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JUMMARY

A feasibility criterion for transportation problems 1in
which certain variables are inadmissible is shown to yield a
simple feaslbility test for such problems when the admissible
set has the form of a staircase. A simple rule is then pre—
sented for singling out a feasible solution for staircase
problems. As an application of these results, it is shown
that a particular case of the problem of minimizing the number
of carriers to meet a fixed schedule can be solved explicitly

by an appropriate interpretation of the staircase rule.
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A FEASIBILITY CRITERION FOR STAIRCASE
TRANSPORTATION PROBLEMS AND AN APPLICATION
TO A SCHEDULING PROBLEM

D. R. RFulkerson

INTRODUCTION

In this note we apply a general feasibility criterion for
transportation problems in which some variables are inadmis—
sible to obtain a simple feasibllity test for such problems when
the admissible set has a certain form, dubbed staircase (Q2).
As a by—product, an easily applied rule is presented for pick-
ing out a feasible solution to the latter problem when one
exists.

As an application of these results, 1t is shown that a
particular case of the problem of minimizing the number of
carriers to meet a fixed schedule [l] can be solved directly
by an appropriate interpretation of the procedure for selecting
a feasible solution. Thus, for example, the following problem
has an easy solution. Suppose given a network which is simply
a chain, and assume that pickup points Pl' oo’y Pp are at one
end of the chain, discharge points Dl‘ a0 Dq at the other
end, and that each arc of the chain has a given traversal time.

If, for each origin—destination pair Pr' DS, there 1s given a

1,2

rs’ ‘rs’ at which a loaded car-

fixed schedule of times t
rier 18 to leave P_ bound for D, (there to be unloaded and
reassigned to pick up any other load that 1t can reach in time),

how many carriers are required to meet the schedule?
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l. FEASIBILITY AND REDUCTION CRITERIA

Various necessary and sufficient conditions for feasidility

of the transportation constraints

n

inJ-&1 1 =1, ..., m
(1) J=1

m

f_’)(}“jsbJ i1, Uy D

i=]

xij 2 0

where certain of the variables are inadmissible (i.e., fixed

at zero), say

(2) x,, = 0 for a given set J of pairs (31, J),

1]

are easily deduced from either the max—flow min—cut theorem [2]
or from Gale's feasibility theorem [3] for network flows. If
the set 7 1s not specialized in any way, these conditlons

(see Theorem 1 below) are impracticable to apply unless m or
n is small. However, for the case we will be interested in,
the conditions become very simple, as will be seen.

To state Theorem 1, we requlire some definitions. Por
each row 1 = 1, ..., m of the m by n transportation array,
define the span of I (deuoted 6(I)) to be all of those columns,
say Ji’ AT Jk’ for which ijl, P55 b ijk belong to the ad—
missible set X = 7 ; extend this definition to subsets

I -{}1, 500 ié} of the rcws by
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6(I) = 6(11) SRR 6(1‘).

If I and J are subsets of the rows and columns, respectively,
having the property that ijed implies either i¢I or jeJ, the
set (I;J) is a covering of X [4]. In particular, the set of
all rowe (or the set of all columns) is always a covering. A
covering may be termed proper if no proper subset covers AX.

Thus, for example, in the transportation array of Pig. 1,
where inadmissible cells are shown crossed out, 6({1, 2}) -
{2, 3, 5, 6, 7} and (1, 3, %; 2, 5, 6) is a proper covering
of X .

Pig. 1

m
Theorem 1. Suppose a, > O, bJ > 0, and let A = iz%ai.

