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SUMMARY

In this note we wish to indicate some ways in which the
theory of approximation can be used to increase the range of
present day computers. Although we are primarily interested
in applying these techniques to the functional equations
occurring in the theory of dynamic programming, it should be
noted that these same methods are applicable, and even more

readily, to the classical functional equations of mathematical

physics.
What we wish to do 1s to trade additional computing time,

which 18 expensive, for additional memory capacity, which

does not exist.
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PUNCTIONAL APPROXIMATIONS AND DYNAMIC PROGRAMMING

Richard Bellman
Stuart Dreyfus

1, Introduction

In this note we wish to indicate some ways in which the
theory of approximation can be used to increase the range of
present day computers. Although we are primarily interested
in applying these techniques to the functional equations
ocourring in the theory of dynamic¢ programming, [1], it
should be noted that these same methods are applicable, and
even more readily, to the classical functional equations of
mathematical physics.

wWwhat we wish to do is to trade additional computing time,
which i{s expensive, for additional memory capacity, which

does not exist.

2. Dimensionality Difficulties

A typical problem arising in the theory of control pro-

cesses 18 that of maximizing a functional of the form

(1) J(y) -/O’T g(x,y)at,

where x and y are N-dimensional vectors related by the

differential equatlon

(2) £ = nlxy), x(0) = c.

As we have discussed elsewhere at some length, [2], [3},
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questions of this nature, although nominally within the domain
of the calculus of variations, in actuality cannot be reduced
to the point of numerical solution by means of classical
techniques.
Writing
(3) Max J(Y) - f(cp'r))
y
the theory of dynamic programming replaces the foregoing
variational problem by that of solving the nonlinear partial

differential equation

(4) ‘ég = sz ale,v) + (h(c,v),at/%) |,
£(c,0) = 0,
where
) £ f of
(5) g?“(cl,'j?;,..., CN).

For computational purposes, it 18 often convenient to use the

approximate difference equation

(6) f(c,T + &) = Max [g(c,v)A + e + h(c,v)A,T)}.

v
In terms of the capacities of modern computers, we have an
extremely efficlent algorithm 1f N =1, a scalar problem,
and a feasible algorithm if N = 2, If N = 3 or more, we

face fast memory difficulties 1f we attempt tc proceed in a
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routine fashion.

The reason for this is the following. To stcre a function
of N variables in the usual way, we tabulate the values of
the function at a set of lattice points within the domain of
interest. If there are M different possible values of Cy»

of ¢ and 8o on, the total number of grid points will be

o
MN. For M =100, and N = 3, this yields a quantity out-
side of present capabilities.

In various papers, [h], [5], we have indicated some
methods which enable us to circumvent these difficulties.
These metihods combine analytic devices with the method of
successive approximation. In this paper, we wish to present a

new method, based upon approximation techniques, which appears

to have wide applicablility.

3. One-dimensional Case

In order to 1llustrate the application of the method in
its simplest form, let us consider the problem of determining
the sequence of functions ifn(czj, ne1y>1,2,..., glven by
the recurrence relation
(1) r (e) = Max g(e,v),

v

r

]
fn+l(c) 3 st lg(c,v) + fn(h(c,v))].

Let us suppose that ¢ takes values only over [— i, 11 and

that the funoction h(ec,v) similarly assumes values over this
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interval for all c-values and all permissible v-values.

The standard approach involves a grid of values in the
interval [— L; 1] where the number of grid-points depends
upon the accuracy that we desire. Let us proceed in a
different manner. In place of considering that the function
18 determined by the set of grid-points, we shall consider
the function to be determined by a Fourler expansion in terms
of a suitable orthonormal set. For the interval [— 155 1],

a convenient set 18 the set of normalized Legendre polynomials.
Thus, for some fixed vaiue K, we write

R
(2) r(e) = kfoa“'"Pk(c)'
This 1s, of course, an approximation comparable with that of
using a finite number of grid-points.

We could envisage using a power series expansion rather
than an expansion in terms of orthogonal functions. Generally
speaking, an orthogonal expansion 18 to be preferred, both on
the grounds of accuracy and the grounds of ease of determina-
tion of the coefficients. As far as the calculation of the
values of Pk(c) are concerned, the simple three-term
recurrence relations connecting the successive members of the
sequence of Legendre polynomials make the computation of these
values not much more difficult than that of the calculation of
the powers ck

The function fn(c) i1s now replaced, as far as storage

{n the computer {8 concerned, by the set of coefficlents
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(3) A= [ao’n,al’n,...,aﬂ’n].

