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NATURE OF SOLUTIONS OF NONLINEAR SYSTEMS
WITH STOCHASTIC INPUTS

Richard Bellman®*

Paul Brock®**
Mikiso Mizuk]i*®e

1. Irntroduction

The advent of large scale digital computers, with trelir
nhenomenal speed and accuracy of computation, has created a
challenge to mathematicians to use the full capatilities of
the machinery to advance knowledge witnin their fileld. It 1is
in this spirit that tnis paper has bteen written.

Nonlinear dynamics protlems prove difficult to investigate
analytically or numerically 1f probabilistic terms are involved
in their equations. This paper develops a technique for hand-
ling problems of this type that is practical only If a high
speed computer is avallatle to perform the attendant compu-—
tatlions.

The method 18 general, Lut will be applied to the Van der

Pol equation:

X + x(x2 - 1)x + x = r(t),

(1)

X =y, X=v, at t = to-

*The RAND Corporation.
**Purdue University, University of Michigan,.
*#*Purdue University.
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(A dotting indicates differentiation with respect to t.)
The classical problem considers r(t) = A cos wt., We

consider r(t) to be a random function with a known protaba-—

bility distrivution.

2. Theory

We first use the phase plane form of the equation:

X =y,
(2)
y = — A(xe -1l)y — x + r(t).

Let x(t ) = x y(t,) =y, r(t ) =r, Ot =f

n’
where x(to) - u, y(to) = v. The Euler solution procedure

for the foregoing equation 1is:

41 = *n * Ayn

(3)
Yoy = 9o +A{— )\(xg = l)yn -x + rn}.

Let us now define a protability function

(4) P = P(C{x\, vy )iu,v),

the probatility that at time tn the integral curve with
initial conditions Xog = U, Yo =V, will satisfy the
condition G(Xn, yn).

It 18 assumed that PO 18 known at all points of the x,y

phase plane. Then if r 18 a fixed variatle,
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p « P(C(x

n+l n+l’ yn+l); u,v)

- P(C(xn + Ayn, Y 4-6{— k(xi = l)yn - x + rn});u,v)
= P(C(x,, ¥,(r));u,v).

Since r(t) has a given protability distritution, a(r),
we must average the right-hand side over r. This may be

expressed as
(5) Py (Xo41r Ypepiuov) =/ B(F,, ¥, 5u,v)da(r).

Let ttis formalism now te applied to a question of
stability. This requires an investigation of Pn for large n,

where C(xn,yn) 1s:

x| < a,

If a and b are chosen sufficiently large, Pn will
converge to 1 uniformly throughout tltie plane provided that the
solution 1s stat.le.

If a and b are varled for different runs to determine
those values of a, !t at which Pn first tecomes less than 1
for large n, a region may re set up in which the integral
curve must lie. Tris may te refined to an outer—tangential

rectangle !y considering C(xn,yn) to te

pobcr
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It may be suspected, or desired, that the integral curves
lie within a given region. To test this, one assumes the

condition C(x,y) tQ be f(x,y) <0, e.g.,

fix,y) = X2 + y2 - Ra, Circular region,

f(x,y) = (x2 = A2)(y2 = 82), Rectangular region,

2

f(x,y) = (x2 + y© - R2)(x2 + y2 = Re), Annulus.

Again, one tests for Pn converging to 1 for large n,
uniformly over the plane.

In practice, the infinite (x,y) plane is replaced by a
finite cross grid. Suitable adjustments must be made to define
the value of the integral in the neighbtorhood of the boundary.
The computational and theoretical errors assoclated with this
procedure are:

1. Truncation error of the Euler process: This can be-
come very bad in the relaxation region and transition regions,
for large A.

2. Computational Roundoff: This btecomes larger for
smaller values of 4, tut is not a function of grid size.

3. Intragrid interpolation effects and grid—edge errors.

4, Truncation error associated with the numerical inte-
gration.

