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In book thesre is given an anplication of normal fundamental
functions and integral equations for solving engineering oproblems.

Examples, considered in work, refer to problems of strength,

stability and vibrations of elastic systems, however, the results
can be used also in other fields of engineering.
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INTRODUCT LON

Frequently the solution of engineering prcblems reduces Lo a sclvt on ot
ordinary differential equations or their systems with boundary coni:*:cns of a
general form. If the corresponding squation has a high order and variih). c -
efficients, then the problem is found ‘o be difficult, since the f.uding cf i
accurate solution usually is not successful. This refers even to second m™e:
equations, if they do not reduce to known equations (for example, Bessel equ ¢ r),
the solutions of which have been tabulated.

Difficulties arise also i1n those cases, when an accurate solution is known
(for example, for differential equations with constant coefficients), b ¢ wiv
limits of interval of changes of the independent variable, the sought fruction >
its derivatives experience discontinuities (for example, problem on L xurc oi
rod under action of concentrated forces and moments, problem on di: ~.tution of
temperature in rods with branches).

The most effective way of solving in the latter case 15 tne application of
normal fundamental functions, as was demonstraited in worke of the outstanding
Academician, mechanics and mathematics special.st, A. H. Krylov.

In those cases, when the proble. rceduces to differential equations with
variable coefficients, it seems expedient to proceed to integral equations. The

idea of such a transition is intimately connected with application oI method of



suctessive approximations for the solution of differential equations, however, &
transition to integral equations makes it possible to use more general and more
offective solutions.

In this work there is considered the application of method of normal fundamental
functions (Chapters 1 and 2), and also there are investigated boundary and normal
intesral equations (Chapters 3 and 4).

Examples of application refer to problems of Zngineering Mechanics, however
the fairly gpeneral discussion makes it possible to apply the results also in solving
other engineering problems.

Author expresses gratitude to Academician L. I. Sedov, to Acting Member of
Academy of Sciences of Ukrainian SSR,S. V. Serensen, Professors F. R. Gantmakher,

R. S. Kinasoshvili, S. D. Ponomarev, P. M. Riz, Doctors of Zngineering Sciences,
V. K. Zhitomirskiy, V. Ya. Natanzon for critical remarks and advices in reviewing

the manuscript.
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THAPTZER 1

NORMAL FUNDAMENTAL FUNCTIONS OF LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT COSFFICIZNTS

Effectiveness of use of normal fundamental functions in engineering problems
was established in widely known works of A. N. Krylov. In the subsequent works of
P. F. Papkovich, Sh. E. Mikeladze, N. K. “nitko and others, these functicns were
applied in solving a number of problems of structural mechanics.

The special advantages of normal fundamental functions are reflected in
constructing discontinuous solutions of differential equations with constant
coefficients (of solutions with given discontinuities of the derivatives).

Comprehensive experience in constructing and using such solutions in problems
of structural mechanics (beginning with the known problem of integrating equation
of elastic line of rod) made it possible to generalize the results for linear
differential equations of arbitrary stricture (Works of Sh. K. Mikeladze).

In this work there are established general formulas for determining rormal
fundamental func.ions and simnle differential relationships between them.

Bv means of general relationships there are obtained already well-known systems
of normal fundamental fuictions and there are given certain aoplications of these
functions. In particular, they are used for an approximate integration of aiffer-
ential equations with variable coefficients.

The solution of differential equation is presented in matrix form, which is a

methematical expression of a known method in structural mechanics of initial




parameters (Works of A. A. Umanskiy, N. 1. Bezukhov, N. G. Chudnovskiy and others).

1. Statement of Problem

Suppose there is given a linear differential equation of n-th order

L) =y () +pi () y*(x) 14 . . . +pa()y(x)=S(x) (1.1)

or

[ |
3 P (x)y*- 0 (x) =S (x)
l=0 (1.2)
[Pe (x) =1, y© (x)=y(x)].

the solution of equation (1.1) in a certain interval of change x(a<€xb),
is sought.

The totality of n (linearly independent) solutions of the homogenecus equation
(151 (a(x)} (k=0,1,..n—1), satisfying the condition

1 i=h

M@O={0ipr (k=0 1. . a1 (1:3)

is called the normal fundamental system of solutions of equrtion (1.1) with the
initial section x = a.
The particular solution of equation (1.1), corresnonding to zero initial

conditions, is designated Y.(x).

Thus,
Y (a)=0 (i=0,1,. . . .n—1) (1.4)
(1f (Y, (x)} and Y.(x),  are known then the solution nf equation (1.1)
is presented ‘as:
8-1
y(x)—‘goy(')(a) Yalx)+ Y (1), (1.5)



where y® (a) (k=0,..,n—1) -- are values of the function y(x) and its

first n--1 derivatives in the initial section x = a. The indicated values are

called also initial parameters. In solving boundary value problems, there is use:
usually not only the function y(x), but also its derivative up to n--1 order

inclusively.

For the future it is expedient to introduce "the column--solution"

vy T
m | (1.6)
o= 7 W |

B y(l—l) (x)

From equality (1.5) by successive differentiation we find

[y ()] = [¥ ()] [y (@)] + ¥+ ()], G.7)
where " Yo(x) Y, (v) i Yaa(x) T
| YO () YO LYo, ()
=
........ (1.8)
YEN(R) Yeu(x) L L Yes ()

is a normal fundamental matrix of the homogeneous equation (1.1), and

" y(@ ' TV, (x)" T
p@i=| 7@ | e O
oy | pongy

is the column of initial parameters and the column of a particular solution. The

normal fundamental matrix in initial section is unitary and column-- the part-

icular solution -- is zero. The solution (1.7) corresponds to the application of




the method of initial parameters, widely used in engineering problems. This

solution we shall call the solution in matrix form.

2. The Homogeneous rquation

Lat us consider a homogeneous differential equation with constant coefficients:

S oen(e)=0 1
(Po=1. yO(x) =y (x)).

Suppose  F(}) is the characteristic polynomial of equation (2.1):

F(*)ﬁéﬂ:*""- (2.2)

the roots of which we shall designate A (s=0, 1,.).

If we subordinate the selection of arbitrary constants to the condition

y(l)(a)zvl‘ (1-0, 1. . --""“l)' () 5)

“ e

where 4 is a certain parameter, then the solution of equation (2.1) will be

#
such

+ A)—F(n) =
x)=B-2=") pia) ,
y() (A—Y‘)F(i) (‘ .u)

where B is the symbol of operation of a camnlete integral residue.
If now we exnand expression (2.4) into a series ! degrees of the narameter
n, , then, as was established evern by Cauchy, the rormal fundamental tunctio:rs of

equation (2.1) are found to be the coefficients f the exnanzinn

Y(x)=VY ()n'+ YV, (5)n'+ . . . 47V, L (x)met (2.5)

#*
A. N. Krylov, On Certain Differential <quations ol lMithematical Phvsaics, GITTL,
Mo-"Lo [ 1950.



After discussing this result A. N. Krylov in the work 'On Certain Differential

Equations of Mathematical Physics' turns to the consideration of concrete differer

equations of simple structure, for which he also makes the indicated expansion.
However, it is possible to establish certain general results, valid for differenti
equations of arbitrary order with constant coefficients.
We shall assume at first that the roots of the characteristic polynomial
) P FTSS P are all simple.
In introducing the value

n-1
FO) = F (1) |
e 1 G

+- ,_1~-x».‘rl_"_ L. +.,‘n» i—l) = (2.6)

into equality (2.4), by making a calculation of integral residue and by ccnsiderin

L

the expansion (2.5), we obtain

n—1 .—‘]\>‘p n—l—k—i
3 ’._ s
Y‘ (x)= Z T{gi NS 8)'('"”)
- ) — i)an—i-1 .
i (2.7)
(k=0 1,. . ., n—1; Po=1).
In this equality A (s=0,1,..n-1) are roots of the characteristic nolynom.

In a particular case for function Y, ,(x) there is obtained the following

expression:

=0 (Po=1).

3
This result also can be obtained by methods of operational calculus.




We now consider the case of multiple roots. Sunpose the characteristic
polynomial (2.2) has m different roots X (s=0,1,..,m--1) with a
multiplicity Yo

Relationships (2.4) == (2.6) remain in force also for the considered case and

therefore

Y (x)-—- _1‘:2_ — e cl“l—ﬂ)_ (2.9)

After calculating the complete integral residue,ws will find

[ "{' LR Y )
-1 Y P ~ k-
1 ! = I (<.10)
Vo) = Tl e
-d - O
! 0 —N A‘)" " (l A‘) {
=0 yas),

Differentiation in this equality is conducted with respect to X and into final
result there is introduced A=A\

Ifall v =1¢(s:=0,...,m=1), then m = n and

a-1 ol
l—h,[](l_kﬂ’ =F(,) . ::an~ i)yan-ion

=0 aml, 120

formulas (2.7) and (2.10) coincide.

At k = n-1 from equality (2.10) we find

ll(l— a)
m-1 . . = s
Y l(,‘)c\"‘ ! o 1 hl) "y . (2.11)
[ ] .3 (\">_ l)' dl" -1 (’ ) }’)" o( - l)
4 ) -,



In the future there will be given examples of use of formulas (2.7) and (2.10).

We note that in the formula for Yi(x) (k=0,..,n—1) the value of
the coefficient P~ does not enter. Its magnitude exerts an influence only ou
the value of the roots of the characteristic polynomial.

3., Recurrent Kelationships Between Normal
Fundamental Functions

From formulas (2.7) and (2.10) it is nossible to establish the following tasi

relationship:
L .
=Vgla)= Vi (X) = pa-rYa_1(x)
(k=0, 1,.... n—1). (3.1)
In this formula it is necessary to assume Yi(x)=0 at k<10, Thus, for

example. for derivative Yo(x) we shall have

L V@)= —pa¥ e (-

Equality (3.1) makes it possible to seek a system of normal fundamental
functions of an equation with constant coefficients, if there is known, for
example, function Y.a(x) . This method frequently is found to be in practical
problems very effective, since the determination of Yao1(X) by tormulas (2.3) and
(2.11) are relatively simple.

On the basis of equality (3.1)
Yacs () ==2 Yaos () P Va1 (2),

Yn—a(x)-‘"'d’i“ Ya2(x)+paYar (%), (3.2)

what results in a subsequent determination of all Ya(¥) (k=0, 1,..,n—1).




The recurrent relationship (3.1) makes it possible to express derivatives of
the function Y{"(x) (i, k=0,..,n—1) by a linear .ombination of the normal “undamental

functions.,

L. Solution of Inhomogeneous kKquation

Suppose there is given the nonhomcgeneous equation

éoptyu“”(-‘);‘f(") (py=:1. ¥ (x) =y (x)]. (4.1)

The particular solution of equation (4.1) satisfying the zero initial conditions

may be, as known, presented in the f»llowing form:

Vo (k)= | Yaos (x5 +) f(5) ds (6.2)

which readily is verified bv a direct substitution. This result can be estibli:he
also by means of theory of integral residue, if equalities (2.8) and (2.11) are
used.

For an explanation of the writing in the form (4.2) we shall present an
illustrative example.

For the equation y®(x) +y (x)=/(x)

we have
Ye(x)=rcos(x--a)

Y, (x)=sin(x—
Y.(x)::f}’._;(.r—s+a)/(s)ds }sln(x- s) f (s) ds.

General solution of equation (4.1) will be thus:
-1 s
YE) =Sy W (@) F(x) b1 Ve (s @) [()ds, (4.3)
[Py o

The sclution in matrix form has the form (1.7).



5. Discontinuocus Solutions

We shall seek the solution of equation (4.1), satisfying the given initial
conditions and having given discontinuities (discontinuities of first order) of
derivatives up to n--1 order inclusively.

Such a type of oroblem is encountered during calculation of concentrated

influences. We note that coefficients of equation do not have discontinuities

3%

in entire interval of change x

Sunpose the function yoN(x) (v=0,. . .,n—1) has m discontinuities,
located in the section x=a,(1<<j<m). The discontinuity of
y(x) in section X=a., , will be designated as:
yi(a, +0)—y(a.,—0) =2 (5.1,
(-:=C‘ 1. T ’l*—]; j=l. 2 s m.).

Function  y(")(x), npossessing given discontinuities must have the follcwing

structure:

Yy (x) = 3. (%) +I_\_EIS(.\’. a.;) AY (5.2)
(+v=0,1,. . ., a—1),

where S(x, a.y) is a single function, determinated by the equality

S(x,au)={0 HSI (5.3)

1 x>a.y

% (x) is a continuous function.
Function y(x) which is a solution of the stated problem has to satisfy equaticn

(4.1), the initial conditions and condition of discontinuities (5.2).

* Presence of discontinuities of function y(x) and its first n--1 derivatives is
not associated generally speaking, with the continuity of coefficients of the
differential equation. There may take place also the reverse case, i.e., continuous
solution in the presence of discontinuous coefficients.

17




It can be established that

P =F Y@ M)+ E TS an) PV @+Y@ ()

corresponds to the indicated conditions, if functionsof ¥, (x) satisfy the

homogeneous differential equation (4.1) and the relationship

o 1 vepk,
ywa”)-‘o vk (5.5)

(" k=0’ ln « e o9y Il—l).

Functions of Y (x) should be continuous together with the n-1 derivatives.
From the preceding it is clear that function Yy (X) is normal fundamental
function with the initial section x=a,,, It is sufficient to assume
Yy(x)=Y,(x—a,), (5.6)
so that all the indicated conditions above were satisfied.

Thus, i e
y(0=3 yP@Ys(x)+ 3 3S(xay) sy (x—ay) +
(5.7)

F 4
+£Y.-|(x-—s+a)j(s)ds.
The solution (5.7) can be written in a more symmetric form, if initial values

of the function are considered as the given discontinuities after assuming

y(@)=s",. . ., y("-l)(a);Asn—n

and by assuming all Gp=a (k=0,. . ., n—1).

Now, equality (5.4) we shall write out as:
y(x)g"i";S(x, a,) AY, (x—ay) + Ve (x). (5.8)
Ry k7= :

The solution of type (5.8) long ago was used in structural mechanics for
equations of ‘particular forms. By another method and in another form formula (5.8)

*
was established by Sh. E. Mikeladze . However, in the reasoning of the author an

#Sh., E. Mikeladze, Certain Problems of Structural Mechanics, State Engineering
Publishing House, Moscow, 1948.

12




error creot in: equality (5.8) is correct only for an equation with constant
coefficients, since only in this case, functions Ye(x—ax,) satisfy the
corresponding differential equation.

Let us turn to the solution in matrix form. For convenience in writing we
assume that in section x = ajthere is in a general case a discontinuity of all
derivatives which characterizes the 'column - discontinuity".

A |

(1}
AI

(5.9)

Certain elements of this column, of course, may be equal to zero.

The discontinuous solution of equation (4.1) ‘in ‘matrix form will be:
m
ly(x)l=i§oS(X. @) [Y (x—a)] [3] 4 [Yu (2)], (5.10)

where m is the number of sections, in which there are discontinuities.

‘he initial column-discontinuity is

" y@ |
[Aol=l y®(a) |
' ‘ (5.11)
y('_”(a) |
The matrix (y(x—a;)] has the form (1.8), where functions Yi(x) are
replaced by Ya(x—a)). . If all elements / 3,/ are given, then the

discontinuity will be called iindependent. Frequen'ly, however, there are en-

countered problems, in which discontinuity of der vative vy (x) in the section

derivatives/
'x=6; depends on values of function y(x) and its in the same section




(in the presence of discontinuities we shall for definiteness consider the left-hand
values of functions in section x=a;; the results almost without change are
applicable for the case, when one should consider right side values).
Thus, ‘
[4,i=[C)] [y (a))].
' (5.12)
In this case the discontinuity will be called dependent, and [IQL7.is the matrix of
dependent discontinuity. In theory of rods frequently there is used the equation of

fourth order, in which

A;’)- C'Oly (al)—* C,,’y(”(al-)- (5.13)
A = Cyy,y (a)) + Cyyyy ™M (a))
Then
-0 0 0 O
(C)l SOy
l C.ol C.ll o 0
_Cwy Gy 0 0 _ siry

Discontinuous solutions can be anplied both in case of concentrated influences on a
system, and in the pnsonco.of discontinuity-like variation of the parameters in
different sectors of the system, being described by one and the same differential

equation (for example, flexure of stepped rod).

6. Examples of Applying Normal Fundamental Functions

As an example we shall consider the problem on flexure of a rod of constant

section under action of given external forces (Fig. 1).

The differential equation has the form

f(x)
yOx)=5," (6.1)

where y(x) is the sag of axis of rod; EJ--the strength of the section to flexure,

f(x)--the distributed load per unit of length of beam.

14




Characteristic polynomial of the homogeneous equation
F(d)=)¢

has root Ae=0 of fourth multiplicity Vo= 4,

162) 45 M,
phovenesfoedt b ttalss aans ttt
ity — ~

!‘——a&‘-.ﬂ'

Fig. 1. Flexure of Rod.
From formula (2.10) we find (n = 4, m = 1, a = 0)

3 i x3
gjt{e‘ '}A 0==—"o¢

1
Y, (x)=';’ o 3!

From equalities (3.2) we determine

A S AL

Vix)=-th)=1.

Y.(x)=£~ Yi(x)=1

Of course, this system could have been written by not resorting to total results.

The function

% qeaP £rer
Y.(x)-”‘S'x 3! Js) s

0

At points of applying concentrated bending moments M, and forces Py there are

discontinuities of the derivatives

M
@)= T4
Al £’
P
A =1
4 EJ




On the basis of equality (5.7) we obtain the known equation of the elastic
line of a rod:

"‘)=y (0) +.V(” (0)x+y(2) (O)—;':-}'y(:” (a)ai:__*.

+’3 S(x, ay) AP + E S(x, @) 80 (x—ay) +
+ZS(x. a,,)“’ ("—l‘:I)'_*_zS(x a’l) Py (‘—‘;Il)“_*_
J=l

+ j L=X 1 (5)ds.

(6.2)

In composing the equation it was assumed that the elastic line has in the sections
G discontinuities of sags, and in the sections @i --discontinuities of angles
of rotation.

In practice, such a case can be encountered for a compound rod.

Equation (6.2) will be valid also for a rod with a graduated change of the

section, if one were to introduce in corresponding sections the discontinuities

- 1 1
4f M(b’)[u(b,w) EJ(»,-O)]'

1 1
3) -
AP=Q() [u(o 140)  EJ(b;~0) J '

where . M (b)) and Q () are the bending moment and the transverse force

in the section X=0;

The normal fundamental matrix of equati on (46.1) will be thus:

_ P
l X -2‘*; ’s—l
x
(Y(x))={0 1 x <
00 1 (6.3)
00 0 1._




We consider now flexure vibrations of a weightless rod of constant section,

carrying masses m; and moments of inertia [/, (Fig. 2). In these sections the-=

will be the dependent discontinuities.

My _ 2 11,0 i
— = w y (al) )
P m (6.1;
g 2__’,
A’”——-‘—“’ y(a,).

@) =
4

where @ - is the angular frequency of natural oscillations.

The column of the dependent discontinuity is e:pressed as:

T AT g g g . ' y(a) ~

A,l) _ ol ’v(l)(al)

ap | 0 =00 yoa) | (6.5)
_ AP —'1;’;’7 0 00| y¥a) '

In sections, wnere supports are located there will be a discontinuity of the secon-

and third derivative in accordance with magnitudes of reactive moment and force:
_A}” = K,.,y (dj) + Ktl/y(”(aj)o
8 = Ky;y (a)) + Ky ;3 (a)).

In majority of real cases Ky,=(0 and Ks;,=0; for elastic supports Ks,-0, Kz

'Y
m, I, ml, _n/, i

’a,
ho————— @; ——

4 —

Fig. 2. Critical Speed of Shaft

The matrix of discontinuity for an elastic support has the form




~0 0 00
0 o0 oo'
Kyuy Ky, 0 0
Ko Koy 0 0|

A rigid support may be taken into account by selecting the corresponding coe‘ficients
of rigidity of the elastic support. We note also that a rigid support which
eliminates the section of linear mobility is equivalent to an application of m;-—+>2:a
support eliminating angular turns corresponds to an application /;->o0. The

solution of the problem in matrix form is exnressed by the equality

ly(x)] =S a)[Y(x—a)][C]l [y (). (6.6)

where /Y(x)_/ is the fundamental matrix of equation of flexure of rod; [Ci] is
matrix of discontinuity, corresponding to concentrated mass or elastic support.
Equation (6.6) is useful also for calculating for critical speed of a weightless
shaft, loaded with separate disks. )
For the case of forward synchronous precession* the matrix of discontinuity in

section, where disk is located, will be thus:

-0 0 0 0
0 0 0
0 7, 00
-'u!
m 0 %0

where m; is the mass of disk; [, —is the equatorial moment of inertia. Thus,
e
for axample, the discontinuity of second derivative

U
Ar)g.te_le(n(al)_

*The concept of forward and reverse synchronous precessions is given in Chapter
4, Section 3.

*ormis equality in work of A. N. Krylov, "On Determining the Critical Speeds of a
Revolving Shaft" (Academy of Sciences of USSR, Moscow, 1931) and later also in the
work of Sh. E. Mikeladze "New Methods of Integrating Differential Equations" Moscow,
State Theoretical Technical Publ. House 1951, is erroneously used with the minus sign.
It follows from this, that the calculation of gyroscopic moment of disk during a

forward synchronous precession does not increase, but lowers critical speed of shaft;
this is not true.

1¢




In calculating a reverse synchronous precession for thin disks one should consider
31
2) — — o 2 (1) .
A} ® E.Iy (a))
The calculation by equation (6.6) must be made in sequential order, in
determining

Ly @I =2 [¥ (@~ )] (] [y (@)]

(=123...,m). (6.7)

Suppose there is a certain number of unknown initial parameters (in considered
problem there are two); then the same number of homogenecus boundary conditions
should exist at x = b, As a result of the calculation we obtain

[ () =[Aully (@)). (6.8)
In this equality, the column f;(d)] contains only the unknown initial parameters,
and the column [;(b)] -~ those values of y™ (b) (v=0,.,n—1), which enter int
boundary conditions at x = b.

In considered case boundary conditions are such:

~

ly (8)1=0,
and then from relationships (6.8) there ensues

det [Au]=0. (6.9)

Since the coefficients Ak contain o, then equality (6.9) is the characterist:
equation for determining the eigen values.

Problem of calculating consists, essentially, in deteriming of elements of the
matrix [Aa).

We discuss now in reference to the considered scheme of calculation one method,
belonging A. N. Krylov (See "On Determining the Critical Speeds of Revolving Shaft'),
this method makes it possible in most cases to simplify the calculation considerably.

Suppose the element, standing in the i-th line of column of initial parameters

is unknown (for definiteness, we assume (=2)




Then we introduce the unit column

©C O = O

(6.10)

ly(a)*]=

’

where all elements --2eros, except standing in line i. With the initial column of
(6.10) we conduct entire calculation, which determines elements of matrix [Aa),
standing in column i. After having made so many such calculations of so many un-
known initial parameters, we determine all the elements of matrix.

We note that in a majority cases with use of equalities (6.7) there is no
necessity to calculate all elements of matrices [Y (a.—a))] which also

facilitates the conduct of calculation.
In calculating the mass proper of rod (or shaft) we nroceed from the equation

YO (x) —etaty (x)=0, (6.11)
where y(x) -- amplitude sag of axis of rod; '
of

’ EJ
(here pF —is mass of unit of length of shaft).

Characteristic nolynomial of equation (6.11)

F(r)=M— wlat
has the roots

).=IV;, M:—GV_«:. dg=ial o, l,=-—i¢l/u_).

On the basis of formula (2.7) we obtain ,functiona, introduced by A. N. Krylov:

)
2”“
Yo(x)= e = ——e“—

=-;—ﬁuba}/mx+c05a]/;x)
3 A
Y, (x)=2-%— ‘l:‘ =—2f'-:-/~;—éy.hal/«;x+smal/;x);
=0
" e (6.12)
Vax)="H - —';,——=§,j.,sal/6ix-cosal"6x);
Py ]

Agx - ~=
hi= -}_ .13 = 2..3...1}/' ; (unha Vox—sinaVox).
=0 - i
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The functions Yo(x), Yi(x), Ys(x) also can be obtained by means of

recursion formulas (3.1). In using relationship (3.1), we will find fundamental

matrix of equation (6.11)

- V() Yi(x) Ya(x)  Fi(x)7]

0%tV (x)  ¥,(x) Yi(x) Y. (x) (6.13)
wiatly (x) WhatVy(x)  Ko(x) Y, (x) |

oMt (x) whalVy(x) ohatV(x) Y (x)

(¥ (0)]=

All preceding results relative to vibrations of rcd remain in force, if o:ly
3*

instead of matrix (6.3) we use matrix (6.13) . To the same degree this refers also

to calculating the critical numbers of revolution.
e
We present an example , referring to determination of critical speeds of shar

with one disk (Fig. 3) in calculating the mass nroper of shaft.

*If the mass of rod becomes vanishingly small (a=»0), then matrix (6.13)

transforms into matrix (6.3).
This example is found in work of A. N. Krylov "On Determining the Critical Speed-

of Revolving Shaft", in Sect. 10. However, in the solution errors creont in and made
the result incorrect. Besides, the already mentioned error with the sign of the
gyroscopic moment, in equation (58) of this work and subsequent equations, the ex-
pression for "  is written without consideration of influence of discontinuity.