Then the following statements are equivalent:

(1) the constraints (1) and (2) are feasible;

(11) for every set I of rows, Z:al < X b, ;

1€I jes(1) d
(111) for every (proper) covering (I; J),igla1 + ,§ij > A.
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Proof. Assume (1). Since the rectangle I X 6215 is

contained in 7T , we have

Zai'Z EXU'Z > xuSE z x“SZ

1el 1el j=1 1¢I Jes(I) 1=1 jes(1I) Jeos(I)

verifying (1i). To prove that (1i) implies (111), notice that

tf (I3J) 1s a covering, then 6(I) 1s contained in J. Hence

L Zai= Z_aiﬁ 2 __bJS ZbJ
1¢l 1el Jeos(I) JeJd
The proof will be completed by showing that (111) implies
(1). To do this, we stall use the max—flow min—cut theorem
applied to ¢ representing network N for the constraints (1)
and (2).
Let N consist of nodes s, Pys =oos Ppo Qys 0 Qe t and

¢irected arcs

sp, with capacity c(s, pi) = a, (1 =1, ..., m)
th with capaclty c(qJ, t) = bJ (3 =1, ..., n)
Py with capacity c(pi, qJ) = ® (1) e ox ).

The constraints (1) and (2) are frasible 1f and only if the
valuc of a meximal flow from 8 to t is A. Hence it suffices
to show that every cut capacity exceeds A. A cut in N 18 a
partition of the nodes into two sets X, X with seX, teX; the
capacity c(X, i) of the cut 1s the sum of the capacities of

all arcs leading from X to X. Thus

b

2



and c¢(X, X) is infinite unless the set of arcs Pyq, with
picx, qJ(Y is vacuous. If this set 1s vacuous, however, we
see from the definition of N that 1jeot ilmplies that either

pieY or qJeX. Hence (I; J), where

I = {1|piei}
J = {JIQJGX} ’

is a covering of Or, and consequently (111i) implles

e(X, X) = a, + b A.
1§I 1 J%G 3 2

Thus all cut capacities exceed A, proving (1). Obviously (11i)
may be restricted to proper coverings, if desired.

The proof of the last implication of Theorem 1 establishes
the following corollary of the max—{low min—cut theorem.

m n
Theorem 2. The maximum of z; X:xiJ sub’'ect to the
1<) J=1

constraints (2) and

(3) .
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is equal to the minimum of ) a, + )

bJ taken over all proper
ie¢I JeJ

coverings (I; J).

With respect to a given covering (I; J) of &, we shall
say that a cell 1jeor 1is singly covered or doubly covered ac—
cording as just one of the relations 1¢I, JeJ holds or both do.
The next theorem provides a reduction criterion for the problem
of finding a feasible solution to (1) and (2) (or what is the
same thing, for maximizing the total sum of variables subject
to (2) and (3)).

Theorem 3. Suppose 1jeor 18 singly covered in every proper

covering of or. Then setting xiJ = min (ai, bJ) yields a new

transportation protlem whose feasibility 1s equivalent to that

of the original problem.

Proof. The new problem i1s obtained from the old by re-

ducing a, and b, by min (ai, bJ). Clearly i1f the new problem

J
15 feasible, 30 i8 the 0old. On the other hand, i1f the original
problem is feasible, then (111) of Theorem 1 holds for all

proper coverings (I; J) of or. Since i) 1s singly covered in
each proper covering, both sides of every inequality

1§Ia1 + J%ij > A are reduced by the 3ame ammount 1n the new
problem, and consequently (111) remains valid.

Notice, conversely, that any cell 1J which 18 doubly covered
in some proper covering may not be a candidate for immediate
evaluation in checking the feasibility of a given problem, or
in solving the related maximum problem. Thus the futlility of
attempting to devise direct methods of solution which will work

for all such problems is apparent. However, for the particular
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class of problems dealt with in the next section, Theorem 3

does provide such a method for the determination of a feasible

solution 1if one exists.