Neither the effects of these errors, nor their bounds,

have been investigated in this paper.
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3. Illustrations

To 1llustrate the method descrited in this paper, equation
(1) was considered, with r(t) assuming the values <+ k and

— k with equal probability. C(xn,yn) was chosen as

xn <a, yn b,

Two values of A werc considered, A = ¢+ 1, A= -],

It waa expected that the nature of the results for small k
would not vary too much from k = O,

Por k = 0, one has the standard Van der Pol equation. Por

A= 1, there exists one periodic solution towards which all
(1)

solution is shown in Figure 1(2). For 28 = b = §, Pn should

solutions converge rapidly The graph of this periodic
converge to 1 for all (x,y).

The value A\ = — 1 was sBelected to exemplify a more varied
probability distritution. If in equaticn (1), the substitution

©=~t 1s made, equation (1) as a function of T would become
[ 2 M
X —=Mx“=1)x + x = (7).

For negative 1\, this equation 18 i1dentical to the previous
case. Hence, the same unique periodic solution exists, but with
the y orientation reversed. However, as a periodic solution to
the t equation, it is unstable. The singular point at the

origin becomes stable.

(1). Brock, P., "Methods in Nonlinear Vibrations," M. S.
Thesis, N.Y.U., 1947,

(2). Andronow, A. A., Chaikin, C. E., "Theory of Oscillations,"
Princeton, 1949, p. 251.
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Fig. |
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Figure 2 18 a plot
(x2 -1l)y - x =0,

These are isoclines of horizontal slope for the family of
integral curves. The direction of slopes in regions A - F
are shown in the figure. PFor (a,b) chosen as (1,1) and
large n, 1t 1s clear that any curve starting in region F
will have Pn = 0 while any point curve starting in region E
will have a Pn = 1., For regions A, B, C, and D, 1if a curve
starts within the 1limit cycle, it will spiral towards the origin,
hence, Pn = 1, If it is outside the 1limit cycle, the integral
curve will diverge from the 1limit cycle and the value of Pn
will become 1 or O depending on whether the integral curve enters
region E or F first.

Figure 3 indicates the isoprobabilistic lines for the case
of k=1, Ae—1, Pigure 4 indicates the isoprobabilistic

lines for the case k = 0, A = -1,

ol iay o ot ¢
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k =1
A=~ 1

a8 = b =]

Fig. 3
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Fig. 4
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4, Computer Techniques

The results 1llustrated in Section 3, and additional results
were obtained on the Datatron Computer at Purdue University.
Since r(t) = + k with equal protability, the integral

resolved itself into a sum,
P (x y ju,v) = llp (§+ §+'u v) + P (X7, y5;u v).1
n+1 n+1o n+19 » ‘? n np n) » n n, n» » ’

—t -
+ 4
xn = xn = xn yn’

—t 2
-y, + A{- x(xn - l)yn S R k},

<
3

-- 2
3=y +A{- Mg = 1)y, = x - k}.

A was chosen as + 1 or -1 on different runs, k was chosen
as 1, .1, O on different runs. (a,t) was chosen as (1,1)

and (4,4).
A grid of 2701 points (51 x 51) was selected for ranges

of u,v;

(a)t) = (]nl)’ (8,1) = (uou))

- 2.5 ¢uc¢?2.r, 0O <u<ob,

- 2.5 < v 2.5, O <v <o,
Au = Av = .1, OQu = Av = .1,
At = .1, At = .1.

Initial values of PO were selected for all points of the
grid; Py =1 for all noints (x,y) satisfylng x < a, y <b;

PO = 0 for all other points.
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The arguments for equation (5') were computed in a standard
fashion, and probabilities assigned by linear interpolation over
the four adjacent corners for points within the grid, and by a
like extrapolation for points falling outside the grid.
' Poa1 values\were based upon a full grid of P values.
When all 2601 Pn+1 values were calculated, the entire grid
function was then replaced. This procedure constituted one
cycle.
On the Datatron, one cycle required an average of 70
minutes.
Thirty cycles were calculated for the i1llustrative figures

3, 4 above.
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