The column of initial values has form

Py
|
y (o)
(8] =[C,] [y (a)] = o |
Y ((»_'
The column of first discontinuity (x = ag)
-0 0 0 0. -
C 0o o0 o i )(a‘)
Bl=Cly@)=| o =N o |2 @
P
-_51_ 0 0 0_ _Y® (ay)
s ..l E 0 3
_ 0
£J — | w?
0 2 Y@ | (6.14)
w'lnl
Y(ay)
*-', — £" i
L ] :
Fig. 3. Shaft with one disk. Since boundary coaditions at x = 1

y(N=0, y®()=0,

then there must be calculated in matrixes of equation (6.7) only these two lines,

and for determining the discontinuities, also

have from relationships (6.7) and (6.13)

l.&‘_).l “x Nhi(a) x
¥ (a,) l -l % Ye(a)) x
yo@) [ [x x X
| @ | X ox

Here, elements of matrix, not participating in

From (6.15) it is evident

y(@) and ¥P(a).  We shall

Ye(a,) | O 7

Ya(a)) || y™(0)
N 5 (6.15)
< || y® (0)_|

calculations are marked x .

¥(a) =y (0) Y, (a,) +y® (0) ¥;(a,). (6.16)

yn (a,) =yt (0) ¥,y (a))

+y(0) Yy (ay).




For the section a,=1

2Ol v e x Y,(t)"‘" 0 -
yn o | %= X x X - ¥ (0) %
@ (l)l = « Wttty () o Ya() 0
o | < x = _|[Ly¥0)_

x x Ya(l—a) Ys(l—a) ) g i
X x x X ..al q
Hx x h—a) v,¢—ay | T2 2"@®

wlml
X X X X y(a) i

i Y=y ©) ¥, ()45 (0) Vo) + -1t ¥y (t—a) X |

Xy (a)+ =2 Vi(l—a)y (@),

YO ()=yM (0) 2ty () +y@ (0) ¥, (/) +-~-- X (6.17)

XYo(l—a)y®(a,)+ =1 Y, (1—a,) y(ay).

In introducing values of (6.16) and considering condition (6.14), we obtain
a system of homogeneous equations

PR ONAURS S AT aoma.)+‘

+Z Y= a) (@) +y2 O [,
XYs(1=a,) Yy (@) + - Vi (1—a) Vi (a) =0,

y0(0) o2ty (h +-7 E Yo(l—a) Yy (a) + (6.12)

w’|

+ - a) V(@) 430 O [Kio) +

X¥o(l=a) Va(a) +-=00 ¥, (1 a) ¥, (a,)}=0-

or in matrix writing

lAnl A,,”y‘”(O) =),
As Ay | ¥(0)




The equality to zero det (An) gives the characteristic equation for determining
ot

The roots of equation are most simply found graphically by means of, constructing
the function

F(") =ApAyn—A Ay
(6.19)

and in aoproaching limits by means of a linear interpolation between the points
F>0 and FO.. Ve note that in matrixes there are calculated elements,
standing in columns, corresponding to lines in columns of the discontinuities. For
all intermediate sections there are maintained only lines necessary for calculating
the discontinuities; for the last section -- lines corresponding to boundary
conditions.

With a large number of discontinuities the oresented method becomes cumbersome,
since all the time it is necessary to determine the values b (av)) by the
initial parameters.

In this case it is expedient to use method of A. N. Krylov, the application of
which, we shall illustrate in this same example. We introduce the column of initial

values

and then from equalities (6.15) we obtain

Y(a,)*=Y,(a),
y"(a,)* =V,(a,).

Then we shall have

24




I EZC I I Y7 R Tl
(o =| x oxox o PV
|y®0° | ' « oty « x || 0

| o | bxoxo o < L0

% x hil—a) Y(—a) g
X X X x

+ X X YQ(’_a|) Y, (!l —a,)) wt YO(al) '

_xX X x x . w’MI Y (a,)

hence
YO =An= Y, () + =21 Vi(l—a) YVo(a) +

+°'"" Yi(l—a,) Yy (a)

u’l|

y(e)* =A,, =%y, () +— Y, (l—a) V,(a) +

+ -;”;' Y,l—a)V, (al)j

Analogously we find A and A, and then function (6.19).
In taking into consideration the mass and moment of inertia of sections of

rod or during action of constant, longitudinal force, the differential equation of

the oroblem will have the form

YO (x) 4 poy@ (x) + poy (x) =0. (6.20)

We shall determine the normal fundamental furnctions of this equation, by using
results of Sec. 2 and Sec. 3.

The roots of characteristic polynomial




we designate '
hep Ay,
‘l- -’o‘ l." -V,

Further one should consider the relationship

" + ".‘ -’.'
ph =p,.

From equality (2.8) we obtain
|

. »
YO(")-E “a.‘.‘ < E +
&

+2pgs --lw- w4+ 2

ey W%y = | u gy v sinp)
]

In using, now relationship (3.1), we find

VR = 5 Vo) = | iwe— ol

w®

A A e P i

[ 1 v,
Y.(x)-z- Y‘(x)- —;;:l;:” P't—"’uxl‘

Equality (3.1) malses it pesaidls to M-dno-;ll elements of fundamentsl matrix of
equation (6.20).
7. Other Applications of Normal Fundamental Functions
Let us consider an axially symmetric deformation of a closed cylinderic shell

(Fig. 4). The radial displacement of points of middle surface we designate as y(x).

T

fe. Lo axdally symetric deformation
of a cylindrical shell,
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The differential equation for the function y(x) has the form

YO (x) + 48y () =f(x). (7.1
In this equality
o _En
W=

J@=3[e+2at—Da +0 5(59).

where D= 12(1 —p%) is the cylindrical rigidity;
@— is the coefficient c© linear expansion;
t(X)— temperature of middle surface of shell;

At(x)— drop in temperatures between outer and inner surfaces ¢
shell.

Equation (7.1) conforms with the equation of flexure of beam on an elastic
foundation, for which for the first time there were widely used by A. N. Krylov*,
normal fundamental functions. We shall obtain an expression for these functions,
using the general formula (2.7).

The characteristic polynomial

F () =14+ 43

has the roots

M=B(1+i) LW=B(1—0) W=—-81—0) A=-B(1+)).

*
A. N. Krylov, On the Calcuation of Beams Lying on an Elastic Foundation.
Academy of Sciences of USSR, Moscow, 1931.




Furthermore,

3 z,x'*‘ 32 |
Y (x) =0 o'- — et =
) g: ’2"(4_‘”3-4 o 4
=9 )

- _:, [" W+hs L b5 o= 1=02 +e-’(|+l)']gm“ px 0s gx;

s g e oo

o= X ""=2.4 L -

P+ r tuu-n: eV i=N 1 o=V 1+ 1 ]
— -

—

p(1+i) F(l—f) B(l—1) B(1+4)
- #hpx sin Bx +smhB.c cos Bv); 7.9,
2,{"-‘ 3 X
l-ﬂ 1 e oL
111 1 1 1
— | __ppu-nx_ - -nx | ~p4+i)r|
[21 2 T 2 € tu ]
-Wﬂxsln Bx;
3 Xml," 3 .
{0 Y 1 P

_,_[_‘uu-:): Ju-Nzx P (1-Ds e PO+
1414 141 1+ =1

= #u Bx sinf.x —sanf.c cosPx).

The normal fundamental matrix of equation (7.1) is determined on tre basis of

relationshios (3.1). It has the form

T V@) Y\ (x) Yy (%) Y, (x)
—4BYy(x) Yy (x) Y1 (%) Ys (x)
—4ptY,(x) —4pY,(x) Yo(x) Y1 (x)

AR (x) 4Ty (x) —43Y,(x) Y, (x)

[V (x)]= (7.3)

s K



The varticular solution of equation (7.1)

Yo()=V:(x—s+a) f (s) ds. (7.4)

If onto the shell in the section x=gq, alon. & circular contour there are
anplied concentrated bending moments M, and forces P,  then in this section

there exists a discontinuity of second and third derivative y(x)

07
0
M,
' [3)=| 2
I ’
y Py
D

Solution of equation (7.1) is expressed

by equality (5.10), where matrix [Y(x)] is
taken from relationship (7.3).

Figw 5» Tlane probles, If shell in the section x=a; has
reinforcing diaphragm (disk), then the discontinuity will be dependent, in which
the matrix of the discontinuity will corresmond to the matrix of elastic support.

The following example refers to one problem of theory of elasticity.

We shall consider the generalized problem on a plane strained state*. We
assume that the external forces act in the middle of nlane of a thin nlate of
variable thickness (Fig. 5).

Equations of equilibrium of element of plate will be such:
oeh) | ()

AX =0
ax dy te ) (7.5)
d(syh) 9 (tayh)
oy +—‘;“—+p’l)’=~ 0.

*The more general statement of problem will be used later on.




In assuming that mass forces are absent and in introducing the function of stresses

we obtain from condition of continuity of the deformations

SLS Sl S e

o 1+p J' =0
+2dxdy( En dxdy) :

(7.6)

For a nlate of constant thickness with constant parameters of elasticity and
with an absence of heating we arrive at the well known biharmonic equation
v (x, y)=0. (7.7)
In investigating the state of strain in beams-walls the solution of equation

(7.7) is sought in the form

_sinay
o (xy)="" .y} ¢ (%)

In introducing the value @(x, ¥) into equality (7.7), we obtain the following
differential equation for the function ¢(x):
9 (x) — 22 (x) +a*y (x) =0. (7.8)

The characteristic polynamial has two roots of second multiplicity

‘.= a, X|= —@&.

For determinating W4(x) we shall use formula (2.11).

We have at a == O
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Ax

¥y (x) = 2:7 : :
s=0

(A—a,)p
i=0

9| &
LN { (=1 }x-1.+

(*r—=n)e

A=),

.i..i{ et } =_ (axrhax—seracx).
O (A—2) i, 22

Further on basis of equalities (3.2) we find

¥, (x) = 2—:; axeabax,
¥, (x)= ;’_ (Imh2x —2xwshax),

¥, (x)= -;—- (2wsh ax—axsnhax).

The application of normal fundamental functions introduces into the considered
problem a number of simolifications in satisfying. the boundary conditions. The
use of the general method in Sec. 5 makes it possible to construct a solution in
the presence of a discontinuity-like variation in the thickness of the olate, since

for each of the sections, equation (7.8) remains in force.

8. Normal Fundamental Functions of Euler's Equation

We now consider the homogene~-1s Euler equation

YOR)+ Ly () + . L+ 2y (0)=0 (8.1)
or
O
_..y(n—l)(x)=o
%‘ * (8.2)

(Co=1, yO(x)=y ()

where ,— are constant coefficients.

O




Ry substitution

x=¢

(8.3)
equation (8.2) reduces to an equation with constant coefficients:
3 puyt=9 () =0
-i) (§) =
4-4’ e . (3.4)
o= == E .
(’(. l)(E) ‘i.—‘ y( ))
The characteristic polynamial of equation (8.4)
“
FOY=2p (8.5)

The coefficients p. are the simplest of all to determine by using the identity of

characteristic polynomials of equations (8.4) and (8.2), if there i; introduced

into the latter
y(x) =x},

In decomnosing the characteristic polynomial of equation (8.2) by degrees of X\, we

obtain the values of P.

Suppose there is given, for example, an equation of fourth order

YO + Ly () + 2 (0) + 5y (1) + Ly (1) =0.

3
X
The characteristic polynomial of this equation

FM=AQA—1)(A—2)(A—3)+2(A—1) (A—2) ¢, +
+A(A—1) e +2ey +¢,.

After decamposition by degrees of A we obtain
F )=\ 423(—6+c,) +\ (11—3¢c,+6) +

+2(—64+2,—c3+6) +6.
Thus, we find
4
{a—i) =o,
2Py )

Po=1,

Py=—64¢
Pa=11-3¢,+¢,
Ps=—6+2,—cy+ ¢y

| Dl
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We shall consider the solution of equation (8.1) at the values @<x<b (a>0
since x = O is a sinpular noint of the equation). Suppose the value x = a
corresponds to £=2, a=Ina.

For equation (8.4) on ovasis of indicated earlier formulas, there may be found

the normal fundamental functions and ‘hen

yO="T ) 7,0).

in which i=k

& n
a V(@)= 0 isk.

Then arises the question, will the furctions VYx(%), if we assume in them = =)y,
be the normal fundamental functions of equation (8.1).

It is possible to establish that this will take place for equations up to the
second order inclusively and it is found invalid for equations of higher orders.

However, in any case

. 1
L@ e=

arnd therefore even for second order equations functions Ye(*) and aV,(x). will

form the normal fundamental system. If there is an inhomogeneous Euler equation

2%,(-—i)(x)=j(x). (8.6)

=0

then by substitution (8.3),it reduces to the equation
"
‘gp,y‘"-"(i) =1 (). (8.7)

general solution of which has the form

YO =Ty Yy () +] Yo (=5 +2) £ (5)ds. (8.8)
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// IR ””
[TV

—

Y

Fig. 6. Flexure of disk with a
ccsinusoidal load.

Ist us consider the following examnle (Fig. 6). The differential squatiorn of

the flexure of a circular nlate of constant thickness under action "of cosinusoidal

load h's the form

‘w = .Q—('l_ COSO
v D '
where Vo= + 1 odw 2 0w 2 Ow
ort OB 1 9t ges r on
20w 4 M | dw | | dw

R drdd " 4+ 900 rnoan A ar

D -- cylindrical rigidity.

In assuming a solution in the form

w(r, 6)=3(r) cost,
we obtain for @(r) the Zuler equation

2 3 3 3
) ey ——
¢ (r) + . ¢ (r) & 23 (r) + -ﬂ_w)(,)_;‘_?(,) - ql()r) .

Bv substitution
re=et

it reduces to following ordinary differential equation of fourth order:

dy ™
d:s 443:

@y dy e(®)
+ 20+ 47— 3em il o (8.9)
The roots of characteristic polvnomial
FOA)=M—40 4144, —3

=1, (vv=2) M =-1 )=3

3y



(root * has second multiplicity).

From formula (2.11) we obtain

9 RYC) A G—e)
b

1
ol(E)—'FS: A+1)(r—3) 43 — 120 +40 +4 l=—l+

DS — 1204 4 +4 s

1 3 £—a ! -(€- ! =1
= —— (— —_—— 1) __e"(- ).
4 ( G)e 16 + 16

+

By means of equalities (3.2) we find

LT 3 ,. ¢ 5 1 -
0 _-—e‘ e —_ | —(f—2 i—s
s () 4 + P (G—a)e +—16e € )-_IG e G-,
L 1 . 7 1 i (8.10)
[\ =gy ! £ma —(E—a € n
1 (6) 2 & 4 i G—a)e T e—(& )__l.6 e3 -1,
[ ___3_ E—l_i . i-a _3 —(E—a 1 g
o ) ‘e . y (i—a)e +16e (€ )+___I6ea( ),
The narticular solution
_.ﬂ (s)
[ ) =\Q, ¢t— 98)_ s
o (¥ j 1 E—s +a) D e'sds. (8.11)

Thus,

YO=3 < () 0,) + 0, ).

Let us apply now the obtained solution for a plate (disk) of variable thickness.
For this purpose we shall divide the plate into sectors of constant thickness with

sections t=a; (j=0, I,..,). We shall designate the cylindrical rigidity

D (3;—0) =D,
D (ﬁl‘*'o) =-Dl

and correspondingly

¢ (23— 0)=9/-1
?(‘j"’o)‘?j-
From condition of equality of the bending moments per unit of length of cylindrical

section we obtain

D¢ — (1 —p) ¢ —u)l =Dj- [¢2, — (1 —w) iy —ves-1).  (8.12)
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Owirg to the continuity of deformation
|75l 72010
Pl mell) (=1

and then from (8.12) we obtain

D
Mg g o=V 2
A= #f0—of2 = (5= — 1) lofi = (1 = ) 540, — .

From condition of equality of t.e tntal trarnsverse f-orce we fipd

D)9 — 27 — (2= 1) ¥+ B 1) 7| =
=Dyl — 2% — @ =) ¥+ G—#) 211l

It follows from this

A =) — gD, = (%’)’I’- - ) (72 =2 —@—w) &V +

+(3—-v)w-ll+2A;">=(D—’D’I'——l)x (8.13)
X{#§2 — (4 —3p) ¢V, +3 (1--p) gs=1].

Thus, we shall have

lv(‘”-,.‘;’os (%, a) (P4 E—2)] (Gl [#(a)] +[Pu O] (8.14)

Here  [®:(t—as)] < is the normal fundamental matrix of the homogeneous equation

(8.9). Its slements are determined from the relationship (3.1) or by direct

differentiation of equalities (8.10).

The matrix of discontinuity has the form

-0 0 0 0°
0
(Gl (%) T
) —p —(l=p) 1 0
B3(0—-v —-@4-3) 0 1 _

In equality (8.14) into [ (a)]} the left-hand values enter

[ (@)] = 3s-1]-



We shall dwell on determining the column of a particular solution. At
9-1<¥<9  from equality (8.11) we obtain

/-
o. (E)=E j‘ d)’ (E_S+ﬂ) —"(S). ehds_*_
v=1 e, , D--I
3
+ _f &, —s+1) 26 puys,
/-1 D’_'

(38.15)

0[‘.'/’
In determining the elements [®.(:)] ome should not forget that all components/ri:
the/
hand side of/equality demend on t.

9. Apolication to the Integration of Equations
with Variable Coefficients

Sunpose there is a linear differential equation with the variable coefficient

3 P, (x) ¥ (x) = f (x)
i=0

[Po(x)=1, yO(x)=y (0] (9.1)

and there is sought the solution of equation in the interval @<x<b. The mean

values of coefficients can be determined for example, in the following manner:

# . ®
Pio=;—5 [P () dx.
“t’ a (902/
We write/equation (9.1) in the following form:
] L]
2 L1 (D)=L () + (P —p, (2)) 30 (x)
(Pro=1. ¥ (x)=y (x)). A
Suppose Yx(x) (k=0,..,n—1) ~are the normal fundamental functions of
equation with constant coefficients:
A
EPiy"=" (x)=0 (9.4)

(with the initial section x = a).
Solution of equation (9.3) with an arbitrary right-hand side is written out as:

y(x)u:g:y“’(a) ;’. (x) + Y. (-r)+§ Ya_1(x—s+a) X

X § (i () Y0 () ds, B
* cp equals average. 2




where - S
Y.(x)f=£)3-.(x-—31-0)/(5)d5- (9.0)

In differentiating equality (9.5), we find

a-1 ~ - X~
YR =Ty @ VP )4 O )+ T (c—sta) X (g0

)([‘Z}l (p,.,-—p,(s)y(‘—”(s)dsJ («=0,1,. . .,n=-1).

Bv introducing, as nreviously, the column-soiution

i
=]~ .7, (9.8)

(a=1)
Yn

we shall write out system (9.7) in following form:
[J’(x)l-[;(")] [¥(a)] +[F.(-")] +J:[K("- )] [y (s)] ds. (7.%)
7quation (9.9) represents the matrix integral Volterra equation.
The matrix is the nucleus of the equation

- (K (x. )] =
Yact (=340) (Pap =20 (6)). Voo (x =5 +0)(pry —pr(5) |

ooooooooo
---------

_Y}'_T”(x—:-}-a)(p",-p,, (S)) . .;;,(.”:”(X—S +a)(plcp_pl\-'))_ (9 lU)

Zquation (9.9) is solved by method of successive approximations, ir which the
srocess is convergent, if all coefficients p.(x) are limited in interval
a<x<bh, Furthermore, it is possible to show that solution of c¢quation
(9.9) results in determining the normal fundamental functions of the homogeneous
aquation (9.1) and the narticular solution, satisfying the zero initial conditions.
Supoose it is necessary to determine the k-th normal fundamental function of

aquation (9.1) Ya(x).

We shall assume in the column of initial values all y'(a), (+##k) are
aqual to zero, and yM(g)=1, From equation (9.9) at. Yo (x)=0 and,
cor.sequent lv, J (x) =0, we obtain

0



(% (01=7, (0] + 1K, 91 (1o ds. (9.11)

The first aporoximation is
IY.(u(x)]:[Y,(x)]; (9.12)
second approximation is

(Near()] =7, () +3;[K(x. 9117, (9)] as (9.13)

et cetera.

The nresentation of solution in the form of series leads to the same resulu-
[Ya (0] = L2, (), (9.14)
=]

in which
(®1(x))=(Ya(x)]. (9.15)

Calculation is terminated, when the difference between two successive approximatio
can be assumed to be negligibly small or with the use of equalities (9.14), when
considered terms of the series is small in comparison with the sum of preceding
terms. In the process of successive approximations there is no necessity to

calculate all the elements of the column [Yi(x)]; only the elements, for which

Pio—pi(s) # 0. will be subject to calculation. Others required f .-

calculating the derivatives Ya(x), are computed from equation (9.11) after the
indicated elements have been determined.

we shall consider as example the Bessel equation of order 3:

1 1

(2) —_— y() o, s = (.

yeAx)+—y (x)+(l w)y(x) 0 (9.16)
We shall seek an approximate solution of this equation in the interval (—-—; , *)-

The mean values of coefficients by formula (9.2) are equal to

(9.17)




The normal fundamental functions of the equation with constant coefficients

YOE) + Py o) (5) + Py oy () =0 (9.18)
will be such:
Yo(x)=- /’,,:’ R [ W I L A W
2 V LT lcp i
4 Picp (9'19)
yl(x)-_ ._‘.-z_l, _ - lexc(l l)_el,(t—a)l.
plcp
2 i 4" —Pscp

where Picp ',,'.l-‘ T
—— e S p .
A._. 2 +/ ' -p:(p'

Tn the considered case 6

In considering (9.17), we find

Y, (X)=~—'-~c'°m(‘_")08549 08549( v *
‘ 0,8549 8549 cos 08549 x— |4

+.0,3422 5In 0,5549 (\_?)]

- _ 1 —o.Jm(:—:) C .
Ys (x) —0'85‘98 sin 0.8549(_\ — -6-) .
Ne shall determine the normal fundamenial function Yo(x) of equatinn (9.16).

From relationship (9.11) we shall have

Yo | _[Fi(o) |,
YO @ || F
e s4) L} o) a1+ )

+ X
o 1
Y{')(x—:-{- a) (plc'— ~:— )' Y‘ll) (x_s+a)(p,(p—- 1 +“,)

Ye(9)
X [ Yo (s) ]ds

“10



Hence the first approximation for the function Yo(x)

Yo (x)= ;o (x). (9.20)

Second approximation
X

Yo) (x) = ;’o(x)+§r’x (x—s+a)X

x[(pu,— ;L) Y, () + (Pup'“l + 4:;) 7:," (S)]ds- (9.21)

In Table 1 the calculation of second annroximation is exvlained. In the

=
calculation the interval —» * is divided intc ten equal sectors. For compiling

tables of values of the functions Yi(x—s+a) is calculated as soon as firs!
column.
Since s = a, then into the column the values ;',(x). are entered. All othe:

columns are filled in such a manner so that the elements on secondary diagonals are
identical.

This ensues from the circumstance that in the division into equal sectors for
these diagonals the magnitude y—s+a remains constant.

In column 12 there is introduced an exoression, standing in equality (9.21) i
brackets. Furthermore each element in column 12 is multiplied by the corresnondin
value ¥,(x—s+a) and the result is summarized by the trapezoidal rule
‘for all values in a given data line. This sum is contained in column 13. In
column 14 there is given the value

Yo) ('\’)'—‘;’0(1).
then -- value of the magnitude Yo (%), Yo (x) and the accurate
value Yg(x). In the given case, a third approximation gives an accuracy,
adequate for a majority of engineering problems (Fig. 7).

Sometimes it is expedient to apply another variant of the presented method,
which consists of the circumstance that equations with constant coefficients strive

to obtain a form as simple as possible.




Ch

Table 1. Solution of Equation (9.16)

= L»_u_._u_a_q_.Fo_sh: 22 1 13 | 14 |15 ._a_ 17

Gen,
Yi(x=s+a) (1] fC)as | Yo | Yem| Yar| 7o

28
Crpoxa

2% 0.524Jo. 7881, 0471, 3001, 571]1,833(2,004}2, 3562, 612,880, 1 ‘
1 | 0,84 | ore o | 1000 1000 1000 1,000
2 | 0,78800,27 ] T o8 o oom ol o 0.
3 | 1,047/0,4230, 23700 > b g n,w l.,n. e._a_ 0,065 o.-s_ 0,984| o.uj 0,950
4 | 1,309/0,556(0, 423(0,237 o xH e.wzlu_ o108 o.i_ 0,895 0885 0,874

s | 1,571)0,63sl0, 55600, i | :o.ao, 0,137 e.a\a_ 0.7 0,777 0,768
et 0,42300. 2370 . 1 .