Whenever we wish a value of fn(o), we compute it by means of
the approximate relation in (2). Consequently, in computing

the values of f_ . (c¢) by way of (1), we require only the

n+l
storage of the set of values given by An.
There 18, however, a difficulty in this approach. The

coefficients are determined by the relations

(%) a ==(/7l fn(c)Pk(c)dc.

k,n

How are we going to calculate them? If we replace the integral
by a simple Riemann sum, we are led back to the necessity for
tabulating the values of fn(c) at a set of grid-points.

It is here that we invoke the theory of mechanical quad-
rature. In place of evaluating the integrals in (4) by means
of Riemann sums, we use an interpolation formula of the

following form:

S
(5) 0/71 r (c)P, (c)de = Jflajfn(CJ)Pk(cJ)'

-1
where the aJ and cJ are carefully chosen.

If the quantities cJ are chosen to be the zeros of the
Legendre polynomtal of degree S, and the coefficients aJ
are chosen to be the Christoffel numbers, the formula 1in (5)

1s exact if the integrand rn(c)Pk(c) 13 a polynomial of

degree 2S5 — 1.
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Since the quantities aJ and cJ are tabulated, and in
any case, could easily be determined in advance, the amount
of effort entalled depends upon the cholce of S. Since our
original approximation, contained in (2), is equivalent to
that of assuming that fn(c) 18 a polynomlial of degree R,
it would be reasonable to take S equal to R. However,
there i8 no necessity for doing this.

If we use the equation in (5) to compute the values of
the coefficient set An' it 18 clear that at each stage we
require only the values fn(cJ), J=1,2,...,R.

The computation then proceeds in the followving fashion.
Given the values of fn(cj), we compute the coefficient set

An. Using these coefficients we can determine the values of

fn(h(c,v)) which occur in (1) in the course of computing the
(c,).

new values fn+1 s

4, Discussion

Apart from the fixed set of instructions, and the values
such as aJPk(cJ) which are determ.ned at the beginning of
the process, we require the set An = [ao,n'al,n""’aR,n]
to be retained in the fast memory at the n-th stage. This is
a set of (R + 1) values.

On the other hand, a grid size of & over [— Y, Al
would require 1/56 values. In one dimension, the difference
between K + 1 and 1/6 18 not particularly important, and
the great amount of additional computation required by the

method described above can more than outweligh this advantage.
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Consider, however, the two-dimensional case. The straight-

forward approach based upon a grid size of ©® in the ) and

intervals requires (1/6)2 values of fn(cl,c2). On the

>
other hand, if we set
(1) (o),e,) = 1z (e, )P (c,)
1 f {c,,cC - zZ a P, A&, )P l¢e.),
n* 1’72 1,§=0 1y,n1*717 372

and proceed as above, we require only R(R + 1)/2 values, the
coefficients aiJ,n’ 1,§ = 0,1,...,R.
Proceeding to three dimensions, we compare (1/6)3 and
R(R + 1)(R + 2)/6, the number of coefficlents 8 g,n* Let
»
us use some typical values of & and R and compare the

values, say 6 = .01 and R = 5,10.

Dimension | (1/6)N | R=5 | R = 10
1 100 6 11
2 10“ 21 55
3 10° 56 286
4 108 126 1001
5 101% | 252 3003

We see that variational problems involving four and five
state variables which are completely untouchable by direct
methods are within the scope of the method we have outlined.
Combining this method with the Lagrange multiplier technique,
and the method of successive approximations, we have a way of

attacking previously impregnable problems.
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5. A Numerical Example

Consider the problem of determining the sequence {vn}
80 as to minimize the function
N N

(1) Fy = kflui + hkflvi,
where
(2) (a) u o= eu - uﬁ + V., uy=c,
(v) 7n must be chosen so as to keep un+1 within the

interval [— 1, l].
Introducing for N> 1 and —1¢ ¢ 1, the function

(3) fn(c) = M‘il? an

we derive the recurrence relation

(2¢ - c2 + v)|, N> 2,

2 2
(4) fN(c) = Min [c + AVE 4 1

2
fl(c) = ¢€,

This yields a simple computational determination of the
sequence {fN(c)}.

As a test of the foregoing method, this sequence was
first determined by the usual method based upca a grid of
values over [— 1, 1], and then following the procedure

described above, using the approximation
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6
(5) (o) = 22y R (o),

and a value of S = 14 4n (3.5).
Let {fk(c)g denote the sequince determined using the

grid, and {f;(czg the sequence obtained via .egendre
polynomials. A compariscn of values 1s given below for

k =« 6,

o rgle) f6(c)
1.0 | 1.782 | 1.77
8 | 1.370 | 1.36

2 153 .145
0.0 .006 | 0.0
- .2 .202 .20
- .8 | 4.876 | 4.89
-1.C | 8.666 | 8.67

As can be seen, the agreement 18 quite good.
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