2. STAIRCASB FEASIBILITY PROBLEM

The transportation constraints (1) and (2) will be said

to be in staircase form (with K steps) if they may be written

as

8, ry

L Xyy =8y (1 = 1,...,r1) z:xij < b‘J (J-l,...,sl)

J=1 1=1

52 Tk

L Xyq =8y (1 = rl+1,...,r2) L %y 8 bJ (J-sl+l,...,s2)
J=1 1-r1+1

K :K

) Xyq =8y (1L = P+, ,rK) N Xyy & b‘J (J-aK_l+1, ,BK)
1 1-rK_1+1
where 1 < ry < o0 L rgy = m, 1l ¢ B, < B, GG By = n.

Thue the constraints (1) and (2) may be pictured as shown in
the example of Pig. 2, where ry = L r, = 2, r} - 3, r, = 5,

and 8, = 1, 8, = 3, By = b, sy = 8.
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Pig. 2

To discover whether (1) and (2) may be put in staircase
form, simply arrange the rows in order of increasing number
of admissible celils, the columns in order of decreasing number
of admissible cells. If the constraints are not stalrcase
after this arrangement, no rearrangement will work.

Define, for k = 1, ..., K,

Ty

Ak = E a4 (ro = 0)
i-rk_l+1

8k

B, = NEEY (8, = 0)

J-Bk_l +]

The following theorem is an easy consequence of Theorem 1.

Theoren &. Suppose a, > O, b, 2 0. If the constraints

(1) and (2) are staircase with K steps, the problem is feasible

if and only 1if

K

Kk
ZIAi < 3 By, k =1, ..., K.
1=1 1=1
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Proof. Either of the conditions of Theorem 1 leads directly
to the condition of Theorem 4. Suppose we apply (111). Notlice
that the only proper coverings of O are those (I; J) where
I = {rk_1+ R I m}, J = {1, ce, Bk-l}' K =1, ..., K + 1.

Thus (111) 1s equivalent to the K + 1 inequalities

K
A > A
1=1
K
1§2A1-+ By > A
{6) K 2
Y Ay + Z:Bi > A
1=3 1=1
ﬁil
A, + B A
K&t 2

K
2.3 2 A,
i=1

the first of which 1s an equality. Writing A = '§ A1 in the
remaining inequalities gives the condition of Thi;iem b,

Using Theorem 3, a simple rule for picking a feasible
solution (» r solving the related maximum problem) may be de—
duced for staircase problems. Let Ik(Jk) be the set of indices
1=r +1, -.., 1 (J = 8, 11, -, Bk)‘ for k = 1, ..., K.
Notice that the rectangles Ik X Jk are singly covered in all
proper coverings. Thus we may select any cell 1J from one of

these rectangles and set Xyq = min (al, bJ), thereby deleting
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a row or column (or both), and leaving a smaller staircase
problem. The process may then be repeated. After at most
m+ n— 1 steps, a feasible solution has been constructed.
Moreover, since all s>ther admissible cells are doubly
covered 1n some proper covering, this is the only safe pro—
cedure to use in attempting to find a solution by the reduction
process of Theorem 3.
We also point out the obvious faot that if the row and
columns sums a, and bJ are ilntegers, the staircase rule yields
an integral solution to the feasibility problem or its related

maximum problem.

3. A CARRIER SCHEDULING PROBLEM

It has been shown in [1] that the problem of minimizing
the number of carriers required to meet a fixed schedule can
be reduced to the transportation problem of maximizing the total
sum of variables subject to constraints of the form (2) and (3).
Under certain circumstances, the admissible set for this trans—
portation problem is stalrcase, thereby permitting a trivial
solution.