6 | 1,833/0,67200, ps_o —0,119] 0,152 o.us; 0,661 0,642 0,632

°

7 | 2,0040,666/0,672 rs_..“ 230,237)0 B 1~0,151) 0,149 | 0,361 0,510 0,488 0,478
8 | 2,356/0,625/0,606/0,67210,638 .ms_e 423/0,237/0 | oy —0,161 o._8| 0,216/ 0,345 0,322 0,313
9. | 2.6180,557/0,62500,666/0.6720,63800,556/0,4230, ~ |0.153| 0,096 | 0,088 0,181 0,181 0,147
10 | 2,880(0,4720,557/0,62500,6660,6720, 6380, Ega 23700 —0.138] 0,053 | 0,000 o.jlc.aa_ —0,013
1 | 3,14200,37500.47200, 55710, 6250, 6660, 67200, 638 ao_o 4

| ,2371 0 |—0,132| 0,006 lo._f_lo.:._lc._...u_ —0,158

KEY: (g) Line; (b) Column,




We shall turn to the generalized problem of a vlane stress condition and shall
assume that h=h(x) (See Fig. 5). Then for  ¢(v) we obtain the equation
VO (x) — 20742 (x) 4+ py (x) $ (x) 4 3% (x) =0,

where T4p

d
p, (X):?;;‘ (Eh) —E_h o
By transferring the term, containing $(V(x), into the right-hand side of equality

we arrive at the equation

P = E¥OOF, (9], (c—5)p, () 402(5) as,

where ;i".(,) - is the normal fundamental functions of equation (7.£).
3 T Y’ﬁ J The first approximation in this
N problem expresses the stress condition in
-Yo(2)
a plate of constant, thickness.
\\ Yor)
1" Yy In conclusion, we shall say several
a5
i words on another method of using equations
\ .
o with constant coefficients for solving
! equation (9.1), which sometimes is annlied
+ I
. T T 3 05 5?"- : in engineering problems. In this method,

Fig. 7. The Comparison of accurate the total interval of variation of x: is
and approximate solutions
divided into sectors within limits of
which the coefficients pi(¥) are assumed constant. And here the use of the
solution in form (1.7) gives an essential advantage.
Thus, determination of ly ()] reduces to the multiplication of matrices,

corresnonding to individual sectors.

# Yo acourate value.
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CHAPTER 2

NORMAL FUNDAMENTAL FUNCTICNS OF LINSAR DIFFERZNTIAL
EQUATIONS WITH VARIABLE COZFFICIENTS

There are considered two methnds of anproximate determirati~n of normal
fundamental functions: method of successive anproximatinns and method of l:near

annroximation,

Both methods are used for solving the normal integral equation, to which a

differential equation under initial Cauchy conditions reduces.

1. GStatement of Problem

There is given a linear differential equation of n-th order with variable

coefficients

YO (x) 4P, () YD (X + . Fpa(x)y (1) = f(x). (1.1)
It is required to find the solutioi of this equation in certain interval of

variation of x(ag xgb).

The functions Pi(X)(i=L. . .. n) and f(x) are assumed limited in the

indicated interval.

The set of n(linearly independent) solutions of the homogeneous eqiation (1.1)

{(Yo(<), k=0, 1,. . ., a—1, satisfying the condition
| i=k
(1 (q) =
Y (a) 0 ivk (1.2)
G, k=0, 1,. . . n—1),

4y



13 called the normal fundamental simultare-us equat.n (1.1) witn the iritial

sect.ion X a,

If it is known that VY, (x) — i3 a particalar solution »¢ equatio: (1.
satisfying zero initial conditions
)1”(a)==0. t--0,1,. . ,n 1 (1.4)
then the snlution of the equatior i3 rrese:nted as:
y(*‘)=:§;y"‘(rn)’,(\) Vo (1), (1..4)
where ¥y (a) are values of function v(x) and ivs first n-1 derivatives in

section x - a.

We shall now prove the converse assertion. If the snlution of equation (1.,

under arbitrary initial conditioss and »f tte arbi:rary functio-. f(x) car te

presented in the form

a-1
y(x)=..‘_‘oy“’(a)z, (X) +2Z, (). (50

where Z, (x)- 0 at f(x) 0, then function 2, (x) are the n-rmal

fundamental functions (homogerenus) »f ecuation (1.1)

Zy () Yy, (1.0)

and function Z_(x) is a particular solutio-. of eqguation (1.1), satisfving zer

initial conditions

2. () =X (). (1.7)
For nroof, let us assume at first [f(v)=0 . . .. .
conditions in sucn a form:
y@a) -k
(a) = _
yial 0 11k (LE53)

Tnen, from relatinnsnin (1.%)

y(x) =yt iz,

By different.ating, we fint

yo(x) o ytila) 28 (X,



In view of the dependence of (1.8) at x = a we now obtain

1 (mp,

=10 1ss

which oroves equality (1.6).
Sunvose now the initial conditions are zero:
y)(a) =0 (/=0,. . .,n=1) (1.9)

Then from relationship (1.5) it follows

y (x) ] z‘ (x)o
but in view of dependence (1.9) equality (1.7) proves to be valid.

We note still a subsequent result. If under the above-indicated conditicns

o (x)-:?' y")(a) @, (x)+ O, (1), (1.10)
0
then |
@, (x) = Y{¥ (),
®,(x) = Y:" (x). (1.11)

2. Determination of Normal Fundamental Functions

and of a Particular Solution by the Method
of Successive Approximations

In designating
Y(x) =g (x) (2.1)
and in considering relationship, being obtained after repeated integration of the
aquality (2.1),

YO (1) e 3yt (a) 2=y

i

=
& &, Ty -1
+“ S IR TCRN P PR
—— t.:ln;o‘
(v=01,. . . ,n-—1),
‘e shall from equation (1.1)
v-~v+§::y<"(a)f.(x>+/(x). (2.2)
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where

N?--‘S:'p,(x)z. . :j-l(;(x,)dx,. . dx,

! times
. (EY Lt ]
_ (x—a)”
fo(x) = 2"“0 (i—n+b)! (2.4)
i=g-A
At xX—>a equation (2.2) reverts to an identity by virtue of equality (1.1).

#
Equation (2.2) represents ths normal integral equation .

3
Gursa established it in another form, the solution of equation (2.2) can be

nresented as:

a-1
e(x)= 3 y*)(a) ®,(x) + @, (x). (2.5)
a-0 <o
In this equality .
() =fa+Nfi+N'fot+ . . . "EN'IA' (2.6)
where N°fa— signifies s times the reneated application of operator N, where
(N°Sfa=/s)-
Correspondingly
Ou(x)=f+NF+Nf+ . . . = 3 NYL. (2.7)
=0 N

The series (2.6) and (2.7) converge uniformly and absolutely.

By virtue of equalities (1.11), formulas (2.6) and (2.7) solve the posed
problem.

For a determination of function Y, () and its derivatives one should

use equality

*Theory of normal integral equations is consicered in Chanter 3.
##5, Gursa, Course of Mathematical Analysis, Vol. 3, 5tate Theoret. Technical
Publ. House. Moscow-leningrad, 1934
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'}"0 (x) =

I . "]"" O, (Xa-i)dXeci. . .dx,  (Ii>H)
a- o
: Sa=b=1
1 <+ ! s e e ! 0, (x.-.)dx.-. ol ol © d.\'.
- a-i Uimes (i=&)

.("_"!2._.1.4.5. .. S Q,(xa-1)dXn-i . . . dx;
. (i<k)

(i=0,1,. . ..n—1).

(2.8)

Equalities (2.8) make it possible to determine all the elements of ¢ normal

fundamental matrix of equation (1.1).

Now we present an example. The equation of stability of rod of constant

section on two end knucklp bearings has the form
y®(x) +a’y (x)=0.
The initial section a = 0;
YO (x) =0 (2)
From equalities (2.3) and (2.4) we obtain
Ny = —‘i‘,‘p,' (x)illj-lp (x)dx,. . .dx,=
- Ttimes

=—ad [ {5 (x;) dxy i,
00

3
=3

G ]
f:(x)-—zp,(x)%:—l=—z'x.
=]

Equation (2.2) will be such
% (x) == —at] {'s (x,) dxydx, —y (0) a'— y('(0) a%x.

Vo

According to equality (2.6)

H¥

(2.9)



Oy(x) =YP(x)=—at4 25 2y o

PTIY
alx® | adxt
=_ﬂ(L_2f+¥T"')'
—— (2.10)
O, (x)=VY|)(x) = —a'x+ 'si*—‘g—!"i' =
alx?  alxt
m—ae—SE 455 L)
For equation (2.9) the accurate solution is
Yo(x)=cosxx, VY,(x)= L sinax
a
and furthermors,
Y (x) = —a’cosax, Y{¥(x)= —asinanx. (2:11)

By comparing formulas (2.11) and (2.10), we readily note that in given casc
each term of the series (2.6) represents a corresponding term of the expansion of
accurate functions into a power series.

We shall make several remarks of a nractical nature.

The magnitudes of N’fr» should be determined by using approximate methods ~f
calculating the integrals of which the simnlest is trapezoidal rule.

In calculating the iterated integrals with a variable upper limit, an essential
decrease in computing work is obtained by subdividing the interval into sectors of
equal length and use of the "Ring rule" (Table 2).

Into the column are entered three numbers, being encompassed tv the arrow; for
ohbtaining the true magnitude of integral the values in the column must be multinlied

1 " )
by (—— A). where 3 -is the length of sector, n-is the number of integration

2
onerations.
For determining N'fe(s 1,2 3,.) the integral oneration N is completed or
function NS the values of which already are in corresnonding column of

the calculating table (Nofx=1s).

“Yq



Table 2. Diagram of integration on basis of the Ring

e S e

rule
z /(z) Zl{:,)dt, j f;;.zjd:,lz. i f [;'(s,)dz,d:; dz,
'Y a
el 74 | (38)° (13)°

Zyma !,/--\ 0/4-\ 0 /-\ 0
s | XOXOX O
N AN Pl P

ROX 0O O
z ,J\’D\’ D\v G

KEY: (a) factor.

3. Discontinuous Solutions

Llet us assume that in the solution of equation (1.1), there are given, in
addition to the initial conditions, discontinuities of first order of function y(x)
and its n--1 first derivatives in the sections *=a; (j=l...m).  part of given
discontinuities can have zero values.

We shall designate

Yo (a;+0) —yt(a,—0) = &}

(\.-o.l.. . ..n—l.) (3.1)
Jj=12,. . ..m I

The initial values slso may be considered as the given discontinuities after

assumi
" y(a)=23{"

Yy (a)= A,

(3.2)
Y- (a)m af-0,

We shall intrnduce a single discontinuous function S(x,c), determinate by the

equality

S0



0 x<L¢

S(x, €)=
UK X (3.3)
If -f (X) is the arbitrary integrand, then
§$(w)f (5) dx,= S(x0) [/ (1) i, (3.4)
and furthermore
“'. j_S(x..c)f(x.)dr.. . dxy=
T tinss
-S(x.c)‘jfl. . .':j‘lj(x.)dx.. 3 i, (3.5)
— times
In particular, at f(")“‘1 e
jj jS(x.,c)dx.. . .dx;=S(x,¢) ‘—‘:Ti (3.6)

If ¢(x)— is an arbitrary differe..tiable funct,ion, then

LIS () =S(x0) 2 (x). (3.7)
For a discontinuous function we shall have
y(x)=’§A§°’S(X-°/)+;fy(”(x,)dx, (3.8)
and further
Y= BaPS(x,a) + [y (x) d, (3.9)

By introducing (3.9) into equality (3.<) and by using dependence of (3.4), we

obtain

- m
Y(x)= 3805 (x,a,)+ ¥ sNS (xa)(x—a;) +
1~ 1=0

1 (3.10)
+ .I g Y (xy)dx,dx,.
Successively by anplying this metnod we shall find
A-1 m
L}
y(x)-E 2 A;.)S(_(’a,) !i;';‘l/) |
k=0 /=0
P 1e-1 (3.11)
+Sj . Sy(")(x.)dr,,. N
s t.ims

5/



In differentiating equality (3.11), we establish
=l W

y(.)(‘)_z 2 A’NS(.!,G,) S-"T;—'-_ﬂ}):-:—:-l-

v b

T N GO R P Y (3-22)
A=y [ ]

(v-O,l. N (Sl l)‘
In designating yi®) (x) =g (x)
and by introducing equality (3.12) into equation (1.1),ws shall obtain

"”"f,g:f: 8V S (x) + £ (), (3.13)
where N® is given by equality (2.3), and

Sy== X Stxe)p() o) (3.14)

Equation (3.13) is a normal integral equation, equivalent to the differential
equation (1.1) together with initial conditions and given discontinuities of the
function itself and its n--1 first derivatives in the sections x=a, (j=1,..,m).

If the indicated discontinuities are absent, then equation (3.13) and (2.2)
agree by virtue of equalities (3.2).

The solution of equation (3.13) will be such:

v(x)= 3 3 a0, (x) + 9, (), (3.15)

J=0hk=0
where the function @,,(x) are determined by the equality
O (x)=foy+ Nfy+N Sy + . . .=§_;0N'/,,; (3.16)
and the function @®.(x) is given by the previous formula (2.7).

It is nossible to establish that
o, (x) = Y”) (x)S(x, a/)

(o Rar el

(3.17)

where VY, () —is the k-th normal fundamental function of the homogeneous equation
(1.1) with the initial section v=a,

For an equation with constant coefficients
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Yy(x)=Y,(x—a). (3.18)

Normal fundamental functions Y, (v) with an initial section x = a can be
designated now Y,,(x) (k=0, . . Con—1).
All other functions T, (x) can be represented, as linear combinations of

the functions Y, (x):

Y,j (x)-:g‘.oq., Va(x), (3.19)

where the constant coefficients qx; are determined from n equations n

i=k,

1
Yy (@)= {o sk,

The exnediency of the method of determining Y, (%) at > /by means
of the series (3.16) or the equality (3.19) / will be determined by neculiarities .;
the nroblem

Solution of equation (1.1) with given discontinuities of function y(x) and its

n-1 first derivatives in m sections «X=4a; has form

yx)=% .EIS(.r.a,)A}”Y,, (x) + Y, (). (3.20)

J=0k=0

#
L. Application of the Linear Approximation Method .

We discuss now another method of determining normal fundamental functions,
based also on the solution of equation (2.2).

For determining ¢, (x)=Y{" (¥) there is solved the equation

(4.1)
e=Nz+/a

#0ther methods of linear approximation will ve considered in Chanter 3.
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where the solution of equation ¢ (v)agrees with the function  ®4(x). (In determining
8 narticular solution, satiefying sero initial conditions, we proceed from the
equation 9=Ny+/f)

We shall divide interval of variation of x into a number of small sectors and
will designate the boundary sections G=xpx;, . . ., X, . . .,x, =), Within
limits each sector we shall assume the function ¢(x)as linear.

Por first section (x, <x<x;)
9 (X)) =9y + by (< — x,),

where
B i

X=Xy ’

In introducing values of 9(x) into equality (4.1), we shall obtain at vs=y,

a . 8
(51— xg)' (5, =20t
'x""’?ozﬂu ) "‘kozhx A= ) +/ns
(2] lo=}

[ @(+1)!
or, by introducing the value &,

" 1

[ ]
- -— Pn__ S Y|

: i o %o E(H-l)!‘("‘ %) +In - (4.2)

+ D, pn =0l =

oy @i 1)
Here, and henceforth the following abbreviated designations are used:
(x) =9, Pi(x)=py
‘ h (x/)-f 8
The squation (polygonal) of the function o(x). valid within the limits

X, < X< X, can be exoressed in the following manner:

2 () =9+ T [S(x. 5)k (x—x) =
)0

—S(x.xm)k;(x—xw)l. (4.3)

* -'I+I -9

where z %} ’
M

and the single discontinuous functions are determined by the equality (3.3).

In introducing values of ¢9(X) from equality (4.3) in equation (4.1), we shall
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obtain at xesx,
=

“-— zv,a.;+f..}
v =0

(v=12,. . . ), (4.4)
where .
@yy o= —4?-'11,"3‘ (v' /). (h-S)
In the latter equality
(r=xp) H = (=)'
O R

) Ml et 7%) M B

- X)L —X) ] (4.6)

(1</<v—1, 1L<igCn).

For J'-oud-‘ = we shall have other formulas:
—x)H = (x, = x)*'] (4.7)

8, (+0)= i l)'[(H' 1)(x]— xo)! — (%, )x‘-‘('. 1) ].
Bi (v )'ﬁ;m,( —Xu-1)h (4.3)

Let us note that coefficients a,, remain identical during determination of

all fundamental functions and of the particular solution.
Of prime nractical interest is the subdivision of interval into equal sectors.

Here
2t e (4.9)

where 4 is the length of a section.

Equalities (4.6), (4.7), and (4.8) now will acquire the form
. i+ - iL|+ Y o— '_l)i+ll
(=74 ) =20="" 40— (4.10)

B (v))=
‘ (l“)' . (1<j<—1, 1<ign),
AL —vH 4 =1 411
B (0) =27 l),l (A +—v+ (=D, { )
l
B e =gy (4.12)

The latter formulas are cor.ve:iiently wresem,ed as

Bi(v.))= _Tl( J),

(i+1)!



where the coefficients 1, (% /) remain one and the same for any (linear)
differential equations.

We now present, as an example, these coefficients for an equation of fourth
order and for subdivision of the interval into ten sectors (Table 3). The matrix
of coefficients ,(v./) is triangular. All elements of the main diagonal are
separated by a heavy line, equal to unity.

Slements, standing in secondary diagonals, with the exception of those belonging
to the first colum:, are identical; therefore, calculation will subject only the
elements of first two columns. The tables remain valid also in the subdivisicn into
a smaller number of sectors.

Below there is presented a diagram of the calculation (Table 4). The first
nart of the table contains the values 3, in which the coefficiernts a., are
differentiated by a heavy line. The values fr» are known. At =0 9=/
Furthermore the magnitude ¥e¢ is multiplied b’ elements of column O in the tab.ie 3/
and is entered into the column O of table a,,g,

For obtaining % there are summarized all the terms, standing in the line ™
and they are divided by the magnitude l-- %».  After obtaining % column v is
filled in the table a,;% et cetera.

The values Y{’(x) (i=0,1,. . . ,n—1) are determined from relationships (2.8).
Since here the integral operations are comnleted. then the accuracy of calculation
increases.

In the considered methods of approximate integration of diffsrential equations
there exists an effective method of verification.

The approximate value ¢(x) i3 introduced into the integral of equat.on (2.2)
and there is determined the difference between the left and right sides which
~onstitutes the error of the solution e(x).

B inteprating e(x) in accordance with equelities (2.8), we find error in

“unction Ye(x) and its derivatives. From nhysical considerations there is
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Table 3.

Table of coefficients y (v,))

(for brevity the !

columns nave n>t beer erxtended).
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Table 4.

Diagram of calculation by the linear appruximation method.
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established the admissibility of any one error.
errors/
We note that a majority of engineering nroblems of an order of 2 to 57
are entirely admissible, since they corresnond to the accuracy of the given iritial

magnitudes.

5. Method of Moving Origin

The 2ffectiveness of nrevinusly »nresentei methods decreases with an increase i-
the lenfth of interval of x variatior, in the elongation of which the solutinn is
soirht.

This circumstance is neculiar ¢o almost all methnds of anproximate integratio
of differential equations.

In using the method of successive annroximations the convergence f r larre x
values deteriorates.

Thus, for examnle, in equalities (2.10) there is obtained an exnansin. by
deg- :es of x, which converges at an:- x values, but a small number of aonroximations
gives good a:curacy only at ax< V2.

For the method of linear annroximatinn the accuracy increases with a decrease
in the length of sector of internolatinn, btut an increase in the number of secti-ns
results in a large increase of comnuting work, the indicated reasons make exnedier:
+he annlication of a snecial methnd of caiculatior, to the discussion ~f which we
now turn.

we shall consider at first the method nf successive anrroximations,

Sunnose, for examnle, there is determined the k-th normal {undamental furctior,,
i.e., equation (4.1) is solved.

=Nz 4/,
Furt)ermore from the calculatio: it 15 ascerte.ned tnat with three to four
anproximations the values ® fr X<@1 aprec wi*h the required accuracy. Then,

by means of formulas (2.8) all y™ (a) (k=0,..n 1) are found. Now it is



pnssible to transfer the initial section into x = 8, and to make the calculation

according to the equation

p=No+ ' Ty (a) £, (%), (5.1)

vhere
a-1

Np=— 3 p,(x)i: i .'_'f,(x,)dx,. . . dx,,
[]

N == B pi (=

thus equality (2.2) is valid at an arbitrary value a.

Briefly written, equation (5.1) has the form
e=N9+ /i

where

Ju= .4_“-’}'(" (0:1) /4 (x)

is a known function. The subsequent stage of the calculation repeats the nrecedin,.
For determining the particular solution ®,(x) there is solved the equation
t=Ne+/.

in second section

v=No+ T (@) /o (%) +/(x).

2=0
there Ny¢ and g (x) are the same 1s in equality (5.1).
we now establish an evaluation making it nossible to determine a, nrior to
ompletion of calculation. The matter reduces to an evaluation of terms irn the
.aries (2.6) or (2.7).
We shall give a very 'rigid" evaluation, which will assure the condition of

anid convergence in the nrocess of successive anproximetions.

Sunpose
- /s (%),
= L/}x)L (5.2)

P, = max |p, (x)|.
a<s<d

~



Then

-y

|~/.!<2P§ jv.(x,ndx‘dx.v\“ i o
=l 1=t 5.3

l

where ‘.-01—4.

L]

LS EP ... l“'w/,:dx,. dx <
[ , 2
|
A(EPI 'l';‘> (5.4)
and in general

: SPRUAY
lN/l'<A<2 P, 7’—> )

Under the condition

l‘
‘Pa"%‘<‘ (5:5)

lo=)
series (2.6) and (2.7) will be ranidly convergent which can be established by
comparing an evaluation made more strictly.

From the latter it follows, as already was indica‘ed,that the series (2.6) ari
(2.7) are absolutely and uniformly corvergent for the finite values A and P, ,
which one is readily convinced after nresentis N in the canonical form of a
Volterra operator.

“e now nresent some examples, re.ating to equation (2.9). For determining

@, (x) we solve the equation
$(x)=-a'||%(x)dv,dx,- 2%,
00
we srall have
A-a, P 2%

Evaluations of (5.3) and (>.4) give

INfo (5.0)

|
P S S P

N,y - 2



condition of convergence (5.5)

i 5
7 <l sh<V2 (5.7)
The more accurate evaluation
]
INJY < a ; NS <l _:"‘ (5.8)

established convergence of nrocess of successive apnroximations in an arbitrary,
but finite interval of variation of x.

At &=/ | real value [N is 6 times less than the evaluation (5.6).

Condition (5.7) assures a ranid convergence nf the nrocess of successive
annroximations in the interval a<x<|,,

However, in nractice, an accurate evaluation of the magnitude a (1imits of
ranid convergence), is not required since it is ascertained in the orocess of
calculation with an arbitrary value a); it may be found only that same of calculaticns
at larpge x values, will appear to be superfluous.

This is virtually established after the first two approximations.

We note that selection of magnitude a; and "limiting" number of utilized
anoroximations is determined by peculiarities of the operator No Obviously, the
more simple the structure of the onmerator is the greater number of anproximations
can be anplied and the rarer can the transfer of origin be used.

Method of moving origin withr t any changes is extended to the method of linear

apnroximation, where the use of more than ten sectors becomes unwieldy.

6. Quasinormul Fundamental Functions

The differential equation of the tyne

' " » 6.1
i.’;{p,(x) - .ﬁ;[p.(x);‘f.,y(x)]}—q(x)y(x)nf(x, (-1

we shall call an inhomogeneous binomial equation; correspondingly at f(x) = O, it is
homogeneous. To equations of this tyne belong a large number of equations, en-

countered in engineering problems.
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We shall assume that

pi(x)7 0
At I<i<) acx<h,
The sum Vot wt..+v,=n determines order of equation (6.1).
We call the magnitude
il Clo)  yfl=ym (6.2)
dx" {P:('t) Coee d‘.,[pl(-‘) d.\"oy(x)]' yiml(x)

a quasiderivative of the function of nrder m, whe: =
m='.* ‘[-* ...-* A '}

The designation of a quasiderivative is sunplised by the superscrint in bracre'c.

In writing out equation (6.1) in the form

d's

a” a*
Py {P_:(X) . -;x.—,[p.(x) ,,,J(-‘)“=‘1(-"U’(-‘)+/(-‘)
and integrating both sides of equality Louimes (=, - . . +v) with tte Limi+-
from a to x, we obtain
a-1
y=Ny+.2 Yy (@)F, (x) + F (), (5.3)
=0
where xx, ¥ S x $v,=1
Yo e Tratn-
N-S... = e -
Y _..f J e, ) j PYTI
v Cﬁﬂd
'l—vj—l Ta-1
! C £ g(x)y(x)dx, . . .dy, (6.4)
- tImes
(x-—a)’ .
Fux)=-"" """ (6.5)
I“ By, — 1 )
F(x)=\. . . - S
() é 5 5 Pi(x,, ) (6.6)
Tgev,~1 g1
! Co _‘[ S(x)dx, . . .dx,.

Quasinormal fundamental functions are determired ty the series

Y, (x) =F,+ NF,+ N'F, + . . .
(k=01,. . ..n—1). (6.7)

C’;J



These functions satisfy the equality

ni@=| =*

0 ink. (6.8)

The narticular solution of equation (6.1), satisfying zero initial conditions,

is expressed by the series

Yo(x) =F+NF+N'F 4+ . . . (6.9)

As an examnle we shall consider equation of flexure of a beam of variable

section on elastic foundation:

3[5/(x)£{]+k(x)y(x)=-f(x). (6.10)

Here ¥y(X)is the sag of axis of beam;
lilzx)is the strengtn of beam to flexure bend;
k(x)is the coefficient of elasticity of foundation;
s (x)is the distributed load oer unit of length of beanm.

From equation (6.3) we shall have

Y (x) == —55 u(lx') ka (x)y(x)dx,dx,dx, dx, +

+ 3 y0) Fy(x) + F (x), 611,

Y}
where

[ 4

A= ra =l e,
0 00

Quasiderivatives have following nhysical meaning:

YoOIx) =y () y!(x) =3 (x);

Y =y = MO i) = (£ T8 =Q ),

where M(x) and Q(x) are the bending moment and transverse force in section x.

The solution of equation (6.1.) is written out as:

)

y(x)=..‘3°y"'(0))’. (x) + Yo (x). (6.12)
where the functions Y,(x) and Y,(x) are exnressed by the converging series
(6.7) and (€.9).

