(<*)/u + »(I) («)/.• + / . . 

A W - - ? 

(6 .10) 

where 
|*£ff? 

£* 

« « 

« I 

• a 

• « 
/v,,d(,) = [ I ̂  f0<" (5,) rfEi+14 s,n ?a(,) °cot * dl 

—D* cosf/d<» 

The functic /„. entering into equation (6.10), will be determined by the 

dependencies 

f 

'«—mihr, 



cos?a . '» - /j-£ rfS-ft. cos ? + D*. 

In matrix form, aquation (6.10) has the form 

ISHKIChjH'" (6.11) 

The equation contains four initial parameters. 

C»-*l(a); C, = 7j<')(a); c, = »(a); C4 «=&<•>(<*). 

We now consider, as an example, a conical shell (Fig. 2U). In this case, we 

shall have 

(o.^) 

km!*'" (S'» *•*+ 
i a 

• • 

J j*<«> a,) *. 
• • 

j 1"»(W <«. 
• « 

• a 

+~7, J*>(9 H a) V" 0 ) ^ J •<" 0) *• 
• • 

If thickness of the conical shell and parameters of elasticity are constant, 

then equation (6.11) is considerably simplified: 

» » 
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m m 

yv,,v''" "o~.T j [^' &>*. *• 
m a 

/VM»c»—L | J_ J »,., (Ej) dit 

/ » " 7 , n 7 ' . » • s 

Fig. 24. Conical Shell. 

*̂l"= j )' /M-°- /I fmf: 5 J s 

The solution of equation (6.11) is made by the method of subsequent 

annroximations according to scheme indicated in Chanters 3 and 4. 

In a number of practical problems, it was found sufficient to use three-four 

annroximations. Another method of anproximation, which may be U3ed for solving 

equations (6.11) — especially with a gradual convergences of nrocess of successive 

annroximations, -- method of linear anproximation. 

For the possibility of applying this method, the normal operators must be 

For operators, entering into equation (6.11), this is readily attained by 

means of integrating by parts. 

Thus, for example, for conical shell we will obtain 

nresented in the form 

9 

AfuV11 -—)
i—} H (s) j' V' > (;) d\ - V. >(*,* + 

f 

+ *.<£> * (£) 
£(5) Mi) 
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%r,S <s>- ,̂ 18 <"=»<s>*+ 
m a 

+ f O (5) H (i) »«' > (5) dt ~ ~ J »u' (9 
• 4 

//<•)« f * ; tf (s) = f-(5)<f.. 
* 7 J (£(t)A(E) J ? 

• S 

The method of linear approximation is applied in the form, as discussed in 

Chap. 3, Sec. 6. 
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