The general problem may be described as follows. A reo—
tangular array of spaces is given, one row for each pilckup
point Pr and one column for each discharge point Ds' In space
r, 8 there 13 a finite sequence tr,s of positive integers
representing the times at which a carrier i{s to load at pickup
point Pr for delivery to destination Ds' In addition, two

arrays of positive integers a.¢ and b are given, where a is

rs rs



P-1188
10—2-57
-]l
the loading—traveling time from Pr to Ds and brs the unloading-
traveling time from Ds to Pr. The problem is to meet the fixed
schedule given by the array of sequences with a minimum number
of carrlers.
A particular version of the problem which can be solved
by the staircase rule is obtained by specializing the matrix

br- of reassignment times to have the form

b1 + s b1 + Chy ey b1 + cq

[brs] = | by + ey, byt wun, by +ocg

+ +
i bp s bp o N qQ

We then define

a(a, r): number of carriers required at “p 8t time a + b
b(B, 8): number of carriers available at D, at time B — c,.
Thus a(a, r) may be computed from the given table of sequences

and b(B, &) from this table and the matrix a g of loading—

r
traveling times. The range of a, B may be taken to be 1, ..., K,
where K 18 chosen sufficiently large to include all positive
a(a, r), b(B, 8).

For any given routing of carriers to meet the schedule,
let x(a, r; B, 8) denote the number of carriers located at Dg
at time B — Cg which are reassigned to pick up loads at Pr at

time a + br' Thus the conetraints
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ZX(G, r; B, 8) < b(B: 8))

a,r

2, x(a, r; B, s) < a(a, r),
B,s

x(a, r; B, 8) > 0,

(8)

x(a, r; B, 8) = 0 1if (B - cs) + (br + cs) >a+ b,

are satisfied for all routings. Conversely, any integral solu—
tion to the constraints (7) and (8) may be used to construct
routings for M carriers, where M 18 the difference between the
total number of entries in the table of sequences and the total
nunber of reassignments ) x(a, r; B, 8). Hence an integral

a,r,B,s
solution to (7) and (8) which maximizec

(9) > x(m, n; 8, 8

a,r,B,s

minimizes the number of carriers required.

If we order the rows (a, r) and columns (B, 8) of the
transportation constraints (7) lexicographically, say, we see
from (8) that the admissible set, defined by B ¢ a, 1is stalr—
case. A parti:cular interpretation of the staircase rule then
leads to the following routing doctrine: If an empty is avail-—
able at Ds at time a and if, for any r, there i{s a load sched-
uled to leave Pr at time a + brs‘ assign the empty to Fr;

otherwise, l1ook next for loads leaving the pickup points at
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times a + 1 + b and 8o on. One can apply this rule first

rs’
to construct a routing for one carrler, then (1in the reduced
table of aequences) for another carrier, etc. The resulting
routing 1s one using the minimal number of carriers.

Also an explicit formula for the minimal number of car—
riers required can be written down. Let T be the total number
of entries in the given table of sequences, and define
A(a) = Y a(a, r) a=1, ..., K

r

(10)
B(a) = ) b(a, 8) .
8

Then (see Theorem 2 ard inequalities (6)) the minimal number

of carriers is given by

K k=1 7
11) = T — min S A(a) +# T B(a)|.
Mmlf 1<kgk+1 [d:k am=1 J

We coneclude with a numerical example. Suppose there are
two pilckup and two discharge points with fixed schedules given

by the table

Dy D,

P, | 1, % 6, 7, 10, 12, 13 | 9, 15 |

P, ' 3, 5. 6, 9. 10, 12, 15 | 7, 10, 13, 1%J
and let

2 3 |

1 2 |

ora] = [oral = |

Thus we may take b1 - 2, b2 = 1, ¢, = 0, c, = 1.
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The furictions A(a) and B(a) are tabulated below:

a  A(a B(a)

1 . )
2 l 2 0
2 0 1
2 1
5 | 2 0
6 1 2
g 1 i
2 1
9 2 1
10 1 e
JL I 2 ]
12 1 1
13 1 3
14 2 1
15 0 1
16 0 P
1 0 0
1 0 1
19 0 1

The minimum of the bracketed expressinn in (11), which occurs
for k = 10, 18 14, and thus Mmin = 20 — 14 =« 6, Individual
routings for the six carrliers, obtatned using the routing rule

previously described, folliow:
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