Equation (6.11) may also be solved by the method of linear anproximation.
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As previously, in a number of cases it is exnedient LL use the method of the
mobile origin section.
Integral equation (6.3) may be apnlicable for the solution of nonlinear

equations of the form

f;—:l— {P/ (x) f;ll’x (%) d‘:: y (-‘)J} - g (v y)=f(x). (6.13)

To an equation of this tvne, belongs the well-known equation of M. V.

Ostrogradskiy
dy
‘7+ay+ﬁy’=(), (6.14)

which is a subject of analysis in works of a numwer of outstanding mathematicians.
Equation (6.3) remains in force, if only iun equality (6.4) we renlace
q(x)y(¥) by ?(xy).
We note ‘hat the anpnlication of method of successive approximations together
with method of moving origin gave a solution of equation (6.14), entirely

satisfactory for engineering applications.



EHAPTER 3

BOUNDARY AND NORMAL INTZGRAL EQUATIONS

Modified Fredhoim and Volterra integral equations, which are called boundary
and normal integral equations are considered.

Oripin of these terms will be clear from the discussion later on.

It is oossible to show tlat the boundary integral operator reduces to a
Fredholm operator, i.e., it is expressed in form

Ky= a)" G(x, s)y(s)ds,
and normal onerator is equivalent to the Vnlterra ooerator, but the opresentation
of considered integral equations in form of classical integral equations frequently
is difficult, and the nrincinal--completely unnecessary from the noint of view of
nractical use.

It is necessary alsc to consider that the origination of Fredholm or Volterra
equations frequently dense is foud to be a very comnlicated matter, whereas
boundary and normal integral equations naturally ersue from differential equations.

For an illustration of statemert above it suffices to turn to the nroblem about
stability of a rod, for which construction of Fredholm equation requires a number
of artificial reasonings and comnutations. It becomes intelliyible, why the
classical Fredholm and Volterra integral equations which nrcoved to be a very
effective annaratus for a general and qualitative irvestiga‘inn, were not widely

used in solving engineering nroblems.
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Boundary integral equations were used also earlier for solution of theoretica.
and applied questions.

Usually these equations ensued as the rasult of annlication of method of
successive approximations during the solution of differential equations. However,
with such an anproach there was lost the generalily, neculiar to the anparatus of

integral equations.

As an examnle, it is possible to noint tu the meth.d of successive apnroximatinms

in nroblems of stability (Vianello method), which is a combination of narticular
methods including, graphical-analytic operations.

We shall present another example.

For calculating a beam on an elastic foundation A. N. Krylov used pnrocess
successive anproximations, which can be renresented as the solution of a boundary

integral equation
¥=2Ky+f

by the method of simple iteration. Parameter of equation A=-—I.

It is easy to establish that the homogeneous equation y=\Ky

corresnonds to the problem on the vibration of a bram with a certain distributed
"masses"” and has all positive eigenvalue values M. dr. | The process of simple
iteration is convergent at f;}l<l.

/. N. £rylov detected the divergence of the nrocess only by a direct analysis

of the obtained series. For the case |»{<IM! irn the work "On Zalculating Beams,

Lying on an Elastic Foundation' the nrocess of successive avnproximations, is proposec:

it did not give, however, satisfactory results,

Meanwhile, the use of theory of integral equations makes it possible to
construct effective convergent nrocesses, to establish a comprehensive generality
between nroblems on strength, vibration and ctatility ol rods.

Works of the cutstanding scientist A. N. Krylov have promoted development of

method of boundary integral equations.



In article by P. F. Papkovich*, which continues the worr of A. N. Krylov**,
there is indicated the nrocess of determining the eigenfuncticns and eigenvalues
now widely used, somewhat earlier a similar methnd was used ts V. P. Vetchinkin

The method of boundary integral equations in the works of E. P. Grossman, D. Yu.
Panov, P. M. Reese, and 5. A. Tumarkin, is further developed.

It is necessary to note the works of Sh. w=. Mikeladze, in which there are widely
used the Volterra equation and in individual cases, a transition to normal integral
equations is observed.

A consideration of boundary and standard equatinns as a general mathematical
device for the first time was done by the Snviet scientist Yu. 7. Renman*}**

Equations, similar to the considered equations, Yu. V. Hemman called equations
in indefinite integrals'.

In the nresent chanter there are considered elemenrts nf theory of boundary
and nor.nal integral equations, there are indicated meth>ds »f solving homogerns s
and in homogeneous bnundary and normal irtegral eguatiors. Much attentinn wili
riven to s'stems of intesral equations, vhich are nresented in the form »f matrix
intepgral squations.

The ccnsidered methods can be annlied tn any engineering nroblems, which redice
to ordinary differential equations or their systems, and also to nmartial different:al

equations, which reduce to ordinary after a senaration »f variables.

#P. F. Pankovich, Concerning the Juestion »f ipnlicatility of the P'rocess
successive Anproximations for the Flexure of beams on an £lastic Foundatior, “Annl.ed
‘‘athematics and Mechanics", Vol. 1, No. 2, 1933.

#*A. N. Krylov, On Calculating Beam3, Lying on arn klastic Foundation, Academy o
sciences of U53R, Moscow, 1931.

ey, P, Vetchinkin, Theory of Jscrew Propellers, Mosc w, Zhukovskiy, V. VIA Pubi.
ouse, 1926.
#HeHtYu, V. Repman, On Determining Critical Forces by :fquations of Stability,
ransactions of lLaboratory of Engineering Mecharnics, Kngineering Putl. Hnouse, Moscow,

942,



1. Classification of Eaquations

Equations of the form .
y=iKy+ ¥ fliy+/. (1.1)
where y is an unknown function x; Ky is a linear integral operator; Liy is a
linear functional; fi and f are the functions x (in the interval a<x<b); A
is a parameter of the equation, we shall call on one-parameter integral equation.
Here and henceforth there are considered only real values of th2 functions and of
the independent variable.

In a general case the operator Ky can be presented in the form of a table

Ky =qu, j Qny (X)) dx, + g, f Quiz _f Qa1sY (X3) dxgdx, +

- +Pon j Pmy (%) dx,+py, j P I Py (*a)dxydx, + -

c o« +qm I%uy (x)) dx, + g4, j G122 j Gaay (V1) dxydx, + .

acn

- +Pe 'TPmy (x1) dx, +Po~t j Pr2 _f Py (%) dxydx, . .

O

(1.2)

In this equality §re and P are given functions of x, @ue and b, are
constant numbers. The subscript "r" is connected with place of function or para-
meter in the integral expressions; the subscript "s" indicates the line in tabular
writing (1.2): the subscript "k" is equal to the number of column. After the line,
containing the function g, comes the analogous line (with the same number), con-

taining function p.

In a brief form, first form of presentation of integral operator [—equality

(1.2)_7 will-be: -, . Ayt
Ky=3 z.(q... S Qua- - < P-rsr | Qay(x)dx, . . . da+

=] b==) Sx—1,5.4
[ |
+Pur [Pur- - Pt | Paay(x)dx,. . .dx). (1.3)
LYY Sh—1,5.0
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Formulas (1.2) and (1.3) exnress a boundarv integral operator. If all the

constant limits of integrations are identical

Ga=0ia=a
thei the intepral operator (1.3) we agree to call normal
"N, n, l J.t_|
Ny=3 Yduldu. - @ | Quy(uds. . dx
the/

In accordance with this we shall 1ifferentiate / boundary intepral equation

(1.4)

(equality 1.1) and normal integral equations
y=Ny+ ;of.L,y +/ (1.5)

From the nrecedins it i3 clear that the normal eqiations .re a narticular case
of the boundar,, similarl. as the integral /nlterra equatinns are a part.cular case
of Fredholm equations; ! .wever, essential peculiarities of the roormal equa::’ .ns ma-e
a senarate examination of them expediant.

Equations (1.1) and (1.5) contain linear functionals L.y, i.e., narame'ers,
denending or y. As Ly usually there are used values of the function y(x) or 1,
derivatives at certain noints (x=a,) or values in fixed sections of the intepral
expressions, entering into Ky.

The selectinn »f functionals for a boundary equation 1s not obligatory, since
thay in ¢ssence already are contained in boundary integral operator. Therefore, 2
the basic form of the boundary integral equation it is nossible to adant the
following:

y=AKy+/[. (1.0)
30lution of the equation satisfies all boundary conditions of the nproblem.

In rarer cases, the boundary integral equations are used in general form (1.1).
For normal integral equatinn, the general form is giver by the equality (1.5).

let us nresent an examnle.

The differential equation for the stability of rod of variable section,

supported at ends on hinges, has the form (Fig. 8).

oy 5 x) =0,
dx‘(x)+ EJ(x) y (9 (1.7)
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where y(x) is the sag of axis of rod;
EJ(x)--strength of section of rod to
flexure.

From equation (1.7) we obtain

dy = J’('l) 0
e ¥ PSu()dH' -

By repeating the operation of integration,

Fig. 8. Stability of rod. we find

y(x)=-PSb[ EJ“” dx dx,+x ~ (0). (1.8)

The obtained equation is a normal integral equation for the stability of the rod.
If one were to determine -%i«n from a boundary condition Y()=0. then,

we arrive at the boundary integral equation
15 5 x5
e=p(3 {2 trsan = 3 -asan). o
Operator Ky, entering into equation (1.1), is linear, i.e., bounded operator,
possessing oroperty of additivity:
K(yi+ys) =Ky +Kys, (1.10)
where Y and y, are arbitrary integrands.
Boundedness (and, consequently, the continuity) of the operator ensues from the
fact that all the functions @ri and  Prax in equality (1.2) are assumed to

be bounded.

The linear operator is also homogeneous:
K(py) =uKy,
where u is an arbitrary parameter.

Also the functionals, entering into equation (1.1) also possess analogous
properties.

A boundary or normal integral equation we call homogeneous, if it admits a

K




trivial solution

y(x) =0. (1.11)
Thus, for example, equation (1.8) and (1.9) are homogeneous. By virtue of the
homogeneity of operators and functionals, entering into equation (1.5) and (1.6),

the latter will be homogeneous only in the case, if
[=0.

In solving homogeneous boundary, equations

y=1Ky
is determined spectrum of eigenvalues {A.} and their corresoonding eigenfunctinna
{y:}. A homogeneous normal equation of the form
y=2Ny

does not nossess any other solutions, excent an idertity equal to zero.

Ir solving inhomngenenus equations (boundary -1d normal) the narameter 1 s
given.

In a number »f cases it is convenient to use the second form of integral

onerator:

. z 5,
Ky - Y(Q,(q,y (¥)dx,+P,ip,y(1)dx,], )
y -‘(Q‘{q}( ) 1 iLp)( 1 1) (1.12)

wrere Q,. 9,. P, and p, are given furctions of x,
8, and % are constant numbers.

With identical constant limits of integration we shall have a second form =f a

normal integral operator: . i
Ny=Z 0 [a.y () dx (1.13)

As a rule, more simply theintegral equation is obtained with the first form of
onerator; this form is more converient also in solving the integral equation by
method of successive approximations. The second form has the advantag: with ‘he
use of certain other methods of solution (for examnle, methods of approaimation).

In nrac£ical problems there may be encountered svstems of integral equations,

which exnediently are presented in matrix form. Thus, a matrix boundary value

integral equation has the form
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1= KI[y]+(/),

(1.14)
where the matrices-columns of the unknown and given functions
B2y | i)
Vs f
= | =] | A0
__yn__ _ln_
and boundary value operator
- K . K, W
K’l- . -K-‘. y'
Kllyl=r] .. . ... .. (1.16)

......

Finally, the matrix integral equations of the following structure are of

3#
interest :
y K°° .KOv .y /0
o KK YOy {1 (1.17)
y LKw - K > S,

=\ KO3+ ).
or in short form (y1=2[K"](¥]

Here matrix-column /y_/ will be formed by function y(x) and its derivatives uo to
order v inclusively.

Equations of the form (1.17) are encountered, for example, during calculation
of shafts for the critical speed with a calculation of the gyroscopic effect of the

distributed nasses.

*Equations of this form may be called integro-differential. However, their
distinction from integral equations is immaterial.




2. Formation of Integral Equations

from Differential Equations.

Suppose we have a linear differential equation of n-th order with variable
coefficients, given in the closed interval a<i<b:
YL +py () y -1 (x) + . . . 4p, (x) YO (x) = [ () (2.1)

with linear boundary value conditions of general form

.3—30' (3047 (a) + By (0) = 1, (ec2)

(k=0,1,. . . ,n-1).
if

(v&=0,1,. . .,n-1),

then conditions (2.2) are Cauchy conditions (at x = a there is given the value of the
function and its n-1 first derivatives).
As the fundamental variable in composing the integral equation we shall take
Y (x) =9 (x).
In considering equalities
J’"'”(X)-}""“”(G)+§?(x,) dx, et cetera (2.3)
-

we obtain from equation (2.1)

= ~?+.i|y(l) (a)f. (() +/(X)' (2.L)
=m0
where
N?"Ef’;(‘)! o sl :f-'v (x)dx,. . .dx, o
fo(x) = — 2 py () =2
» e i (i-n+h) (2.6)

Fquation (2.4) is a normal integral equation.

In another form (viz., in the form a Volterra equat.ion), it was encountered
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* . . .
earlier - Equivalence of normal integral equation and Volterra equation in a given

case is readily established by means of a Dirichlet identity.

& 41 x
it
” B j'?(x,)dx,.. . .dx,_j-‘H!—qp(s)ds.
[
- e a

Owing to the linearity of operator N9 the solution of equation (2.4) in a

general case can be presented in following form:

a-1
7="5 Y @04 () + . (3. (2.7)
where the function ®x(*)"  is the solution of equation
¢=No+f,
(k=0,1,.., n—1), (2.8)

and function ®.+(X) satisfies the equation

e=No+/. (2.9)
Suopose {Y,(x)} (k==0JV"?n-—l) is the sequence of normal fundamental functions of
equations (2.1) and Ye(¥) is the particular solution of this equation at zero
initial conditions. It is possible to show the validity of the equalities

o, (x)=Y{ (x),

®, (x)= Y™ (x). (2.10)

Thus, the solution of the nocrmal integral equation results in a determination of
normal fundamentai functions of the corresponding linear differential equation.
If the initial Cauchy conditions are given, the function on right side of
equation (2.4) is known, then,the solution of the normal integral equation (2.4)
determines the solution of differential equation (2.1), satisfying the indicated
conditions. If there are given boundary conditions of a general form [_condition

(2.2)_/, then by using equality

#E,. Gursa, Course of Mathematical Analysis, Vol. 1II, Moscow-Leningrad. State
Theor Tech Publ. House, 1934; Sh. E. Mikeladze, Certain Problems of Structural
Mechanics, Moscow, State Engineer.Publ. House, 1948.
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gov=1

(6 — a)'

yor () = Ey"*"(a) n ot
=0
[ ¥ 0 Igev=1]
+§f . [ 9p(Xams)dXe—.. . .dx
e ¢ (v=01, . . ..n=—1),

we shall obtain on the basis of condition (2.2) the system of n-equations relative
to the n-unknown Y'"(a).

In solving this system, we find

> .’J|
Yy (@)= + e o (x)de Fen [ f7 (k) dyadx+ =
a b 1 Xy
=3 e.ff. .. 's'q»(.x,)dx,. L dx, (2.11)
p=0 eae s -
. (+=01. . .,n=1).

The coefficients €y are dotermined by coefficients, entering into boundary
conditions (2.2).

Bv introducing, now the relationship (2.8) into equation (2.4), we obtain

a-1 a L4 £y
y=Ne+ I S fien. . . [ elx)dxy. . dq+F (2:19)
-0 p=- l__ L
¢ times
where o

F=/(x)+ PYAOIN

Squation (2.12) is a toundary integral equation

p=Ko +F, (2.13)
where operator Ko is expressed in first form [equality (1.2)_7. The boundary
integral equation (2.13) is equivalent to the differential equation (2.1) under
boundary conditions of a general form.

Wwe note also that the boundary integral operator is expressed in as the sum of
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normal integral operator and linear series of functionals and given functions.
This result can also be established directly from equality (1.2).
In practical problems of boundary conditions frequently they have a more simple

structure. Suppose, for example, the value y(  of the problem at X=G«

y® (@) =1 , (2.14)
(k=0,1,. . .,na—1),
the sections @ usually coincide with ends of interval.
Boundary conditions of the form (2.14) we call simple. For obtaining a
boundary integral equation it is sufficient in equalities (2.3) to select each time
a lower limit of integration in such a way that condition (2.14), is satisfied.

For example:

Yo () =qe-1+ | 2 (n)dxy
Gp—1
y(l-?) (X) =Ya-2+Tn-1 (x—a.—z) -{-d,.j_ga“;_ l? (X,) dx’dxl'

(2.15)

If conditions (2.14) for certain derivatives are not given, for example, for
y™, then the integration is made by assuming @ . =a, and initial value y‘"(8)
is determined similarly to that, as was shown for a general case.
In certain cases, equation (2.1) is conveniently reduced to a matrix integral
equation (1.17).

In making the integration in the intervals from @s-1 to x, we find

y(--"(x)-“..f.,l’. (1) y*=1 () dx, — f Pa(xy) y* -0 (x,) dx,—

—.‘ilh(“x)y(‘n)dxﬂ- ot | f(x)dx, (2.16)

7
/




Furthermore one should consider the dependence

y(l)(x)-jy(‘*”(x,)dx‘-{-n (¢=0,1,. . ..n=17),
(1, =y (a). ' (2.17)

The system of equations (2.16) and (2.17) can be presented in matrix form:

- - 10 K 0 0 e -
o 0 . 0 K 0 o
yn o ’ )
BULELY - (a-2) e
y(._" 0 0 0 Ku—i. a1 4
y(l—l)
- = | Ke-to Ka-ry, Koot a-1 |- -
[ To iy 0
0
+ T o ' (2.18)
Yn-? 2 0
-T.—.l j f(xl)dxl
- 1 %=1 )
where z
Koy, iy "= [ y(x))dx,
L7
(f=12. . .,n—1),
P 4
Koy, iyt = — [ Pa-i(x)y™ (x) dx,
L P
(i=0,1,. . . ,a—1).

In engineering nroblems frequently there are encountered binomial differential

equations

o {p,(x)- o [p‘(x);i_.:..[po(x)yu)]]}_.

dx"! dx"

= ¢ (x)y (x) =/ (x). (2.19)

The formation of integral equation reduces in this case to a successive
integration with proper selection of constants of the limits of integration.

Usually in practical nro)lems

7%



P (%) #0,
S=0.l. o o o .j; a<x<b;

in a converse case the coefficient in the prior derivative equation (2.12) vanishes
at a certain noint and the solution must contain a singular point.

Suppose, for example, there is given a differential equation for the vibration
of a rod

£ [EJ ) :;“;”] =phF (1) y (x). (2.20)

where y(x) is the amplitude sag of axis of rod;
BJ(x) is the strength of section to flexure;
p is the density of material of rod,
F(x) is the area of cross section,
p 1is the angular frequency of the natural oscillations.
We now consider a cantilever rod (Fig. 9), for which the boundary conditions
have the form

0- 1 . . 1_ Jy(2) == (),
YO=0. OO =0, YOO =0, LEHIWN] =0

0 p-————a— T
I ¢
Tig. 9. Oscillations of rod.

By integrating both sides of equality (2.20) from x to 1, we obtain
i
d ary
LS 2= [oF )y ) dn,
x

By repeating the operation, we obtain

[}
EJ ()22 =p? [ [ 6F (x2) y () dxydx,.
dx* )
£ &

By transposing EJ(x) to the right side of equality and by integrating twice from

0 to X, we find X x 11
y () =p H F}(Z) § [ oF (x5 () dx dxydrads,
00

Xy Xy

(2.22)

-




Equation (2.22) is widely used in engineering cmmnutations, beginring with the
works of P. F, Pankovich, E, P, Grossman and others. It is a homogeneous boundary
intepral equation.

There exist also other methods of formation integral equations from differential

equations; they are reviewed later on in connection with applications.

3. The Solution of Homogeneous Boundary Integral Equations

Let us consider the solution of the equation
y=XKy. (3.1)
Operator Ky is assumed to be symmetric, positively determined and the equatior

nossesses the real eigenvalues Ay, ha, A, and the corresnonding eigenfunction-

813 Yl. y'o y‘n'--

The sequence of the eigenfunctions will form an orthonormal system in the

interval a<x<b:
N

e = [ 31003, () (0 dx ! "

. : (3.2)
where h(x) is a given nositive function.

The indicated sequence is not, in general, comnlete, but if f(x) is an
arbitrary function with a square being integrated, then on basis of theorem of the
Gilbert--Schmiat function.

g=Kl (3.3)

is exnanded into a uniformly and absolutely converging Fourier series
gx)= X ¢y, (3.4)
(=1

where
Cy= ('} y‘) .

Sondition (3.3),in essence, denotes that the function g(x) may be an arbitrary
voundary continuous function, satisfying the boundary conditions of the onroblem.

For solution of equation (3.1) there can be used with necessary changes,

nethods of s»lving homogeneous Fredholm integral equations. The most effective in

%0



practical problems is found to be in most cases the method of successive approxi-
mations. For determining the first (minimum) eiganvalue and first eigenfunction the
calculation is made according to the scheme
y = Kya-n» (3.5)
where A; and y» are the i-th approximation for eigenvalue and eigenfunction.
The magnitude A\(n is determined from condition of the very best "proximity" of
initial and subsequent approximation.

In equating norms of the functions

Nyoll=llya-nl (3.6)
we obtain from equality (3.5)
_Mre-ull
Ao 1Kyl (3.7)

More accurate results (for a given approximation) are given with the use of a scalar

norm of function

Y L
llgll=1/ f&*hdx, ot
: l/ . (3.8)

but more simple are the calculations peculiar to determining the norm of the

function on basis of the maximum
ligil = max |gl.

(3.9)
If we present the initial approximation Yo expanded into a series according

to the eigenfunctions

-
\l

Yor= 3 €\Yum
LESD

(5.10)

then with the application of scalar norm we shall have

B b Sals) o i

TV YR TR

oo G




At i— 00 )i)— 1, where anproximations give for ) , an evaluation from above.

With the use of norm on basis of maximum we obtain

|l+—¢'~&+ . . .+&ZL+ S s
."(1)-1. G N G N )
e 2h Gy '
anky G n Ay T amay,
|,+.¢-_A_‘L+_ L4y M|
x‘”-).. a % b G N A, l""‘.l
& Vs (M )3 Ca A \3
B ot b E DR S Y LY LR
l ﬂ)’u(h +¢‘|.n(l.)+“""an
(3.12)
In these equalities, x. signifies the abscissa of section, corresnonding to
the maximum |y, X= is the same for the first approximation Y
et cetera.
If function ¥y does not vanish at one of the points  Auwe, Xmi,.... et cetera,

then 2w A with an increase of i.

In practical calculations the indicated limitation is immaterial, since the
noint Xa¢ tend to the noint, where Y has a maximum value, and the first
annroximation always can be selected in such a manner that yi(Xme)*0. This
method may be called the method of comparing ordinates. The values XA() may be
larger or smaller than '\, denending for axample, on the selection of the initial
anoroximation.

During the calculation it is convenient to assume

ym!]=1
Then by virtue of equalities (3.6) and (3.7)

A= (3.13)

WKyl

Sunpose, for example, there is determined the frequency of flexural vibrations
of a rod and equation (2.22) is used.

In selecting initial approximation in the form

x
Jor=-g




we obtain with the apvlication of rnorm on basis of maximum

2R . 1
® = T, T
L ‘ ', y %4

El(x) . ‘s pF(xy) = dxjdxydx,dxy,

oo X, x,

2

Usually o, determinate from tnis formula, differs from the accurate value by

3 4o 5%,
With the use of the method of successive approximations [equality (3.5)_7 the

eigenvalue can be found from condition of the minimum of sqguare deviation with a

"weight' h(x): R \
.=I(y(“—y“ ”)zhd\‘” _, (\A‘;;f\fr'( -1) )/(1 |))2hdx.
e

From the condition _a a5
d»m

»

we obtain j,"“,.l)k'y\i ) hdx
¢

Apy=——""""

?(K.V(.' n)thdx . (3.14)

In using equality (3.10), we find

A (€a\2 N
A |)='}. .—:(_c‘_)ﬁ} _ ( € ’ ?4 +“ i
sl R
€ Ay » ‘I) \‘n iy (3 15)
) '
Ay =)y al\n) 777 '*)(hf o i
1+(.2 2( i)& (én)’ }!,)‘ '
1 A, ! (\ W, (An g
whence it follows that Ay > Ay at i 00, be giving always an

evaluation from above.

A rapid convergence, peculiar to the above-indicated methods, is explained
also by the fact that usually in equalities (3.12) and (3.15) coefficient 1
significant larger than the remaining.

Let us turn to determining the second and highest eigenvalues.




It is possible as previously to proceei from the equation (3.1) in solving
it by the method of successive approximations, but, as is known, the process of
orthogonalization must be used both for the initial, and also for ‘e subsequent
approximation.

It is more convenient to use the transformed equation

y=AKy. (3.16)

for which first eigenvalue is equal to the second eigenvalue of equation (3.1). 1In
the theory of integral equations it appears that the equation possesses these

nronerties 3
y(x) =) j' (G (x,9) — AENO )Ix (s)y (s) ds
]

in relatinn to equation
y(x) =) j. G (x,8) h(s) y (s) ds.

In anplication to boundary value integral equations we shall have

, { y () () A (x) dx

{1 @

K'y-Ky——f; » 4 i (3.17)
fri(=)h(x)dx

However, this opsrator ensures the orthogonality for function yl only of the initial
anproximation and therefore it is not useful for practical calculations.

We shall indicate the structure of operator sz, which in solving equation
(3.16) by the msthod of successive approximations

Yiy=X,K,y.-n

always assures orthogonality of a subsequent approximation ) for the first
eipenfunction independently of the selection of initial approximation.

This operator .ias the form

[ Kyyidax (3.18)

Kly-K,V—-y, .ﬁ-———-—
Iy}ldx
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It is readily established
o >
jy(‘)yl hdx = [ Ksyi-ny, hdx=0.
L4 a

We note also that function Y1 is not assumed to be normalized.
Equation (3.16) is solved by the same methods as equation (3.1).
In determining the j-th eipenvalue (and eigenfunction) there is solved the

equation
y= LKiy'

j—1

where } Kyyihdx
K/)’zKJ’"‘ 3 /] .",.- —_—
fy?hd.t

We will now consider the solution by the method successive approximations of the

matrix equation

YI=A[K][y).
(3.19)
The eigen "functions" of this equation will be designated
Yer |
Ys.2
lyc]= .'
. (3.20)
_Vsn_ (5:'].2.3. .. ,).

They satisfy condition of orthogonality (3.2) and normalization

1 i=j.
e J=1 / g ]

[ ] a
() 1y) = f <2 Yoy (X) ¥, (%) h,(x)\/dx;: 0 i+,

Equation (3.19) is solved on basis of the scheme
[yaol=xy [K][yi v

where L - = =
i 3 KyyYi-.g
Y@i-1).2 /=1
yo-nl=| - v [Kllyo-n]= IS: Kz/y(l-l)_/
. o]
;, "
|_Yi-1).n /:xK"'y“"”" "




In determining the i-th approximation for the first eigenvalue from the condition
Nyl = {ya-ulll,

we obtain [ ”'
A Jd-1)

TR

In anplying the norm on the basis of maximum (method of comparing ordinates)

Vf(t-l),l*-’?l-n.:‘" e (I

)(4)--—’°.=_——=_—-.z==;————r_——__i.
(2KU)’(I-U/) +. .. +(2Kulyu-|)/) (3.21)
J=) J=l ey gy
or
Y e
i : (3.22)
4 .
K, y0-
vgl(lgl ly“ ”'l) K Xy
where Xu  is the value x, with which magnitude 1/2 Ny has a

maximum value.

With the application of the scalar norm

ad
l/ [ Ai-n, pyde (3.23)

Vi

Less accurate results (for a given approximation) are given by a more simple method

hiyo=

| LY 4

1t

?
lK'I‘y(I—l)oI) h' dx

of determining 1)(), based on comnaring one of the components ywl for examnle,
YU)' .
We shall have Yy e =y (KpYii-na+Kaya-na+ . o . + K Yu-1).4)
X4
Yi-1y.r

and further M —— :

T Keiyi-1yg (3.24)

)=l =iy
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where x_, is the section, in which |y .y, has a maximum value.

It is possible to show that processes of solution by formulas [(3.22) -
(3.2L)J converge to a minimum (in absolute value).

For determining the second eigenvalue, there is solved the equation

[y)l=rKlly],

(3.25)
([K) [v], InD
where (Kllyl=[K]iy] —[5]- L m l)"‘.l.'.f"v-‘—_'
.. A i‘ Yu
In these equalities » | L Vi |
l=| - | b= -
-yl- ' }’1,'_

In a developed form, the matrix equation (3.25) is equivalent to the system cf
equations

VE

—

)’x"-")‘( ng/}';—p.,Vu) ,
= )( ) Ky, — pn)’n)-

(3.26)

Coefficient B is equal to

b, m . n % ‘
\ N g N
p a——__(lkllyldyll) =£{I:| i= WY1 )yh .J dx

(
Wil i2 :!

Above-stated solution can be applied for calculating the flexure torsional

vibrations of rods and in other problems.




Let us consider, now the solution of homogeneous integral equations (1.17):

¥ (x) Ka . . Ko yp y(x)
YNX) |y | Ko - - K Yy (x)
w ) ke kLo 0-27)
or more briefly written as
Y] =2 K] (). ot

We shall call a scalar, produce of an order of v functions [ and g with a "weight"

h, the following magnitude:
[ IR}
Vo) =] % fhgn dx

In Lthe considered case, tne functions hi(x), (J=0...., v) can be also negative.

We shall assume that matrix operator of equation (3.27) is symmetric:

(IKO/), @) = (], [KI/D.

(3.29)
For elastic systems this ensues from condition of reciprocity.
If operator [Ky] is positively determinate,
(KNS, (/D> 0, (3.30)

then equation (3.27) possesses real and nositive eigenvalues.
Eigenfunctions of equation (3.27) yi and y, by virtue of conditions (3.29)

are orthogonal and normalized

&
(). [y,l)"’-=52y5"y§"h,dx- ? ::

@ res}

Equatior (3.28) is solved by the method of successive anproximations:

[ym] = (KO yu-n). (3.31)
Lat us consider first line of this equality:

‘V(')'NI)KJ".VU-U. (3.32)
where K&yu-n=Kiyi-n+Kayily+ . . . +Keyiil,,.
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By the method of comparing ordinates

y(‘)=y(l"l)l“"uu
we obtain

—__Ju-u__ (3.33)
»©= KMy PR
0 2(i-1) mi
The process thus constructed converges to the least eigenvalue in absolute value.

In determining the second eigenvalue the calculation is made by equation

(3.34)
(y]=r[&"][y],

i v — K To ([K(')_Uy]. I_V ')(')
LK) =K (] - [y] LD

In solving equation (3.34) previously indicated methods are used.

L. The Solution of Homogeneous Normal Integral Equations

The indicated equations have the form*
m
—WNy-+ 3 f.Ly. (4.1)
y_.)‘Ny {’-l:{)f‘ ly

The number m, entering into this equation, corresponds to the number (of homogeneous )
boundary conditions, which it must satisfy in the considered problem. It is necessar;
to remember that part of the boundary conditions (at x = a) is satisfied already in
constructing the operator Ny.

Suppose, for example, there is considered the problem of flexure vibrations of
a rod Zrbquation (2.20)_7 with boundary conditions (2.21). In taking a constant

limit of integration a=l, | we obtain from equality (2.20) by successive integration

t1 11
y(® -AH-E ; ('m j' f oF (x) y (x)) dox, dxydx, dx, +
x x, A 4.2
+y (D fo (x) + 3y () £, (x), fe-2)

*We recall that by our definition the equation is called homogeneous, if it
admits a trivial solution, y = 0.




where
Aeot, fo(x)=1, fi(x)mx-l (4.3)
The ‘er two conditions (2.21) already were taken into account in the formation
of equation (4.2).
Equation (4.2) is a normal integral equation.
Ly=y©0): Ly=y"(0)
The solution of equation (4.1) by virtue of the linearity of the integral

operator is presented in the form

t4®

Yy ‘—"‘ Ly®, (x),

0

(4.4)
where the func’.on @,(x) are exoressed by absolutely and uniformly converging

series

o, (x)-L+‘Nf'+lw’,'*(£-'o,° L. ..m). (4.5)

By introducing the relationshio (4.4) into m+l boundary value conditions, we
sﬁall obtain m+l equations relative to the same number of unknown parameters
Ly (1=0,.,m); by equating to zero, the determinant of the system, we
find characteristic equaiion for determining the eigenvalues.

The indicated scheme in its basic features was used by Sh. E. Mikeladze.

We shall consider a practically important case, when equation (4.1) contains
two functionals. This makes it possible to formulate also certain more general
results. For definitiveness we shall consider equation (4.2).

The boundar, value conditions at x = O (Fig. 9)

y(0) =06, y'(0)=0

results in a system of equations

y ()0 w) +y () @, (0) =0,
y (D of" (0) +y () &V (0) =0

and to the characteristic equation

®0) ¢,(0 (4.6)

o (0) {M(0) - 0.
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In determining the functions ®.(x) [equality (A.S)J will retain terms,
corresponding to the "k-th approximation'.
]
In this case ®, (0) = .‘Joa.l'. @, (0) = }.]d.).'.
<= v=0
¥ & (4.7)
M (O) — . ; .
o (0) —".“_OC.A . OM(0) =-§ob'“'

where

G=Nfy 6= Nf; d=Nfi b=2Nf. (g
We note that for determining the derivatives @.(x) special calculations are not
required, since their values already are contained in cal-ulation tables for
determining o;(x).

From equalities (4.6) and (4.7) it is evident

R [ ] » [ ]
Tak Yo — Ter Yda =0 (4.9)
] vaul) v=0 =y =0
or, by expanding into a series by degrees of ), 6 we obtain
Fa(1) =0, (4.10)
where the characteristic polynomial
2%
Fi()= 3 AseM (4.11)
L]
‘).‘.o(a.-.b, —Cn—id)) 0<n<k,

Ay = 2e—n

‘E (ab-lbn—h+l “‘ck-ldn—k+l) R+1<n<< 2k (h- 12)

In a limiting case at k-—+oo we shall have
=S A
F®= XA (4.13)
Expression (4.13) is a Fredholm series for the considered problem on eigenvalues.
The roots of the equation
F(1)=0 (4.14)
14, Ag,...,- are all real and positive which ensues from symmetry and positive

definitiveness of the corresponding boundary operator.




Let us assume, as usual, to number these roots (eigenvalues) in increasing
order. Coefficients A, with even n are positive, with odd, are negative; A,=m|

From the equality
Fo==I1(1 -1 )= XA
A=

the known relationships follow

= (4.15)

et cetera

The roots of the characteristic nolynomial (4.li) are approximate values
Ae (i=1,2..) and nossiblyv, in general, both real, and alsc conjugate comnlex.

Trere exists an imnortant relatinnship, valid for equation with an arbitrary
number of functionals; the characteristic polynamial of the k-th anproximation has
k1l first coefficients, in accuracy conforming with corresponding coefficients of
the Fredholm series.

Thus, for example, at k = 2

A=A =1 Aag=A, Ag=A, (4.16)
but A+ A, et cetera.

with the use of following degrees of onerator Ny, variations occur only in the
terms with Aa3k+1.

This circumstance is important in practical nroblems, where it is usually
required to determine several first eigenvalues, depending essentially only on
first coefficients of the Fredholm series.

For seeking eigenvalues, i.s., roots of equation (4.1l4), it is exnedient to
annly Lobac':'evski;. met.aod; by assuming a lack of multiple roots, we obtain for a

first evaluation the apnroximate equalities
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1
‘l(l)““ —_A_'
A
A= "z:“-
13(l)~—é""-
(4.17)
ensuing from relationship (4.15). For the second evaluation
—-—-—.'
M= 1/—;1;;.
A§2)_
M@= —A—;[f)-
AP
A= ~a@”
(4.18)

Coefficients A() are coefficients of the expansion
F(!')’ W)=F@) F(—"N= _\EOA("'.’)(U)..

These coefficients are determined by equality

A:2)=‘2§.o‘4“—i‘4: (—1).
For seeking the accurate value A(» .there is required the use of the approximation
of an order k = 2n. We note that equality (4.17) and (4.18) give in practical
problems sufficient accuracy for the determination of the first two vaiues.

It is possible to use in the calculation also some of the "inaccurate values"
(following directly after accurate values in the characteristic polynomials) and
then the matter reduces to seeking the first roots of the indicated polynomials.

Here, there may be used different methods, of which, in addition to the
Loba¥evskii method, we shall give attention to Newton's simple method and the

method of graphic construction of function Fi(}).




In order to judge abcut accuracy of the calculation there should be made

analogous calculations for the polynamial Fi.i(}).

It is possible to use upper and lower evaluations for the first and second

*
eigeivalues .

5. The Solution of Inhomogeneous Boundary Integral Equations

Llat us consider mathods of solving the equation

y=AKy+/, (5.1)
where L. i3 a piven narameter; [ is a given function x(a<e<b).
Hethod of 5imple Ilteration

By anplying usual nrocess of successive annroximations, we shall have

Yo=Ky +f ' .2
w U (=123 . ). (5.2)

For the n-th annraximation
Y= HIKf+ VK + MK Ko, (5.3)

where K'f is the i-th degree of the operator Kf:
Kf=K(K"'f) ) (5.4)

(i‘l, 2. 3|- .

The nrocess of a simnle iteration will be convergent, if the sequence of  y(a)

converges to an accurate solution

Hm {y} =Y.

‘- -

We shall explain adequate conditio..s for the convergence of the series

y=f+ K+ 0K 4 . . = SuKy. .
1=0 (5:5)
Let us consider norm of the integral onerator K. For & continuous oj rator
0 506
IKS 1< Clfi, $t

where

: IIKll.l-mﬂK/I. II/Iltgla‘::Ifl.

#5, A. Be:mstein; Fundamentals of the Dynamics of Structures. Civil Engineer.
Publ. House, Moscow, 1941; A. F. Smirnov, The Static and Dynamic Stability of
Structures, Railway Transport Pubi. House, Moscow, 1947.
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The minimum value of the constant C, assuring inequality (5.6), is called the norm
of the integral operator
Cn!n‘"K”-
Thus,
WK I<UKIA I (5.7)
In accordance with equality (1.2)
1K< max {1 g

J 1qu|dx, l + | gorsl

J19u:] f | qa1s| dx, dx;i-i—

LT e
T +} 25!

§ 1P| j | Paiy | dxyd x,

G an

+|p.u||'3‘|p...|dx. +|Pors

Let us give an example.

Suppose -
Kf—”f(x,) dx,dx,, 0<LxK),

f=—=.

5' j‘d «,

= L. I
W U= RS <o | 55

Then

IKf| < maxlj(x)l ——xl%;

1
max —_——X=—
1K< max | T —x|=-

In turning to a general case, we assume that

IANKll=g <1 (5.9)

i.e.

h |<|IK“ (5.10)

In accordance with this
max VK | =INK A< g I/l

Bv virtue of the latter equalities the majorant series for y converges, in which




Iyl —220
L -1 Ky (5.11)
*
This important result is & consequence of Banach's theorem established for

functional equati~ns with linear operators.

Thus, under condition (5.9) the series (5.5) converges uniformly and absolutely:
function, being expressed by the series (5.5), satisfies the integral equation (5.1),
in which one may be convinced by direct substitution.

Further we shall establish that
Itm l"K"y(O)'-’O

LEA

for an arbitrary(bounded) function y » thus, the s»oluticr does nnt deperd n.
selection of the initial anproximaticn.
In connection with this, hencefore, we shall assume usually y ,, =0 ard ther

ym=|

o now turn to a- evaluation of the error of success.ve anvroximatinrs Y&l

8a=Y—Y(n) (5.12)

where y is the accurate solution of equation (5.1).

From equality (5.3) at y = U and exnression (5.5) we obuain
..-ann/+)\n+lan+ . -lf UKI/
By virtue of (5.9) we shall have

- WA ‘
maxle]=lle )<= (..3)

It is of interest to establish also another evaluation for magnitude ¢a

We shall designate difference between two successive approximations

By(a)=Yat1)—Yia).
n the basis of equality (5.2)

Ayay = Ky + f—Viar (5.14)

~he magnitude ay,, is the error in satisfying the main integral equation.

#,. V. Kantorovich. Functional Analyvsis and Anplied Mathematics, "Advances
n Mathematical Sciences', No. 6, 1948.
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From relationships (5.12) and (5.14) we establish that error , itself
satisfies the integral equation
‘.-lel‘-i-Ay(n). (5.15)

Now, by virtue of relationship (5.11)

M8yl _Naymll
1— ki Y (5.16)

leall <
which establishes connection between difference of two successive approximations
and the error of the solution.
We consider now the practically important case, when the operator Ky has real
eigenvalues 1\ (i=1,2,..°) and their corresponding eigenfunctions y..
If error of the initial approximation is presented in the form
=5 (5.17)
and there is considered the relationship

u‘=1Kl|—h (5-18)

ensuing from equalities (5.2) and (5.12), then we obtain
.1 L.
.pgzcl(h)yl’ (5.19)

From the latter equality, there ensues a well-known result: the process of simple
iteration converges, if

A<M (5.20)
where ) smallest (in absolute value) eigenvalue of the homogeneous integral
equatior.

y=M\Ky. (5.21)
We note that in considered case (the homogeneous equation possesses infinite

spectrum of eigenvalues) the solution of equation (5.1) may be obtained by the well-

known expansion into series by eigenfunctions

J’=Z(—f"‘~'3~—y,. (5.22)
P

Ly
It

G




The use of this solution is very important for a theoretical analysis, practically
it is less effective, than the abplication of method of successive annroximations,

since a determination of at least several first eigenfunctions is required.

Method of Complex Iteration
Let us now consider the case
> (5.23)
Of preat nractical value are egiations, for which <0, tut all the eigenvalues
A are positive (flexure of blades and turbomachine disks in the field of
centrifugal forces, the flexure o beams on elastic fourdation et cetera).
Thus,

= —pKy+/f; p>0 (5.24)

y=AKyi L,>0 (i=1,2 3. ) (5.25)

Process of complex iteration was shown by Viarda \'Integral equations') i-.
connection with aroblem nn longitudinally-transverse flexure of rods. Accordin,
this method

Yirn=aym+E¢ (f— Ky (5.20)
where u and B are narameters, identical for all anproximations.

In accordance with equality (5.26) each subsequent approximation is a linear
combination of the two nreceding, obtained by the method of simple iteratio:.

Procens can be gencralized also for the case, when there is used a linear
combination of several preceding approximations.

The error of the i-th approximation

“=y—yw=f—peKy—syu-n—BU =Kyl (5.7

can be nresented in the following form:

o=as_;—Pulke_ 4+ (1—a—p)y. (5..8)

From this equality it follows that th3 necessary condition for
s,—0 -
a” (5.°9)
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will be such:

b4Pm]. (5.30)

Now we obtain
.a-ﬂz-x—ppkl,-" =112. . -.00).

In presenting the error of initial approximation in the form (5.17), we find

c.=2c, (a—-ﬂ—i—)‘y,. (5.31)

i=1

Equality (5.29) is found to be valid, if

or by taking into account the relationship (5.30)

P-ﬂ%?ﬂ=%<‘ (5.32)
(i=1,23 .. .,0).

It remains to show that there can be found such a value 8%, that all inequalities
(5.32) will be satisfied. This condition is essential, since at u<0 and |u[>A,
such a value is impossible to find.

It is possible to establish that inequality (5.32) at #>0 will be satisfied,

if

2,
+h'

0<B< )

(5.33)
where ),-is the minimum eigenvalue.

The value 8 expediently is selected with such a calculation that it
corresponds with minimum values ¢. i.e., most rapid decrease of error. The
solution of this question depends on relationships of the coefficients ¢i.. i.e., on
the character of error, but also on the magnitude ®- ., If it is assumed that the
coefficient of expansion of error by first form ¢, is considerably larger than the

remaining, then one should select

. 5
e (5.34)
Then q, = 0, also at fairly large (), »p)
u (5.35)

TS bt
9 ei-da




Viarda recommends the value "
1

by (5.36)
with which for i - 1 also for fairly large 1

B
q‘-,+21,' (5.37)

In accordance with equalities (5.26) and (5.30) the calculation is made

according to equation
Yusn=(1=p) yi, +B (f - uKy.).

(5.38)
In assumang yo)=0. we find
yu=8f
or, bv usivg (,.34), ;
YYo= ——.
14-2- (5.:9)
Ay

In solving the oroblem o: longitudinaily-tra:sverse [{lexure of rods, we siall
lave
.Vm=-[&--

1+-
Py (5.400)

where f-is the sag from effect of a transverse load; N-13 tensile force, actiny ..
the rod; Pl -- critical force accordirg to Zuler. Formula (5.40), nossessing
rreat accuracy, is used in engineering calculations. It could have been nbtained
also from equality (5.22), if it is assumed that functions f ard yl afree with an
accuracy un to factor (curve of flexure from lateral load is similar to the f.rst
form for the loss of stability).

Process of complex iteration for the equation (5.2.) is convergert at any
values p but at w - M the convergence is obtained more gradually sirce 3

is ciose to unity [See (5.35 and (5.37)_7.

Method of Comnlex Iteration With a Variable Parameter
A gradnal convergence with large ., in the nreceding method is associated
#ith the fact that narameter 8 was taxen as constant for all anrroximatiors.
rocess of comnlex iteration /equality (5.38) / can be written out in the following

‘orm:

loo



Ya+n =Yy +BAyan (5.41)

where
Ay =f—pKyi—yw- (5.42)
Magnitude Ay, is the difference between two successive approximations or error
in satisfying function Y of equation (5.24).
Process of complex iteration with variable parameter is expressed by the
equality

=y + B d ¥y
Y=Y TP (i=01,2...) (5.43)

where the parameter B, can be determined from the condition, so that the function
Y+ in the very best manner satisfies the main integral of equation (5.24).
For generality we shall return again to equation (5.1) and then
Ay =S+ Ky — Yy
From the condition of minimum of the square deviation with the "weight" h(x)

[ the function h(x) enters into the condition of orthogonality of the eigenfunctiong7 .

»
’c‘!"ﬂwnhdx. : (5.44)
where
- Ay = J + MKy e ) = Y(itin (5.45)
we obtain
de,
o (5.46)

From equalities (5.45) and (5.43) we find

Aya+ = 8y —B, (3yy—\Kayw) (5.47)

and by virtue of (5.46)
.
§8y) Byuy—AKAy;)) hdx
[

B= ;
: }(Ay‘,,—xmy(,,yux (5.48)
e

It is possible to establish that

08[
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.and therefore conditions (5.46) determines minimum of the error.

We note that in determining B¢ it is found necessary to calculate Kayu).

which immediately is used in the following approximation:
Yo =Yurn+Bit18yusn.

The magnitude Ayi+n is determined from equality (5.47). The proof of the
convergence of this method, as also of several subsequent methods is made difficult,
however, it is obvious that if orocess of the solution converges, f.hen it converges
to an accurate solution.

The latter immediately ensues from equality (5.43), since, if

Y=yl <3,
then .
l Ay e g
wl<7re G20

and the function Y satisfies the integral equation with an error not exceeding
[ ]

L

We shall show also that if function on the right side f can be expressed in

form
”’CQYh

then already the first approximation on basis of equality (5.43) results in an

accurate solution (initial approximation is, as usual Y© =0)

We shall
yar=Bb./,
»
A
}’U"”‘/)“‘ S" (JI—T‘JI)“S ,
B.. T = ." = *
(f—AKfPAdx A\ _X
! . ' j()t——""‘yl)l“ 1 A
Y .

This result ensues also from equality (5.22).
We note that it is valid with the arbitrary function h. In practical

calculations (for simplicity) it is possible to assume

h(x)=1.
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In problem about the flexure of turbomachine blades, propellers, the indicated

: : . )
process gives entirely satisfactory results at T,I<w'

Mathod of Similar Iteration
Iet us assume that an approximation y() can be improved by multiplying be a

certain coefficient fu), i.e., can be assumed as the initial appr “ximation

Yir =B (5.49)
The subsequent approximation is determined from '“e equality
Yurn=S+B Ky ' (5.50)

¢=0,123,...)
The coefficient B, can be determined from different consideraticns. In assuming
that the initial and subsequent approximations coincide at the point X (a<x,<b),
where Y()» has a maximum value, we obtain

y(l+|)(xm)=yz,) (x.)v (5-51)

whence !

b, -:y(,,—le(,, s=xy

Relationship (5.51) is equivalent to the condition of equality to zero of the
error of integral equation at x=Xg if into this equation is introduced
"an improvod"' approximation:

8y}, (xa) =0-

The process of successive approximation constructed in this manner converges
usually at l%i<2§- A similar method was used by V. P. Vetchinkin.

The significantly best results are obtained in the case, if B, is determined

from the condition » " R
I"“""dx'_‘.“’:ndx(or IA’Q:)""’-"O).
[ ] e e

#In this section of instructions on convergence of processes are given on the
basis of an experiment of their application during calculation of turbomachine
blades.




which gives

[ ]
§fdx
pl". 4 .
{U(l)—“()’(n)“ (5.52)

The process of solution, given by equalities (5.50) and (5.52), we shall call
& similar iteration by the equality of areas. Practically this process converges
at ,:—'l<10. where it is especially effective at h“—l<5.

The ranidity of convergence increases, if as an aoproximation of Y ({>3)

there is taken the half sum of two nreceding aporoximations:
1
Yo=— Ya-n+yu-)

Finally, one can determine 3 and from the condition of the minimum of

the square deviation of initial and subsequent approximation
’ ®

&= [ (Yn—y)* “x(or e,=[ Ay, dx).
. s

i.e. for equality
-
LT .
which gives .

pl- » .
[0 =Ky )rds (5.53)
e
One of the important variants of the method of similar iteration (on basis of
% :
equality of functions) pointed out by S. A. Tumarkin . Let the functions JY(+V and

y:” coincide in all sections. This is possible at

el
’l y“,__lxy(‘) (S-5‘b)

If Y conforms with the accurate solution, then the parameter 2, will be

"

constant; in reality, equality (5.54) determines the magnitude, depending on x.
In using in an approximate solution, equality (5.50) established for 2: *3«(x)),
we shall obtain

#This method was communicated to author in a nersonal visit.

2oy




)4
Y —lxy“)y(l) .

((=0,12. . .)

Y =

(5.55)

The process of successive approximations converges in practical problems at I‘:—'|<15.

Relationship (5.55) loses meaning, when the denominator of the expression
tends to zero which virtually is encountered fairly rarely.

We now shall point out that for all variants of method of similar iteration
the following is valid:

A. 1If a process of subsequent approximations converges, then converges to an
accurate solution:

B. If function f is similar to one of eigenfunctions, then already first
approximation results in an accurate solution.

Sunpose, therefore,

Y+ =y (5.56)

In order that yus+n tends toward an accurate solution, there must be in

accordance with equality (5.50)
b+t (5.57)

Sunnose, for example, the process of similar iteration is made on the basis of
equality of areas: i/‘l

Y=y ; +/.
! Oy=2Ky,))dx (5.58)

By integrating both sides of equality from a to b, we obtain

[ 4 [

7
y4ndx =\ ydx,—2 ,
JOw— 3y ax

By virtue of (5.56)

» [ ]
!y“*" dx— !y(ndx-
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whence also there ensues the relationshin (5.57).
If the solution is constructed on basis of equation (5.55), then from (5.56)
there ensues
yon =Ky /.,
i.e., the function Y(" tends toward an accurate solution of the problem.
We shall now indicate the validity of the second assertion.

Sunnose
f==¢'.y..

where y - is the n-th eigerfunction of operator Ky.

Then, by assuming, as usual, Yo)=/, we obtain from equality (5.58)
5 »
€a)Yadx

ﬂn=f+f¢dh 2 S i
]

Y

An analogous result is obtained from equality (>5.55).

We note that "quality" of the approximation can be evaluated also by the
magnitude B¢ Yith a gnod convergence of the nrocess already for secomd or
third annroximation 3.1

#e shall dwell briefly on the solution of matrix equations

[yl =*(Kylly1+ (/] (5.59)
Ne shall assume that the corresnonding homogeneous equation has the eigenvaliues

klu x’o l""'

The process cf simple iteration for equation (5.59)

[vo+n] =M [K]ly]+ f
converges, if

<l

At >INl thsre are constructed orocesses of iteration, analogous to the
nreviously ind cated nrocesses.

We shall consider as example the application of the method of similar iteration.

In this case o] =BA K] [ywl + (/]
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The magnitude P is determined from following condition: the corrected
approximation
e Y5 =8 Lyl
in the very best manner has to satisfy equation (5.59).
The error of equation (5.59)
(ayi)) =82 [Kllywl + [ f1 -8 [y] (5.60)
Thus,

' "[h I%K,,ym./-i'f: —pdy(’)- !

i n
(ay:, ] = pt",ﬁ_‘:l’(lﬂ(l)./+/:—9:.Vm.z
)

- pl)‘lglKaly(l). nt fa—BiYirna J

The absolute value of the error

l l‘y(.l)l}.= l/vg:l {pl()'é:lK- 1Yy 1 =Y, -) +f.}’.

' »
By determining §, from the condition of minimum of square deviation ¢, = Sl avgy) 1P dx,
oe¢; S
i.e. from the equality T =0, we obtain
e b L]
S (-"m.-—l I}.:,‘K-IJ’(«'). I) €

n b/ "‘ 2
3 5(’(!..-“ ZK-/)'U).I) dx
a . J=1

-

If we take

Baywrn
] 7|

pu)"(l). "

then for the method of similar iteration on the basis of the equality of functions

we obtain the system of equations (at f.# 0)
,.J’m,c

Yii41), 0=

-’m.-“‘é,"v’w.l (5.61)
=12.. .,n).
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There exist also different methods of approximation, reducing the nroblem to
solution of a system of linear algebraic equations (Fredholm method, method of
moments, method of collocation and others). In nractical problems, these methods

usually are inferior to the nreviously indicated metrods.

t.. The Solution of Inhomogeneous Normal Integral Fhuations

In the solution of equation (1.5) its comnonent furict‘onals are considerszd as
narameters and for brevity are designuted
Ly=C. (6.1)

In solving a normal equation by the method of successive anproximations

.V(:+n=*Nym+‘§C,f,+f (b.2)
we obtain
y-‘§°C‘®,+0. (6.%)
where
YN (c'l‘)
ol-fl+wjl+)‘Nfl+ o v oe
®=f4INS+UNS +
(6.5)

The narameters (C, are determined from boundary conditions of the nroblem. Series
(6.4) and (6.5) converge uniformly and absolutely with an arbitrary value XA L.t
us note that if calculation is made or basis of equation (6.2) and the narameters
C, are determined after each annroximation, then nrocess converges only at
<IN

In "decinhering” the C, values in accordance with equality (6.1) the normal
equation acquires all the nrone-ties of a boundary equation.

Sometimes it is convenient for the series (6.4) and (6.5) to be used in another
form, for example,

Q=000+ y+ 0+ . . ., (6.6)

where
Qin=:N®, -1y (s=1,23 .. .). (Quo=/).
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In above mentioned series each term of the series is the difference between
two successive approximations. The calculations are stopped, when a new term of
the series is small in comparison with sum of all the obtained terms of the series.
In evaluating the convergence of the process of successive approximations it can be

established that the terms entering into the series (6.4)-(6.6) diminish with an

Be—a)®

= For large values of the narameter A\

accuracy up to a factor, as
and of the interval of determining the function, the convergence deteriorates and
in a number of practical problems even at |':T|>5 becomes gradual. For
improving the convergence, it is possible to apply method of'"mobile origin', with
which the function is found at first in the fairly small section @<x<a, which
assures a rapid convergence. Further, the solution is constructed for the
following section (in normal integral equation it is assumed a=a,) and initial
oarameters in section X¥=@1  are determined from the preceding solution. The
condition of "rapid convergence'" of the simple iteration process for a normal
equation can be recommended in such a form:

<. _ (6.7)
In a number of problems in structural mechanics under condition (6.7) there is

required not more than three to four approximations.

Analogous results are obtained in solving matrux equations

-
yl=rNllyl+ 2 C FARAVA
by the method of successive approximations; we shall

1= EClol+(0].

d@)= /1A INIATHR NP AL+ - -
(@)=[/1+M NI/ + MNP ST+ . -

the furctions [@,] and [®] can be presented in the form of a series, for

example,
(@] "lgloml.
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in which

(O] =AN][®-1), [®0)] =]

We shall now consider the application of the linear approximation method, in
which there is used an anproximate integration by the trapezoidal rule.

The indicated method for boundary integral equations results in the necessity
of solving a system of algebraic equations; for normal integral equations the matter
is greatly simplified because the values y(x) (j=0, 1, 2,... can be
determined successively one after another.

Suppose the normal equation is given in form

yW=2QWia e da+s+ Scs,  (6.8)
/ parameter ) 1s contained in the function Q.(x)).

Solution of equation (6.8) will have form (6.3), and, for example, for

determining function ®(x) there must be solved the equation
Y@= 20, {4, (x)y (x) dx, +7. (6.9)

Now we consider first variant of method of linear approximation. We shall

subdivide the interval of x variation into k sectors ﬁth the sections *=a,

e e L] X

The length of a sector
, Xy—Xp-1=3;.
we shall designate

Y=y, Q(x)=Q, f(x)=1,
' J=0,12. . ., &

On the basis of equality (6.9) we shall establish

1 = -1
’Ig "2—2. Qq[ [ql.’idl'.'ZQI vJs (d' + A'+l) +q"'y/Al +//. (6.10)
dm vl

¢U=12. . .,4 Yo=1,).
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Hence,

y= X

1— Qj9:53;

o|=
Il\dl -

> 71
X —;‘EQJI [qsoyoA|+EQ1 W (A + .\,;l)].{.f’,
v=1

In final form

1 -1

Y= 1—ay, (Eaj.y.-f-f,) L
\»=0 /
U=l. 2'- . -ok)’

1 ]

where 2= TE] Q‘[ql v (Av + Av+l)
U=L2.. ..k v=12...,7-1)

3% a—;— .-El Q:ﬂao‘n

[ ]
1
= D Qi)
=1

Calculation by equation (6.11) is convenient to make according to scheme, shown in
Table 5. Magnitude Ye=lo  is multiplied by the column '"O" of the table °/*°
and the result is filled in column "O" of table ajJ+- By summarizing the numbers
in first line and by dividing byl —au, we find Yy By multiplying yl by column
"1" of table @;v et cetera, we find all the values Y;-

A simplification of the calculation is attained by subdividing the section
into equal intervals.

With equal intervals, in addition to a linear approximation (integrating by

trapezodial rule), there may be used integration by Simpson's rule et cetera which
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Table 5. Calculation Scheme According to Linear Approximation Method
s rde
x _Z 0 1 2 A 0 1 2 AR IS R Y/ —&
Xy 0 N Jo »=/o
5 1 L' b 1] . %100 h s+ N
Xy 2 “n oy on . asmye oy Js § 03
. |
- |
i
) |
| f w
t | -
Xg [ ' ay Sy . apy Y0 ) ~ “nys Ja Ya




results in the appearance »f corresnonding factnrs for the cnefficients 3,..
The internolation formulas by Chebyshev a:d (lauss are not successfully amplied i:.
a similar manner, since f r different sactors t:e nnints of internolation will rot
be common.

We now discuss the second variant »! the linear annroximation which leads tc

another scheme of calculation. We snall write equality (6.10) in such a form:

1 !
y/=20‘/('/'/ 1 l. 7 q,,,\',5/>". /J' (6.“)
el
where *
', ln'l'/ |+ q:/)/('\ *‘\IH)
=12 .. , k-1, (6.13)

1
(J'-O=‘2h QJCyOAi )

From relationshin (6.12) we shall obtain the calculation formula

) \
1
y,-:-?_—_A‘l <‘\_:Q,/~/:/—l+f/;- (OlL)
=1 /
(=12, . . &) (=TS0,
1 "1 |
/—"{‘_J ,ﬂ,/A;-
=]
Thus, Yo=Jo
| N
Ny ——— A ) Q:l":i'{‘/l
1 \
1_7 Qg dy e
=] 3=l

1
yl= P Z QJ! 3! Y‘/,
‘\:Onllndx
=y

(/.‘=/,.+ %q,,y.(A. 4 A,)). :



With a small number of calculation sections (k<8)  the more convenient is the
first variant of linear approximation method, with a large number of sections,
the second variant.

We now consider the application of the linear approximation method for the

solution of matrix normal integral equations
[y)=)[N]{y]+(/].
As an example we take the equation
.Vx]_ Ny, N,,}[y.]+ fxl.
Y Ny Nulin Sy
The me 'nitude of the known parameter A is included in the operatcrs.

If normal operators are given in the second form [equation (6.8)_7, then in
an exnanded writing we shall have
: 5= 2 Qu (Ao, ()3 (k) dx, +
+ 37, (0§ b, (1) 32 (x) dx, + /1
. , (6.15)
Y2 (%) -‘§'Qu (x) £ qa, (XD () dxy +

+ 31 [t () (x) dx, 4 £,

As earlier, we shall briefly designate
NE)=y; Qu(x)=Q,; ¢,(x)=4q,:- . - et cetera

In using the second variant of the method, similar to relationship (6.12) we obtain
S 1
J’U-Z Qm (jﬂ) -t 2 ?u/yu-\/) +
Smm]

n,
1
+ }_l,‘ Ty (-’ Wyt ry .,,y.,A,) +/i
=
& (6.16)
1
Yy= E Qu,; (-’ 9,0+ 2 Ty 4/) +
el
'

Ny 5 I
+ 2 T ('4:) a1t 2 tla/)’l/-‘/) + /s,
o
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where

N =L+ Gy (3 + bs3)
U=12. . ..k=1),

1
Iy 7 B JVedy

and t. p.
Equality (6.16) will be written as: -
et omtFo (6.7
where By = l-—-;— A/iolllq"i’
sl

-,
1 W
== & 2 Towher

gam}

L]
1 Q)

By =—= A;zl‘Quﬂu-
=

=,
1 WS
Gy =1— 2 4, 2‘7,,1{,,,.

Sum)
Ay ) :\1 j(”
Fu" fl/ + .ElQ. ff /-1 + ‘:lrl:/ s, J=1*

Ay "l
Fym fy + .§1Qm/§,’_’/_| + &lT.,//.ﬂf /-1

From equations (6.17) we obtain the calculation formulas

o Fry—anFyy
811 /98— %3/31/
ousFsy—ansFyy

Yu= n/%m/ — %19/%1/
. (/=)‘ 2, . . ,k)

As nrevicusly, the valuas y,(x) and ya(X) in each calculation are determined

in sequence.



CHAPTER 4

APPLICATION OF BOUNDARY AND NORMAL INTEGRAL EQUATIONS
TO PROBLEMS OF STRUCTURAL MECHANICS

1. Flexure of Rods in a Fleld of Centrifugal Forces

This problem has a number of engineering applications in calculating for the
strength of blades of steam and gas turbines, compressors, blades of propellers and
helicopters. The application of method of successive approximations and boundary
integral equations in calculating for the strength of propellers is given in works
by V. P. Vetchinkin, D. Yu. Panov, P. M. Riza, S. A. Tumarkin.

Fig. 10. Flexure of rod in & field of centrifugal forces.

In Pig. 10 there is shown the system of coordinates being used. The y axis

coincides with axis of rotation, the r axis is directed radiilly and passes
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through the center of gravity of the root section of rod. Axis of rod is assumed
in the form of space curve, deviating little from a radial direction.

The origin of the local axes X)¥q is placed at the center of gravity of cress
section; principal axes of the section &, % are turned by an angle a in

reference to the local system.

#*
Equations of the flexure of a naturally twisted rod have the form:
Pu _ [eovte  sinta) 0 1 _'__J__) 02 M
dr (Elg.*-EJg)'A" 2 (E/, EJ, e (1.1)
v sin®s , cos'a 1 /1 1 d -
- “(u, +-£-J-‘—)M,,+ > (E.J‘ H‘)sm %M,

where u and v are the elastic displacements of axis of rod along the x and y axes
respectively; Els and E/t --are the primary rigidities of section during
flexure. The bending mcments Ms and Mn during flexure of rod in a figld of

centrifugal forces are equal t9 P
M, (1) =M, (r) +po* ’;(v (r) —v (1) r,F (ry) dr,,

My ) =B, 0)+00t [ () ~ru () F(r) i, (12)

where p- is the density of the material; o is the angular velocity; F -- across
section area. . /Td,x (r) and ;4,, (r) designate bending moments from a transverse
load P» and P, and the initial distortion of axis / its coordinates orior to
deformation Xi(r) Ye(N)

7\'1,,(’)== —-ff[’,(’l)d’ad"x"f‘P"”f()’o (r) =4 (7)) 1 F (r)) dr,, (1.3)

i@ = [P arar ot {0 = o) F (1)
Equation (1.1) which takes into account relationshins (1.2) will form a system of
intepro-differential equations. We shall tra:.isform it into a matrix boundary
integral equation.
As the chief unknowns we shall take the comnoneni: ¢ ihe curvature

‘:_5:7(')' (1.4

*3. A. Tumarkin, Equilibrium and Oscillation of Twisted Rods, Transactions of
the Central Aero-Hydrodynamic Institute, No. 341, 19137,

~a
-
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By means or integration by parts from relationships (1.2) we find
Ma A, mw}c.w!!ww.. Y

My ()= JT(,. (- o'rf Ci(n) ‘-% (-";(‘ﬂ) dr,,

where |
G <_r;1-,3nr(r.)¢n-£§,1;

C(r) is the centrifugal force, acting in the section r. For a rigidly fixed blade

in the root section o
% (!'-‘n)- -‘;' S ne (f‘) "p

) (1.6)
‘—:'-S’_(’x) dr,.

By introducing equality (1.5) with a consideration of the dependence (1.6) in

[y 1= [ el |*[ ] (2.7)

where the parameter of equation

equation (1.1), we obtain

=sieoat, (1.8)
and integral operators are determined by the equalities

cofe oints

Kyer= E—+_) Scs (n) 7 j rae (r)) drydr,;

Kuﬂ —(FJ"""") '“‘afcl (r) j.’? (ry) drydr;

)
K""?(-G_J-E—J sin 2a - 'SC' (r) ’—g'jl'.a‘f('a)d’:d’ﬁ (1.9)

Ku’-(:'.—': +2..—.') jc: (’x)j"“’:) drydr,.

%

The magnitudes ; and Y signify the components of an e.astic curvature

caused by the moments M,, and ;f,; ; they are obtained from equalities (1.1)
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after renlacing M, and M, by 51,, and /f{,..

equation (1.7) is simple, since it contains only two integral operators (with an

. The calculation by

accuracy up to a factor). In a number of practical problems (for example, in
calculating the blades of turbomachines) it is possible to ignore the flexure in
the plane of maximum rigidity, since Ji> I

In *his case, from equations (1.1) we obtain

M
O =2 cosa (1.10)
ar  EJ,
u M,
—_— = sina,
drt E.l
where M‘=M,‘cosa-M,, sina (R

is the bending moment relative to axis with a miriimal moment of inertia.

From equalities (1.11) and (1.5) there ensues

M -M.,—m slnc(r)SC (r,) (r,) dr,—

—.’cosa(r)er,(r.)‘}f: ("('—'l) dr,. (1.12)

n

In considering now relationships (1.6) and (1.10), we shall obtain a boundary
integral equation relative to the bending moment qu

M., =\KM,+ M, (1.13)

where .
1 ]

KM, -,ma(r)fc (n,) f "( 1) slna(r,) drydr, +

A= —o

+c°"(r)rj‘_l(£l—)-§ - L —cosa(r,)dr,dr, (1.1)

For a blade, secured to cylindrical hirge, axis of whicn coincides with axis "

for the root section, the integral equation will be such:

M, =2K*M, + M. (1.15)



\ ‘
18

where \= —a'; .

.8 P
K ety ayr )KM“.M' (1.16)
M ‘Mq (n) — E(“'.‘)M 2 (),

where KM, and M, have thn“ former meaning, and 5
8 (r) <Japa (1,) sina (’) ‘f C,(r,) dry+cosa () rr, j‘ Cln) g,
A further simplification can be attained, if it is assumed
tana=ar : (1.17)
(vane or blade of constant screw nitch*).

Coefficient @ may be selected equal vo:

acp
q=—,

fep

where r, ! is the average radius; a,=a(r,).

The calculations showed that replacement of real angle of instailaliom of
profile in vane of a turbomachine by an angle, determinable from equality (1.17},
does not introduce a noticeable error.

We shall have

o _eug,
dr8 dnr?

By integrating both sides of equality from ’» to 7 , we obtain for a rigidly

fixed blade

dv du s_‘_(_“_)
-~ = (rd’ u) ot ==

The latter expression is valid also for a blade fastened on hinges by virtue of the

equality s
.!! (r)) =‘i“-"- (r)fna (ry).

Now frop relationships (1.12) and (1.17) it follows

o My (r) =M, (r) —w*sina (r) _" (l+-—)C.(ro (n)dr,=

-ﬁ.(r)—n'lln-(r)fﬁﬂ%: (r) dr. (1.18)

#D. Yu. Panov, Calculation of a Propeller for Strength, Transaclions of Central
Aero-Hydrodynamic Institute, No. 288, 1937.
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In view of the domndonce

—-J.Q(r,) dr, +.__(,.)_ S——j—- sina(r)) dry +‘—°-(’o) (1.19)
relationship (l 18) can be prosented in the form of a boundary integral equation.
By introducing equality (1.19) for rigidly fixed blade ;7(’0)“0) in relation-

ship (1.18), we obtain

M, (ry)

1.20
Eivry 2 _sina (ry) drydr,. (1.20)

M, ()= My (1) = o* sina (1) j i) j‘

sin*s (ry)
b

Integral equation for the curvature %(r) is obtained from relationship (1.18),

if both sides of the equality are divided by  EJ, _..l‘;-- and dependence (1.19) is
a

taken into account:

R 4
o lr) . _ ot 8n%a(r) ¢ Ci(n) j' 1.21
$()=y(r)-w Ene) ) imery 4 (ro) drodr. (1.21)

Integral equation relative to the angle of rotation has the form
Canta(r) ¢ Ci(r)_dv
~Lin=2" snta(n) (%) S0 1.22
( ) (r) y EJ, sln’a(r,) dr (ra) dry dry. ( )
£}

%
Equations (1.20-1.22) correspond to one and the same problem, however, they have
their own peculiarities from the noint of view of practical use. The difference is
found to be also the norms of operators, entering into these equations.
Influence of the centrifugal forces on the flexure depends on the dimension-
less narameter of the flexibility of rod
"";'i‘"
where ot =), --first eigenvalue of the homogeneous equation (%1 is
the value of the angular velocity of rotation, with which centrifugal forces,
redirected to compression, cause a loss of stability of the vane).
With small salues of the narameter of flexibility (v<0,1) the effect of
elastic deformat® ~c of the rod can be ignored by assumirg .
My=M,.

If the bending moment M, from a lateral load (and initial displacements of axis

1



of rod) .‘.‘ Moot ;
i L

where Me is the distribution of the bending momants with the first form of the
rod's loss of stability; c is a coafficient, then,
My=0,

i.0., with large flexibility narameters, tne affect of elastic deformati-ns in a
field of centrifugal forces may be very great,

The mathod of solving the boundary integral equations was discussed earlier.

We present results of the calculation, relating to the pri.bilem on the (lexure
of a rod of uniform section under the effect of distributed transverse and axial

loads of constant intensity (Tabis 6).

Tablo 6. t—ﬂ@ Values for a Rod with 8 Flexibility Paramater r = 2.%8

"1,('.)
() {ipnbanmenne
@) Metoa pewenny . Popuya “ lp 2] 3 )qu"e"“".fe
(4) Caoxnas impat'um no 'Bnlpn (5.38) | 0,436 0,300/ 0,426! 0,412
(10 Caomuan wrepauns ¢ nepemennnm | (5.43) | 0,280/ 0,399/ 0,409] 0,412
nappuerpon
(,) NMogo6uas urepauns no pamencyay | (5.82) | 0,453| 0,407 0,415 0,412
nasouwaseh
(W) MomoBuas wvepauns no ksaaparnano. | (8.53) | 0,432| 0,410/ 0,413] 0,412
MY OTKAONENND
(4) TMoaonas wrepauns o pasencray | (5.85) | 0,331} 0,382, 0,394 0,412
Gynsuni

KEY: (a) Methed of solution; (b) Formula; (c) Approximation; (d) Accurate snlution:
(e) Comnlex iteration by Viarda; (f) Complex iteration with a variable narameter;
(r) 5imilar iteration by equality of areas; (h) Similar iteration ly quadrat.ic
deviation; (i) Similar iteration by equality of functions.
Note: Numbers of Formulas Indicated are for Chajter 3.
2., Vibrations of Rods

Problem has had numerous engineering apnlications, especially in turbomachirnes
in calculating the vibtration of vanea. Following presentation reters mainly to
problems on vibration of vanes, blades of propeliers et catera.

We shall consider at firat the natural vibration. The boundary intepral

equation of flexure vibrations of a cantilever rod (vanes) ralative tc amplitude
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flexures has the form [ See Chapter 3, equation (2.22)_7

t() -P.jjl &0 IJPF(,‘) t(r,) dr,dr, dr, dr,, (2.1)

’. ’.

where P is the angular frequency of the vibrations.
In deriving this equation, there is used the equality

EJ, (r d’E(r) -M,(r) (2.2)

M‘(r)mp'sIPF(’t)E(':)d'ad’v (2.3)

Equation (2.1) is valid at a(s) = const or in a general case in ignoring
the influence of natural torsion which is admissible in determining the first
frequency.

From relationshio (2.2) M, ()
£(r) = “ o e drydr+ 2 (r) (r= 1), (2.4)

Te 74

for a ripgid fixing of the root section
d% (r.) =0.

From equality (2.3) we obtain a boundary integral equation for amplitude bending

moment
M_(r)
W(r)=p fjf ("a)j‘j(&,‘(,‘) riaryanar, (2.5)

e 7

or in a bridged form

M, =p'KM,. (2.6)

With a hinged fasterning of the rod from equalities (2.4) and (2.3) we obtain

My=p*K*M,,
where B(r)
My= KM, —
K | K " B('a) KM‘ ’-’.'

RR
8(’)"".“‘ pF(ra)(ry—ry) drydr,.

rr

Methods of solving homogeneous btoundary integral equatiors are reviewed in

Chanter 3,



/e shall present results of the calculation nertaining to rod of constant

section. The frequency is determined by the formula

/ré—-_ (., Y

’-.—l‘t—l/ of '

The k values are given in Table 7. The values k=352 k2=2203; p,=617, are
accurate.

Table 7. Calculation of First and Second Frequencies
by Means of Boundary Intagral iquations

|_)Nepmas sacrora © amm,j_q‘!@,’a P

(@) Meras el @*M"'Jﬁ"."ﬁmwwoe (§) NpuGanxenne _|i);ganoe

1 9 |pewenns| |\ [ G | 3 | muicnie

(d) Cpanueune opamwer 8,91 | 9,82 | 9,52 |24.85 22,82 22,00 2,03

@) Pasencrso  cuasapnel | 3,55 | 3,82 3,52 | 23,07] 22,76] 22,73] 22,03
uopus

]
(4) Munmuyw smaxparneno- | 3,82 3,82 | 3,52 | 22,64} 22,91 22,92 22,03
rO OTKAOHEMNS

KZY: (a) Method of calculation; (b) First frequency; (c¢) Second frequency; (d)
Comparison of ordinates; (e) Equality of scalar norm; (f) Minimum of Square deviatin:
(p) Anproximation; (h) Accurate solution.
The initial approximation was selected in the form
“1(0' =1-5

where ('-’%”'- where, 1 is length of rod.

In the calculation the rod was subdivided into 10 sectors and the intepraticn
was made by the trapezoidal rule. Sufficient accuracy is obtained also in dividing

the rod into 5 sectors,

Condition of orthogonality for equation (2.1) has the form
‘
Jt,(r)t;(')?’(ﬂ‘”’o (2.8)
(]

@#4 hi=1L23 . . ) |
for equation (2.5) correspondingly

M, M
2wlgr, 2.9
&) (2:9)
U
The determination of the second frequency and form of vibr , 18 pointed

out in Sec. 3, Chavo. 3. Thus, for example, equation relative to bending moments




has the form

My=p'K\M,,

1
S KM‘“" E-J—‘"

L0

K'M‘=KM‘—MI).1 R

Joe

"‘EJ

(2.10)

dr

re
Results of the calculation are given in Table 7.

From the table it is evident that the error due to use of trapezoidal rule
(with lb sectors) is larger than error from an "incomplete' convergance of the
nrocess.

Aoplication of normal integral equations

E=p'Ni 4+t (R) fo+ 5 (R /s (2.11)
has been considered in Sec. 4, Chapter 3.

For a rod of constant section we obtain

. 1111
E(c)=p*—'g—ﬁ&ut.)dc.a,d:.fw

re—Laa-u; (=58)

The functions ®,() and @, X)) are equal

Y
(- (1—=9° .
Q,()=—1(1- L= oy =0
(%) ( C+x T +...)
where R L
L=p £l

The frequency equation for the first approximation Zfin the series (2.12) are

retained by two of the first terms_/:




4 5!
w1 —0,08334% 4 0,0003477* = 0.
¢ 3’ q

Tne first gmnroximation for the first frequenc
N 478
=/ 00:3347"" 3,404 --l/

1! "fers {rom uhe accurate by 1.77.

In the 3ecord anproximation for first three frequencigas, we obta.n values

the coefficient i [equality (2.7)_7:
k=352 k=213 ko =33,6.
In the third aprroximation
ki) =3,82 &) =21,95 & 65,13

We shall consider now the vibrations of a ratupally twisted rod,

If u(?) and u(r) are the amplitude dismlacements of noints on the va:

axis alov; the axes x and y, then the bending moments

M, (r)= —p* ’f ?pF (ra)v(ry)drydr,

re

ar d

My, (r)-p'} f oF(r) u(ry)dr, dr,

In accordance with equality (1.1l) we obtain

My(r) =p? (gu ¢ JJpF (n)u(ry)drydr, +

(2.13)
+ume Her o adnar,).
r
E’ integrating equations (1.10) and (1.11) and intredici £ the reanlt nto
ecu2litr (2,13), we shall ha\;e
Mq(’)“"(COSC P’( )j’j‘—g]?:) cosa(r)dr drydr. 'r,
'
(’»'c 110)

R o
+llul;jpffrebj j’ -‘-((‘: sine (> ar ir,dr
1

n Te 7a

of

3




If angle a(f) - conit, then equations (~.14) and (<. ) ~incide.

At an angle of natural torsion of rod of an order of 30-40°, the torsion
insignificantly increases the first frequency (to 1£) and considerably lowers the
second (15 to 208); this is confirmed by exnerimental data.

The determination of the seconi frejiency is made by equation (2.10) with the
onerator KMs, | corresnonding to equation (<.14).

In calculating both rigidities for flexure the problem reduces tc a homogeneou:,
boundary,matrix integral equation.

We shall rresent for thius case the -~onditions of orthogonality

R
§ (u + vig)oF r =0,

’e
R
M‘,‘Mq., + Mi. l_‘u.(. I;)dr-:o
EJ, £,
e Lj=1.23 .. .)

7,

The calculation of torsional vibrations ~f rods also reduces to solution of
homogeneous boundary or normal integral equations.

The boundary integral equation for amplitude angles of rotation has the form

r 2
1
o(r).:,,rj.,w(”)_jp/ﬂ (r) 6(r,)drydr,, (2.15)
where GT(r) is strength of sectior cf rod to torsion; [,(s) is the nolar

moment of inert.a of section relative to tne center of rigidity.

Corresnonding equatior for amnlitude torqgues 1s such.

4

R
{
M, (r)=p* e/ LMatr)
[} (’) p ;YP D (rl) j GT(’,) dr’ drl' ((\-l‘))

7o

Fig. 11. F.r aeriving
eqiatinns »f flex re-
torsional vitrat . ns -0 r .




Conditions of orthogonality are written out in the form

}M,pl,,dr-o;- Iﬂng-;uar-a

The normal equation for torsional vibrations

—p ’Ti'(—ra— 3 ol (ry) (ry) drydr,+ 8(R).

We turn now to the calculation of flexure-tarsional vibrations of a rod (vane).
The origin of the local aystem of coordinates is placed at the center of
rigidity of section; coordinstes of center of gravity in this coordinate system
will be i € (Fig. 11),
In designating the amplitude disnlacement of center of rigidity 4 and v
angle of rotation 0, we obtain a aystem of three differential equations
-[ —(EX— EJy) sin s cos ."‘" + (E/icos* e+ EJysint a) _—}

wpt(opF +0:F¢,);
3?0{(51' "_“""‘z"'\’“" D) "':’!,L" (EJy—EJ,) sins cos s""‘ ] -

‘ws p¥ (upl —Fe,); (2.17)

-5- (a‘r %) w —p* (0, + vpFe, —8pFe,).

This system is equivalent to the hamogeneous matrix boundary integral equation

‘Gl ‘Gl ‘Qu L 4
-’ ‘.‘ K.. ' K” * ’ (2 . 18)
s K Ky |l 0
where ’-"'_:Lo "‘3‘:‘;‘"

Equation (2.18) is obtained by previously indicated methods, and the value of
operators is not written out here.

In calculating vanes it is possible usuully to ignore the flexure in plane of

the maximum rigidity, whereas the flexure-torsional vibrations are described by the

12¢%




following equation relative to the bending and turning moments:

e
Ml K’l KI’ M: ’ (2 . 19)
where KuM, =cosa f f pF (ry) j‘ j‘ EJ“ : ‘: cosa(r,) dr,drydrydr, +

+sina I j oF (ry) fj' s 1L sina(r,) dr drydr,dr,;

EJ, (r)

o 7s

RR
K yM, =sina .”‘ e, (ry) pF (r,) :; (":)) drydrydr, —

r 7o

—cose j j ,,(r.)pﬂr.)f G- drgdrydr;

A

R
KyM, = S e, (r)ef () 5 S —E} 7= :)— sina (ry) drydrydr, —

r LR

—3 1 () oF (r,)” “ . cosa (1)) dr; drydry

Lo

KM, = j oy (r,)j - dry dr,

The calculation is made by the equation (See Chap. 3, Sec. 3)
MW)]=P31[ Kn K, ][Mw—u
Ml(‘) 9 Kn K;: My (i)

Under the g:ondition of normalization by a scalar norm

'l(‘ 1) l(l—l)
‘/S GT )d'

’(2‘)- R
5 (KuM, (i-l)““}MH'--Q)_' (KM o+ KMy i)
El, = Gr ‘

]




Second frequency of flexure-torsional vibrations is determined from the equation

e L5 Sl

where

![(‘u“"f Endy) '—"- +(KaM, +KyMy) -—-]4r

', = . wl
T"h"!-r e dr

We now consider the fleyure vibrationa of a naturally twisted rod in a fisla

centrifugal forces. They are desoribed by the following system of differantial

equations with respect to amplitude flexures:
‘-‘:.[-(Elg—b'l.)llnnou :—"-':+ (B¢ coste 4 E/qsinte) f—".’]z

-M-a--f-(c(r) “),
= [(E.h sinte+ 2/, m'-)- - (BJv—EJ)sins cosa -] - (2.20)
: -0'0’04--;(60)% +¢a? Fu,
where C(") is the tension in the section of the roc.
In the particular case, we will have vibrations of an untwisted vane in axial

plane
d dv
‘% (”! g) =P+ —- (C () 7) .
by integrating this equality, we find
& 1
ENS () mp ”'F("’ v (n) dr,dr,—
- (2.21)

"'”' () 5 (r)) i,

In considering relationship of form (1.4), we ahall obtain & boundary integral

equation for & rigidly secured red

My "r'K.Mq — oV, My, (2.22)

13%0




where

EJy(rd

.
- fercn [ e o,
!

KM, -Ispr(r.)fj——t—"—dr.ar.dr.dr,.

iquation (2.22) is a two-parametric integral equation.
It is possible to show that if equation of flexure of vane
M, =M, — 'K M,
where Aiq is the bending moment.- of the transverse load, and the equation
My=p KM,
corresponds to the problem on vibrations of non-rotating rod, then integral equatior
of vibration of rod in a field of centrifugal forces has the form (2.22).

In composing equation (2.22) there may be made assumptions of a different
physical nature relative to the operators K M and K.Ms. For example, in
determining the first frequency, operator KsMa can be taken without considering
the natural torsion (2.5), and the operator K<M. may be taken the same, as for a
vane of constant screw pitch (1.20).

In solving equation (2.22) by the method of successive approximations we
obtain

My =P\ KoMy (i -1y — 0 Ko My (1), ‘(2.23)
By using the norm of function on basis of maximum (method of comparing ordinates)
we find

M,y i1yt 'K M, i1y

= .
Po KMy (i) re=to

The process of successive anproximations is unconditionally convergent with the
varameter of flexibility v<l. For more flexible vanes one should apply
corresponding iterative processes. Thus, by applying methods, similar iterations,
we obtain an equation of ordinary structure

Mq(l) =p:i)KA"(l—\)' (2.21‘)
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where by similar iteration on basis of equality of functions

KoMy (i-1)
Hyi-ntoK My (-

&My - = My i

by similar iteration on basis of equality of areas

1‘0“\ u-l)"
KMy (i—1) = KMy (-1)— o' -

Kan(l--l)c
3(“‘(1-3)'* WK My (i-y)) dr
]

by similar iteration on basis of minimum of square qeviation

g"fh“w (1=1) (My 11+ KMy i) dr
KM, (- =K My (i-y— o' —— ) SR o
'I (My i1yt o' KMy ()0
]

X Ku M‘(‘—-[).

In solving eqmtion (2.24) there are used methods, indicated for the vicration of
non-rotating rods.

Above were considered the natural vibrations of rods. Let us turn now to
oroblem about forced vibrations, at first without taking into account the forces of
damping.

As example we shall take the flexure vibrations of a rod.

Suppose onto the rod is applied an external excitation load.

g=q(r)cos vt
The equation for amplitude flexures of forced vibrations has the form

RR
t()= ,Os drydredr, +

ois e
o’
js‘ q(r.)d'.dfad':dn
Py 7y o'o

or in abridged form
t=vKt+/f, (2.25)




where | is the flexure of vane's axis under action of distributed load q(r).

Process of simple iteration
iu)= V’KE(! -1) +f

converges, if v <pi where p, is the first natural frequency.
At v>p, one should apnly the previously indicated iterative processes.
Rapidity of convergence depends on form function f and at v<4p, it is
obtained usually entirely satisfactory.
The very best results in a number of practical examples were given by the
method of similar iteration on basis of minimum of square deviation.
We now consider question of determining the coefficients of dynamic rigidity
of rod of variable section.
Suppose onto the root section of rod there are applied dynamic (Fi_. 12).
Q=Qq cos v¢,
M=Mgcos vi
This will cause a vibration of entire vane, with which in root section there will

: 0: .
be a flexure & and angle of rotation 7, -
t=¢,cos 4

22—t cost.
ar 0

There exist the linear relationships

Q=2+ %'er (2.26)

My=a5%+ %

The coefficients ¢; are called coefficients‘of dynamic rigidity. They possess the

oroperty of reciprocity

Fig. 12. Determination of Coefficients of Dynamic Rigidity.
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We shall write out the normal integral equation for considered case in following
form:
"“'Ne'f'eofo‘*“EJx+Mofa+Quf|' (2.27)

where

re ' x
. ;“;f Ely(r) j\.’ eF(rd E(r) dridrydr,dr;;

LR

Jo=1 f1=’—f°: f,=—jj‘£7~dr,drl.
"n

Tele

The solution of equation (2.27) will be such:

=50+, + M@+ QoPs (2.28)

where ‘
P, = NS +v¥N i+ . .
AT =01, 2,9).

|
By intr.ducing the values (2.28) into the boundary conditions
Q(R)=0; M(R)=0,

we arrive at equalities (2.26), where the coefficients ai; become knowr.
Let us consider now forced vibrations with a consideration of linear damping.

The differential equatica of the problem is written out as:

-0' s ['H ‘try 9% = "
;’—’-.(El.. o—-’.) +4(r) ;--{- eF (r) = = (r) cos ¥t.

By nutting the solution in the form
C=w (r) cos vt +z (r) sin vz,
We arrive at a system of equations

;’.‘3 (EJ.-‘!"—""Q)—«'PF(')W(') ()2 () =q(r) (2.29)

= (EJ. %’) —vA (r) © (1) —%F (F) 2 (r) = 0.
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For a rigidly secured vane this system is equivalent to a inhomogeneous boundary

Murard HuH o

where Ky j- jl

T 7o

matrix equation

EJ, (r2) Ss pF (r) w () dr drydrydry;

; EJ (rz) h ("‘) z (’4) dr, d’. dr, dr,;

e 7y r. r,

Kyw = ”' = '(,’) S S h(r)w(r)dr,drydr,dry;

Pe 7o

Kyz =+ S‘f EJ,(r) gSPF("o)z(’a)drodrsd’ad’h

j“

fe 7o

fl‘o

,z=—v

drydr, drl;

Equation (2.30) at v<p; is solved by the method of simple iteration, at v>pi

there can be applied the method of similar iteration (See Sec. 4, Chap 3).

3. Critical Speed of Shafts

The determination of critical speed is important for many high speed machines,
expecially turbomachines.
Let us consider the general case of the precessional motion of shaft (Fig. 13).
Sunpose the plane, containing elastic line of shaft, revolves with angular velocity
v, and the shaft itself is rotated in reference to this plane with an angular
velocity
The kinematic model of a similar motion is shown in Fig. 14.

Angular velocity of shaft is equal to

(3.1)
w=y'4,
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The angular veloci‘ies v and )\ are presented in the following form:

Vg

x-(l-.)”l

(3.2)

#*
where ¢ nerhans, in ge- ral, is an arbitrary (real) number .

Fig. 13. Precessional motion Fig. 4. FKinematic model of nra-
of shaft. cessional motion ~f shaft.

The disk acts on the shaft with a 3tress and a moment

Py=oly (), (3.3)
M=a'B,y" (5)
g‘-l'm‘; p‘=¢(2—-‘),,. (3.1‘)
]
where m, is the mass of disk; h=='{J" is the equatorial moment of inertia

of disk.
The equation of the stability of revolving shaft with distributed masses m{x)
and moments of i.ertia I(x) has the form
;‘-:-. ( EJ (x) :-:{)— @ [c’m (X) y (¥) +e(2—19) :T: (/ (.x)y':(x))] =0. (3.5)
Squation of flexure vibrations of shaft with a calculation of inertia of tur:
(05— [m @y -L(1w0y w)]=0. (e
At I(x)=0 equations (3.5) and (3.6) coincide.
Solution of equa‘ion (3.5) can be used and as solu‘ion of equat.on (3.6), if
it is assumed ¢=—1! (reverse synchroncus precession) and to decrease i: thre
magnitude of 1(x) by three times.

We now turn to composing integral equations of the problem. Let us ~onsiaer

#The nrecession is called synchronous, if |«|=]v] In 1n identical direction
w and v the precession is considered forward, with a di:{erent directicn--reverse.
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as an example a shaft on two pivoting bearings (Fig. 13), carrying the distributed
masses m(x). The solution can be applied also in the presence of individual
masses, if the mass of the disk is distributed along the length of corresponding
section. The gyroscopic effect we disregard, and the parameter e=1. Bending
moment in section x will be equal to

M(x)=Rx+ w’f? m (x;) y (x;) dx,dx,.
By dtermining; reaction in the left support from condition M(1) = O, we find

M (X) = N’Ay,
where

2 2 lx ¢
A, -55"‘ (xs) ¥ (x) dx,dx, — ‘;‘ f‘f’” (x2) y (x3) dx,dx,.
00
Q M (x)
By using the equation of flexure dx* £J(x)' we obtain,

J’(x)=='”’55 é’(‘x’) dxydx,+y' (0) x+y(0). (3.7)

By determining y/(0) from condition y(/)=0 (magnitude y(0)=0), we arrive

at a homogeneous boundary integral equation

y=e'Ky.
S IR x (T A
= Atz 2 (-2 g4y a
Ky .55 EJ (x) dxydx, 15‘_} EJ(:,) *1e (3.8)

We now consider the general case (Fig. 15), when there are considered the
distributed and concentrated masses. The transverse force in section of «x

Q(x)-a‘q(x)dx,-i— ES(x b)P+ S(t a)R, (3.9)

where the unit function, for example, §(x, b,-). is determined by the equality

S (x, b.)-{ ‘l’ :f:
o

In considering the dependencies
g (x)=ovWa(x)y(x); a(x)= em (),
P‘=0‘l,y (bi)'
We shall write out expression (3.8) in the following form:

Q=wA, I+ S a)R  (3.10)
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and for the bending moment
2
M (x) = oA, (x) + 4§|s (x, a) R, (x—a), (3.11)

¢

Fig. 15. Shaft on two pivoting bearings.

where
A,y (¥) ‘=év a(x,)y (x,) dx, + ‘21 S(x, b)ay (b),

Ay, (x) ‘-‘-Ij. a (x3) ¥ (xp) dxydx, + f.’i (k)Y (%) dx,+

; (3.12)
+a§18(x' b:) l’ty ) (x—b) + ply' (bd)]

(B (x)=¢(2—0) I (x)].
In / reaction Rl and R2 from conditions

Q(H=0 M(H=0 (3.13)
we obtain M (x).:.,’A, (x).
where A (x)=A,, (x)+S(x, a) -:.: ‘:'. [Ay, () (I—a) —A,, (O] +

+8(x a) =24, () — A, () (—a))]. (3.14)

In determining in equality (3.7) the magnitudes y (0) and y* (0} from conditions

y(a)=0 and y(a.)=o,' we obtain a system of integral equations

i (3.15)
y =Ki{Vy, )
where K‘"y- Ay (%) dx, dx, + 4,(3‘) -
El(x) Yoa-a By

[t |22 [mj‘f i dnte
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A!(‘:) :

[ Ay(m) ‘y(‘:)
KMy = ‘—Eﬁ—l—)—d o e e [5 S dx:dxl
o 0

| (Al gx g, (3.17)
EJ (x,)
00
Calculation by formulas (3.16) and (3.17) are very simple, since they contain all

two integral operations

2 X x
Ay (x1) € _Ay(x)
5 i A o LR B0 dX and 55’ EJ(xy) dx' dx‘.

Equation (3.15) expresses the matrix integral equation

P Y

where o
Ky + KnyM= Ky,

Koy + K" =K{y.
In abridged form, equation (3.15) is written out as:
[y)=o* [KV] [y]- (3.19)
In solving by the method of successive approximations
[yl = o) [KY) [ya-n). (3.20)
First line of this equality
yor==4,K8 i -

By method of comparison of ordinates

J-1)

2

w

o= K§y lJ,-, !
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where X, is the abscissa of section, corresponding to the maximum value |Y(-1l-
After determining o%,’ we find y,, and y,, and further “n-

Practice of calculation showed that there is sufficient not more than two
approximations (second approximation is for control).

Thus, there is determined the minimum in absolute value eigenvalue.

We shall dwell on one circumstance associated with the calculation of systems
with strong influence of the gyroscopic effect (for example, with disks, located
near supports).

It may be found (in oractical cases extremely rarely) that -'-'.-<0.

This means that real angular velocity will be greater than |®i| and must be
determined by taking into account corresponding condition of orthogonality (see
determination of second critical speed).

If true value is o?>0,

but in the first approximation in view of unsuccessful selection of y( there is

obtained o} o <0,

then one should continue the process further and it will converge to a real angular
velocity ;.

In engineering problems, the indicated cases may be encountered as exceptional,
and only with a calculation of gyroscopic effect.

For a number of problems encountered in practice of (rotor with large number
of disks, calculation of mass proper of rotor et cetera) the calculations of the
discussed method are found to be significantly less laborous, than calculation by
other methods (for example, requiring the determination of influence coefficients).

We now turn to determining the second critical angular velocity. Condition
of orthogonality in considered problem has the fom*

{ L (0 —yyM8 ()] dx =0
(# ) bj=1, 23.)

*In the presence of concentrated masses and moments of inertia, integrals are
taken in the sense of Stielt jes.
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where a(x) and 3(x) depend on distribution of the masses and moments of the inertia

along the length of shaft .
a(x) =e*m(x), B(x)=e(2—e)/(x).

The calculation is made by the equation
)=« [K"1 (),

K] [y] =KV =B ]

‘ .
f(KPy na— K{' y y,B) dx
°

(3.21)
where

Akl i _
i 0l - stnes

Bi=

Above there has been considered a shaft (rotor) on two pivoting bearings.
Analogous equations may be compiled also for other cases. Suppose, for

example, the supports of the shaft are elastic, then there exist the dependencies%

_R .
y (al) K“ ’
.22)
= R G
y(a)= Kox’
where K Ky is the rigidity coefficient of the support.

If the sunport is a complex system of masses and elasticity, then the magnitudes
Kn and K,, are dynamic rigidity.

Relationships (3.10) and (3.12) remain in force, and from conditions (3.13)
the magnitudes R, and R, are determined by Ay and An

The magnitude y(0) and Y“(0) in equality (3.7) are found from condition
(3.22) which results in a corresponding integral equation. There are no great
difficulties in composing the equations and in other calculating cases (shaft on
several pivoting bearings).

Let us consider as an example, a shaft with large number of identical disks
on two pivoting supports (Fig. 16). Per unit of length of shaft, there should be

a mass g and moment of inertia |,

#In the presence of a connection between the supports, y(a;) and y(a) are ex-
pressed through the linear combinations R, and R, .
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Equations (3.15) have the form

P | 2
- ol Ay (x5) = Ay (x5) 3
y (x) @ U —__—EJ (") dxl dx, 7 J‘ f -—-————EJ (x’) dx' dx,, ’
[ ] 0

x ! x
y (x) =.|U Ay (=) dx‘__‘_jj‘ A g dx, |,
X

EJ(xy) {
00

By virtue of equality (3.14) and (3.12)
A, (x)= A, (x)— Ll A, (D);

Ay ) =118 (r)y () dxyd+ {8 ()" () dx,

where for forward synchronous precession

Yo) (%)

As an initial approximation for a shaft on two pivoting bearings,

it is possible to take

Yo=C (x—a)) (x—ay),

(3.23)
where the constant C expediently is determined from the condition ¥ gmu™=!:

In accordance with equality (3.23) T 111 UUJH
Yo Q) =Cl2x—(a1+a). i ifmii%iiiiiﬁ

Shaft was subdivided into ten sectors and o————— {

the integration was made by the trapezoidal Fig. 16. Shaft with uniformly

. distributed disks.

rule. The ratio is -fl—=—‘2—.

In the first approximation there was obtained

1) = 10,76 E—‘I’.
.

(if there were made an accurate integration w1 )==10,56 l/;-_i)

In second approximation

0n)=10931/ E. .

mié
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The problem has an accurate solution

——c —=1orsl/_
V‘ In?

mi®
(_£_==_L.£1,~_l_
mp 16 0 "64)’

From the calculation it is clear that first approximation gives a deviation of
an order of 1.6%, and the inaccuracy of the second approximation (1.8%) is ex-
plained by error in the apvroximate integration. It can be removed by the selection
of a greater number of sectors, however, a great accuracy in the calculation is not

required.

L. Stability of Rods

The application of integral equations in problems of stability are especially
effective, since for practical purnose there is required a seeking of only the
minimum oiganvalue*.

We shall consider the stability of a rod of variable section under the effect
of concentrated and distributed along the length.

The differential equation of the problem has the form

E%(E’%(‘))+%(P‘z) w@)=0 ()

where P(z) -- compressive force in section z;
EJ -- minimum strength of section to flexure.

Equation (4.1) is valid for any fastened ends of the rod.

tﬂ d We shall take as an example a

) cantilever rod (Fig. 17). Since a trans-

W T]
|

verse force in section 7 = 1 is absent,

then order of equation (4.1) can be

b 0, * L |

v e lowered :
Cantilever Rod. p dz’) L (4.2)

*The application of bound integral ti
for the firgt g A YSry .nRegr equa ions to problems of stability were
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In the considered case
{ n
P(2) ""!q (z) dz,+ iSlS (z.a) P,

where P: is the concentrated force in section 2=a.

The single function S(z, ai) is determined now by equality
1 z<Za,
S Z, a -{ ¢
@ a) 0 z>a,

If the stress Py is directed for elongation, then into the calculation
equation it should be introduced with a minus sign. In problems cf stability,
external loads contain as factors, parameters subject to determination.

Thus,

P@=)\fe(@+Mfi(2+ . . . +2,1,(2),
} (4.3)

Wo={0@) dn LSi=S( a) Py

For the concentrated forces as parameters ), usually there are taken the

magnitudes Py i.e, =P, (i=1,. . . n). Frequently as ) it is convenient to take

P

the dimensionless parameters, for example l,——éj.

For concrete calculation one should note dependence betwee: »aranetszrs 4 50

that expression (4.3) contains only one independent parameter » (for example,

ho=h Ay =05\, ) =1,2/ et cetera).
.As chief unknown we shall take the value
d
@ =20

Equation (4.2) now will be written out as:
a8
L8\ — N
(B )= —r (e Dpsce ))
By integrating both sides of equality from z to 1 and considering the boundary
condition % (h =0,

we obtain

EI =[2G o) dz+ BAS( a) (42 d,

(L]

(4.4)
We note that on the right hand-side of the equality is the expression of bending

moment. It can be determined also directly from consideration of Fig. 17:

MEO=feE@ @ -y @l + i PSEa) v~y @k
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since 1
)‘ofo=£q (z,) dz,,

Then equations (4.4) and (4.5) in accuracy agree. After dividing both sides of

equality by EJ and integrating then from O to 'z (7(0)=0). we obtain the
integral equation =K. (4.6)
2 l { ™
K=-,j_- 2) = 2+ N
Overator ? .o EJ(:.)) JSo(22) = (2,) d1, d~,+‘\,_‘ B (z, a),
{] i=1
where
,‘=‘7';L (6=0,1,. . ..n),

a;
1 dzed z < a
u(z);g?(z') i ¥

B(z, a)=

One of the coefficients vi may be taken as arbitrary (for example, ve=1).

Fig. 18. Stability of Rod of Constant Section.

Expression for B(z, ai) it may be written out also in a simpler form

'(“ nl
Bz )= 5 E}—(z-).(q(z,)dz,dz..
] 3
if it is agreed at 2z>@: to maintain the same value of the function B(2, ai).

The integral equation (4.6) has a simple structure.

N
»
O




It is interesting to note that the use of differential equations would re-
quire the construction of soluticns in each sector and a linking of the solutions
with a calculation of boundary conditions.

Let us consider several particular cases.

Suppose we have a rod of constant section with force at end (Fig. 13,a).

For this case, equation (4.6) will be such:

g !
P ~
or ?(2) = _E.T} $ (25) dz, dz,
0 2
i1 ~
. PO =4[] ) ducky,
P s .
A="—; 5=7 . The accurate solution is 1=9, 467,

As the initial approximation we shall select
9¢o)=€—»g—i’. (4.7)
satisfying main boundary conditions ¢ (0) =0, ¢’ (1) =0.
Bv the method of camparing ordinates

Y0)
¥(0)

= 2,500 (1,34).
E=1

=

By the method of minimum square deviation

' -
?(0)K¥() £
Ny=— = 2,467 (0,00).
J (K’(o )). d;

In the following avoroximation by the method of comparing ordinates
M2) =2471 (0,16).

If even we select a rougher initial approximation
#0) =% (4.8)

then by the method of camparing ordinates

A1) =3,000 (21, 6); hay =2500 (1,34); Aa)=2471 (0,16).

*In parentheses is shown the error in %.
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If one were to apply approximate integrating by trapezodial rules, as is done
in practica’ calculations, then by subdividir : into ten equal sectors we obtain
Ay =3008; Az =2511; Ag, =2482.
B determining with the initial approximation (4.8) X, by the method of

minimum square deviation, we find
A1) =2,470.

For a rod, loaded by a distributed load (Fig. 18, b), equation (4.6) will be

such:

z 1
’(z =é£5(l—2.)?(za) dzldzl'. ([&-9)

since the compressive force in section z

P@E)=)fy(3)=q(—2)

In converting to dimensionless form,
€1
PEI=2[] (185 G dudl,

where
q8

o Ly

EJ

After taking a rough initial approximation in the form
%0 =5
we obtain by the method of minimal square deviation
Aay =9.05,
A\ =801,
A3) =793

with an accurate value
A =17,837.

For a rod under the action of two concentrated forces (Fig.18b) {rom equation

(4.6) we will have '
2< —
2

2
@)= j V@) dzdet | (o) dzds,

0:.

(4.10)

0
By setting up an initial approximation %0 =% e obtain by the method of
P(l)ls— =2'67; )s(g) =2.l20‘.

EJ

comparing ordinates )\,,=
The accurate value »=2,068.

Ve consider now the integral equations of stability of thin-walled rods of
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constant section.
In the presence of distriiuted longitudinal and transverse stresses the
oroblem is described by the following sysiem of differential equations, obtained

by V. Zo VmOV:
EJR'— N +a0)) + (Mp)" =0, (4.11)
EJqV— N (' —af)|" +(M8)" =0, (4,.12)
EJ.OY —GTV" — ("N +23,M,— 28, M) ') +1q, (e, —a,) +
+9,(e,—a))9—a, (N) +a, (N7) +Mz:" + My =0,

where t and % -- are comnonents of disnlacement of center of flexure along the
orincipal axes x and y arising with the loss of stability;
@ -- is complementary angle of rotation of section during loss of
stability;
N, M, M, -- are the normal (tensile) force and the bending moments in the
section of rod under action of external load;
J. -- is sectorial moment of inertia;

T -- is the geometric rigidity to torsion;

% . ¢, -- are components of transverse distributed load;

e an? ¢y -- are coordinates of point of application of distributed load in
plane of the section;

8, .nl Jd,- -- are coordinates of center of bend;

7, P, and B, -- are pgeometric characteristics of section.
In comnosing the boundary integral equation as the chief unknowns it is

exnedient to take
a3 'y, . a9

— =, -—-z';;, —_—=0,

dz? dz® dz

We now consider for example, cantilever rod (Fig. 19) with free upper and

rigidly fixed lower sections. In this case, we shall have
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€ (@)=)=(z) dz,; t(2) =;[ 1" ?(2y) d2,dz,;

Ot sy O w

v (2) =19 (@)dz; () =£.§ ¥ (2)) dzy dz,;

8(2) “'5 ¥ (z) dz,.

Fig. 19. General case of
stability of thin-walled
rod.

We shall write out equations (4.11)--(4.13) in the following form;

a4

[ /2 ' *
b4 -E_J, NK!?(:I)"ZV{"“,“)J — 17';/\ Jﬂ(zl)dz.) : (4.14)

! J \‘
¢ ..E.J.'rN(Js!a(z,)alz.—a,a)/J '1_-', Ja(z,)dz, C(4.15)

.m_.ul.[a,(NJ ¢ (z,) dz,) ——a,(Nf«',(z.) d:,)
0

+r (Na)'J_
— 2| Mt M- @M, -2 m) 0y 4

t+@.(e,—a) +4q,(e,— a,))fﬁ (z,) dz,J+ PEJL o, (4.16)
¢ - '

In integrating both sides of equalities (4.14) and (4.15) twice from z2tol

and by considering boundary conditions at z = 1 we obtain

{ 8 .
1@=—4; j N () ( 8( ? (22) dz, +a,d (z.)) dz, +

Y N

[{ [ ]
i AL (lf 4 (2) dn—ap (z») dz, +




ri{freoe)]

L.
V- _éj‘ N(z) <a, ?(2:) dz.—a,jq» (z:) dz,+ 18 (z) ) o —

(4.18)

2

‘-‘E'T[—j:‘l( $%(22) + M0 (2,) )dzzd., +‘s‘(~p M, —
“L 5o

-”IM’) o(zl)dzl +j‘<qx (C‘— a:) + ‘Iy (‘,v - ay)jj” (Z,) dzi dzl J b

/

{
_%’Ey&(z,)dz,. (4.19)

By integrating equality (4.19) from O to z, we find

8= —FZ—JSN(%)K as ¢ (25) dz;—a, j" (zs) dzy +

" 0
2 Lay/
+r0 (z,)) dzydz, — EJL. [ o xY 5 S kM,q: (@) + M,y (2,) ) dz,dz,dz, +

+I (”’MJ_”IMJ) 8 (Z‘) dzl dzl +J'f. <qa (C,—d,) +

Do~

: sl ‘
+4,(,—a,) )50 (2)) dzydz,dz, — 2-255‘ 8 (2,) dz, dz,. (4.20)

In practical problems » external loads usually can be presented in the

lowing form:
N (2) = —)n, (2) +)4m, (2). )
M, (2) =dymy, (2) + ) my, (2), . (4.22)
M) (2)= x1’”1_;v (2) + )‘thy (), (4.23)
9(€—a)+q,(c,—a) =)t (a),
(4.24)

e parameters 1, will be subject to determination.

Equations (4.17), (l. 18) and (4.20) are written in matrix form

K, K K ? 000 9
[ J Z [Khl Kju Kn:]["{] [000 ][¢J. (4.25)
8 00Ky,,]| o

I!l

250




where values of the operators are readily established after a comparison of
corresnonding equations.
If one were to introduce the matrix-column [®], then equation (4.25) can
be written out even more briefly:
[91= £ 3, 1K) (9] + (K] [0]. (4.26)
Equation (4.26) is a five-parametric boundary matrix integral equation.

For a concrete problem there should be known the relationship between

&
narameters of load 7, = Y% then we obtain the two parametric equation
[®]=\[K] [@] + [K;] @], (4.27)
4
where [K] =’§l Y [Kll

Two-parametric integral equation already has been encountered in problem on
vibration of rod in a field of centrifugal forces.

If the equation (@] =g [K.] [@] has the eigenvalue [m]<1, then for
the solution of equation (4.27) there can be used the method of simple iteration:

[®w] =X [K] [®u-1)] + [K) [Pai-1)).

The value L) is sought, for example, by means of comparison of the

maximum values.
®l=Ve+¢*+0

for the (i-1)-th and i-th approximation (See Chap. 3, Sec. 3):
[®w]l = [[®-1)lle=sp,-

Then we obtain _
|l°u_|)l - [KOI [4’(1_1)“

o= K] (@)l l-l.,' (4.28)
I MI>1, then it is possible to apply method of similar iteration.
For the equation ’ Lv]_) IK] [V]+[K.] [yl
]
we have Y Kop¥iy. s
Yoy =X@ = B JUR

Yy, » —Izl Koy, s

'Sl, 2. ....n.
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where

Fig. 20.

We shall give an example. Suppose
it is required to determine the value of
force P, causing the loss of stability of
rod (Fig. 20). The force is applied at

the center of gravity of section.

In equality (4.21) we shall take

pPn
m@)=1 h=h=m.

Then from equation (4.25) there ensues

Stability of Thin-walled (the subscript /=1 we omit)

Rod Under Action of Longitudinal

FOPCO . ' == l (K"? ‘+‘ Kls'l’ +- Klaa) ’ (16 . 2,9 )
$=L (Ky9 + Kaah + Kis39), (4.30)

8 =1 (K,,? + Ky + Ky38) + K58, ( .

L.31)

1
Kup= G2 39«.)««,«.. Kip=0: Kiyp= "”; 2 (o G
1 l
Ku=0; K.v-lfjm)dc.«r..: kb= = [0 GO &1

¢

1
Kup=Er 5 ﬁv(:.)dc.mz.: R T 5 £ jﬂcod'.dc.dcl.

¢ 1
K -EL".JJ.M““I Koss ___651“,1' g“((t)dcaal-

The calculation of the presented operators is comparatively simple, since

they contain only three different integral expressions. If section of rod possesses

an axis of symmetry, (for example, the j axis), then center of rigidity is

located on this axis (@,=0). Then equaticn (4.30) becomes independent

b= {0 @ a5, & (4.32)

and the two other will form a system.

The minimum eigenvalue of equation (4.32) corresponds to the Euler force.
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Pl-,“'f"l (/«.3'5)

4

In the solution of equations (4.27) and (4.31) by the method of successive

approximations as the initial anproximations it is possible to take
0 ) =15, 80, (5)=¢,

what satisfies conditions 7(1)=0, 8 (0)=0.

Further, we shall have

16 1
E * " =
Fm =k =k H %0 (Ra) dh, dS, + £ 1’—50(0» () d ),
Ely) ) £l 1,

(4.34)
El.ayl C1g EJ C1
b=t | 3[ 5 J 7o) () s i+t 1t 5 imo)md:.dc.)—
arn iy o g
_E/—-JJ ) &, 45,
&

In a similar manner there can be considered also more complex questions on

the stability of rods.

5. Extension and Flexure of Round Plates ‘Disksz

The indicated problem by virtue of its practical importance for calculation
of disks in turbomachines has been investigated by different methods. However,
also in it,the application of integral equations* makes it possible to construct
one of the most effective solutions.

We shall consider an axially symmetric extension of disk under action of
centrifugal forces and nonuniform heatiﬁg (Fig. 21). Parameters of elasticity of
material of disk (E and * ) are assumed depending on radius.

Problem is described by a differential second order equation relative to the

*R. 5. Kinasoshvili, Calculation for Strength of Turbomachine Disks. Defense
Ministry Publ. House, Moscow, 1954; I. A. Birger, Integral Methods of Calculation
of Disk, Collection MAP No. 6, Defense Ministry Publ. House, Moscow, 1950.
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radial displacement y(r):

ﬂ.}.ianﬂ)i‘.*.[ L mH)+2% ( )——-]u £ : (5.1)

S =(1+p) ‘_('“H)‘*'—[("FP)“] (l+u)al

l—p’

‘ —q(n
where

H-'.c' at- . . .
g is the temperature deformation; q(r) is the intensity

of body force (for case of action of centrifugal forces

q (r)=po?r, (5.2)
here P is the density of material of disk; o angular velocity of rotation), or
system of two first order differential equations (equation of equilibrium and
equation of congruence)

d R 5
2 =L i, (5.3)

Y r—)

(5.4)

where ¢, and o are the radial and circumferential stresses.

Tt is possible to construct different
integral equations of the problem, where
for practical application it is important,
so that equation does not contain deri-

vatives of the initial parameters of

F j isl h ¢ t .

equations (5.3) and (5.4) from 6 and to r, we obtain

1 4 (oq —3,) A .
o,--.—[j‘—L—“L—d'x—P‘"’s"xhdfn‘i'a"m]- (5.5)
e aQ

o.—e,-—(1—p)a,—£f-!’-:‘3'-‘-(o.-a,)4r.— )

—E(ct—a.t,)-l—%(a..—po,_).
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The subscript & in these dependence indicates that the value of the parameter
refers tor = a. By introducing or from relationship (5.5) into equality (5.6),
we obtain normal integral equation relative to

y(r)=os () —a.(r).

This equation has the form

y(=— ""S'—,’:—ygr.)dr.—fg Sy () dn+

n
14 3 ) E
+-L'h:-!-'pw’5r‘hdr,—ﬁ(zt—a.t.)'i'—f—‘(’h"h‘n - (5.7)
— ‘—h" R,3q.

We shall write it out in following form:
.V(’)‘Ql(')}qn(’n)y('n)dﬂ‘*'Qt(’)iqa('l)y (n)dn+  (5.8)

+f+oafi
where

QO=—13" a0=7. QO=—E k="

f= l:“pm*Sr,hdr,—E(at—z.t.).

For a solid disk (3,,=%4)

fi=g (—p) =130,

For a disk with an aperture (3,,=0)

The value 3. is determined from the 'boundax-y condition
ar(b)=0n.
For the solution of equation (5.8) it is expedient to apply method of linear
approximation (See Chap. 2, Sec. 4), which turns out to be in the given case more
effective, than the method of successive approximations.

The problem can be reduced to the normal integral equation
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() =Nar+Fy (1) +3,.F, () + 5Fs (1),

NC.-: _.z"_)ra(.ﬂ- j A (r,) % (rl) d’l —
.

_ET(')j'h(,,)a(r,)a.(r,)dr,. (5.9)

where
d(r)zs g 420

A () E(r) " R(NE()

Calculation of disk in elasto-plastic strains can be made on the basis vof
equations, valid for an elastic disk with variable parameters of ehsticity*. This
remark refers also to the calculation of disk for creep on the pasis of theory ol
aging. Problem about symmetric flexure of disk (Fig. 22) has much in common with
problem on extension.

The differential equation of flexure of disk with a calculating of nonuniform

heating through thickness of disk and of forces in middle plane, has the form

g-&-:—’(lnrﬂ) + [—"'— -{:7 (lnrD)+T‘r(~’-;—)—

1 Nl
—‘;;'__D" I(’)- (5.10)

f(r)-'-:—‘(l +p) —:T(InrD) 4:;‘.". [’_if { +|.)]._

— L@@+ + 5 (e ndn— QN2

In this equation

¢(r) -- angle of rotation of the normal to middle plane of disk;

D( - 5:’)-- cylindrical rigidity of disk on the radius r;

N'gg,{l -- is the tensile radial force in section r;

*1. A. Birger, Certain General Methods of Solving of Problems in Theory of
Plasticity, "Applied Mathematics and Mechanics, Vol. 15, No. 6, 1951.
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q(n)

-- is

the distributed load, perpendicular to middle plane of disk;
At(r) --1is

the difference of temperature through thickness of disk.

Temperature at the point, at a
P d distance z from the middle plane, is
%o _ M,y assumed equal
7 Ao
a ' [ t(r, 2)= '((r))

Fig. 22. Flexure of Disk. By using the equation of equilibrium and
equation of congruence relative to the bending moments, we arrive at the normal
integral equation

M, (r)=NM,+F (), (5.11)
where J D(ry)(1 —p*) N, (ny) ¢ rk
=S( ‘F.’“‘ + ri“)y D(-,,) M, (ry) drydr,—
a a

—S 1= "Mr ('l) dry;
n
e

F(r)=j[‘f(r)—f(n)) (i — 20000

At (ny)a(ry)
h(ny)

—j Q(r)dr, +9, [ab‘f () —aN, In —'—] +

¢ D 1—p? N, (r
0= [[(PENET + P arg
L]

Q) =—+feCandn-

aQ,.

We now turn to a consideration of the general case of flexure of disk (round
plate).

The differential equati on of problem has the form

. m[ Pw 24pow_ 1w 3 dw 2
et Rt T R A At 0r00’]+ (5.12)
+_"..‘.’3 b 0w !

ow
+ art r or rn 06 r dr( e 0_)—




where w(r, §) is the flexure of middle plane of disk.
The temperature of the point of disk
At (r, b)

JE(r, 6, ) =—-—h7)’—‘ z,

the function At
T(r 0)=0+wa2—D
The radial ¢, and circumferential % stresses in middle plane of disk
nossess axial symmetry.

For composing the integral equation of problem, we shall use the equation of

equilibrium in integral form

»
M= s Selin - LS 18 B 0

[ ]
1 b ;
+75Sqr.dr,dr,+V,,—’—(b—r)+—:— 1"’.,

r.

where M, Ms and M,y are the radial, circumferential moments and torques
ver unit of length; V,.- is the transverse force on the contour r=>o.,
We shall consider, as example the case, when
g=q (r) cos®. (5.14)
Forces are absent in middle plane of disk, and the heating is nonuniform.
In accordance with equality (5.14)
w (r, 8) =w (r) cos 0,
By introducing values M. My and M,s expressed by the derivatives %

into equation (5.13), we shall obtain a boundary integral equation relative to
L20 ()

’(’)--%S'lq’(’l)drl—‘ol(’) Din)

x[l"(’:"‘"a—‘—'ga‘j.’:‘!‘(’t)d'a]d’; YT )SSG(’:)’sd”nd’x

,D() Va®) (0— ')"'—D—(';Mn()-’r
Ho-oga)(34 25y o). O
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If disk (round plate) has its external contour free, and the internal fixed,

then the magnitude V,, and M, are given,

w(@)=0 < (a)=0.

Equation (5.15) y=Ky+F
is solved by simple iteration, at K|<1 and by similar iteration at K >1.

In a number of cases, already the initial approximation
Yo=F
gives a result with an accuracy of an order 10 to 15%.

Equations, analogous to (5.15), can be composed also for more general cases

of loading.

6. Symmetric Deformation of Shells of Rotation

The problem has numerous applic ations in structural engineering and machine-
building.

The solution of problem by means of finding accurate solutions of corresponding
differential equations encounters great mathematical difficulties, especially for
shells of variable thickness. In connection with this it is of interest to ‘
establish integral equations of an axially symmetric deformation of shells of
rotation and to apply approximate methods of their solution.

The scheme of the shell is shown in Fig. 23.

The temperature of the material of shell is assumed linearly variable Sy
thickness ,

t-=t.+—:’-z,
where te 1is the temperature of points of middle surface;
At is the temperature drop through thickness of wall.

Ordinary variables are used: angle of rotation of normal to middle surface

s  dw (6.1)
g
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and the magnitude n=RsQ,
(6.2)

where Q -- transverse force in section.
Relative to these variables the
following system of differential equations

is obtained

& (Rydn), Ty (R an_ 4 (were
ls(Ekds)+ EA (R.'H')d: a( EA ")

_.( +p_:)‘;:5: + Fq(s) +F,(s) =9, o
.‘“ ds[ R.(—slnv-ﬂs—cosy)]— (6.4}

i BE an _cos 9 RS
D(R. cosg+p = smq) s + 9, (s) .1;.

In these equations E and p are
Fig. 23. For Calculating Shell

of Rotation. parameters of elasticity, variable along
the arc of meridan s; D=-'—2-(-|g_-‘;; is the cylindrical rigidity. The

functions Fe(s) F,() and @,(5) are determined by the equalities

P a[ P %
"(')"""Z 2x cos pEA ;;(sln')—" 2rERsint ¢ ]

L e T

d Ry R, (6.5)
— (o2 )-(2 ’”‘)—"'v
F,(s) -(1 —&)m qat, — X(R.at,). (6.6)
& @)=+ Y r— L L[RemeD+0 Y]

where P is the resultant of all forces (concentrated and distributed) applied to
intercepted nart of shell. In composing the integral equations, we shall select as

main unknown functions

dv
7 (s) = g

6.8
o} o

This makes it possible in subsequent calculations to avoid differentiation of

initial geometric and elastic parameters, which essentially iower the accuracy of
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the calculation.

Further, one should consider the equality
n(3)=3'l"’ (€) &+ (a),
609
0(:)-]0(" (t) dt + @ (a). (6.9)
e
By introducing the values (6.8) and (6.9) into equations (6.3) and (6.4) and by

integrating both sides of equality from g to s, we will obtain a system of normal
1‘("=~"1,‘”+N,,0‘”+’l](a)f"+?.“’ @) St
+98(a) 114+ 8" (@) f1 + [
¥V e Ny 3V + Ny 8 49 (@) £ + 7V (@) [+
+’(¢)Iu+0‘”(a)f..+fa- (6.10)
]
N.m‘“--;b (14 D)t j W () a3 dE+

integral equations:

where
'l

W) & — j (e (sm].

s &
1) o Fh
Ny = 22 j 50«" ) db, &
1 ]

3
‘ »
DR,uu,S sin';s-,‘m (:') &, &,
L e

Nu"l“).‘=-' -

3 ¢
1
Ny 80 = D‘w'[ 5 (‘;"jo(“ (&) dty +p sin 500 (E))Dcotvf:—

—Dpcos g fam ® dEJ.

The functic fy entering into equation (6.10), will be determined by the

’
e[ )iz,
" o

dependencies

R)REN T TEN T Eghe

Sampio Bt fu=Ti(—a) fi=0.

/"--Dkun jsmvds Jaa=0,
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l'. - DR. sing R

Sum o Do Rastinge /,-——(SF (=)de+)’F (c)dc)

[
: ( 2:039 cet 9di Dpcos?-i-D,p,cosv,).

D Rysing

Jom— nn.'m 5 o, (8) sin p di.

In matrix form, equation (6.10) has the form

:"”]‘[x.':x: I o«n]”yc i+ 171 (6.11)

The equation contains four initial parameters.
G=10@): GC=1"(@) C,=d(a); C,=d1)(a).
We now consider, as an example, a conical shell (Fig. 24). In this case, we

shall have

] ¢
- E()A(s) ! o (& 3
Nyt = =2 j GEW)S 0 () &, o +

() A (%)

n.u"-ﬂ,'l“'—jﬂ j f $O () dt, &,

Nuy'= — =% j j " @) dt, &,

+,._.(_,)f‘mm‘€_£(s)‘h(s)f£ kG __ o) @) gz

"-.‘"".p_(,'jj.ﬂt—j“”al)d!ld“‘

toa j DO+ ® W () -2 j Iors

If thickness of the conical shell and parameters of elasticity are constant,

then equation (6.11) is considerably simplified:

[] ¢
N..u‘"-—:-jﬂnm(eo dt, dt,
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Tin @

st
Eh 1
Nybio = £ L ”om(e,) dt, dt,
ae
1 1 o
N'l"(l)--s—— —"jsﬂ(l,(il) dsldsl
[}

‘aﬂ.

2 (1
Nt = [ (000 ) at,

fu"':—"‘%- fn’=°:—.

,"_:"1(1_%). fr=0; Fig. 24. Conical Shell.

/ll-—Fl‘('-'g‘)v Ju=0, fu=.—:“lnai2 f:o=%‘-

a @ §

The solution of equation (6.11) is made by the method of subsequent
anproximations according to scheme indicated in Chanters 3 and 4.

In a number of practical problems, it was found sufficient to use three-four
anoroximations. Another method of approximation, which may be used for solving
equations (6.11) -- especially with a gradual convergences of nrocess of successive
approximations, -- method of linear anproximation. |

For the possibility of applying this method, the normal operators must be
presented in the form Ny-,g,olz"l ® d:.

For operators, entering into equation (6.11), this is readily attained by
means of integrating by parts.

Thus, for example, for conical shell we v;rill obtain

; ’ 3
Nun® =EOXE 1 5) [ 30 @) d — EQXE [41.6) 50 ) 42+
@ e

r'] 2
2 ¢ _EGARG) (C_v () :
e 5"‘ O s Seama‘ ® &,

N,.om..ﬂ{f:.'f._(‘)fom(g) & ..i:%ﬁ‘ﬂé'gom ) dt,

e a8
"-_'/(,' ) e I .
Nun' o(-)f e dE+sD(s)-5 O,

1¢-




J AT ""So« (5 d:— -—SB()O(”(E)dH-

,,,mjomp(o om«)de——"—’jwc) a,

l ]
& > (2@,
”(')".5 EEOAE 5 s

The method of linear approximation is applied in the form, as discussed in

Chap. 3, Sec. 6.
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