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SUMMARY 

In this note we wish to Indicate  some ways In which  the 

theory of approximation can be used to  Increase the range of 

present day computers.     Although we are primarily Interested 

In applying these techniques to the  functional equations 

occurring In the theory of dynamic programming.  It  should be 

noted that  these same methods are applicable,  and even more 

readily,   to the classical  functional  equations of mathematical 

physics. 

What we wish to  do  Is  to trade additional computing  time, 

which Is expensive,   for additional memory capacity,  which 

does not exist. 
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PUNCTIONAL APPROXIMATIONS   WD DYNAMIC  PROORAMMINO 

Richard Bellman 
Stuart  Dreyfuo 

1. Introduction 

In this note we wish to Indicate some ways  In which the 

theory of approximation can be used to Increase the  range of 

present day  computers.     Although we are primarily  Interested 

In applying these techniques  to  the  functional  equations 

occurring  In  the  theory of dynamic programming,   ll].   It 

should be noted that these same methods are applicable,  and 

even more  readily,   to the  classical   functional  equations of 

mathematical   physics. 

What  we  wish to do Is to  trade additional  computing time, 

which  is expensive,   for additional memory capacity,   which 

does not exist. 

2. Dimensionality Difficulties 

A typical problem arising In the theory of control pro- 

cesses Is  that of maximizing a   functional of the  form 

(i) J(y) -/T g(x,y)dt, 

where    x    and    y    are N-dlmenslonal  vectors  related by the 

differential  equation 

(2) 4? - h(x,y),    x(0)  - c. TE- 

AS we have discussed elsewhere at  some length,     2  ,     3 |, 1 1 
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questlons of thle nature,  although nominally within the domain 

of the calculus of variations.   In actuality cannot be reduced 

to the point of numerical solution by means of classical 

techniques. 

Writing 

(3) Max J(y)  - f(c,T), 
y 

the theory of dynamic programming  replaces the  foregoing 

varlatlonal problem by that of solving the nonlinear partial 

differential  equation 

(4) |m - Max    g(c,v)  +  (h(c, v),Pf/Pc) ■, 
v 

f(c,0)  > 0, 

where 

fO ill      liL.    ^f Pf   x 
Pc      Vc^ 3c2'"'> ;cN 

For computational purposes.   It  Is often convenient  to use the 

approximate  difference equation 

(6) f(c,T +  A)   - Max   [g(c,v)A   +  f(c  4  h(c,v)A,T) 
v 

In terms of the capacities of modem computers,  we have an 

extremely efficient algorithm If    N » 1,    a scalar problem, 

and a feasible algorithm If    N «^  2.     If    N =  3    or more,  we 

face  fast  memory difficulties  1f we attempt to proceed In a 
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routlne  fashion. 

The  reason for this Is the  following.     To store a function 

of    N    variables In the usual way, we tabulate the values of 

the  function at a set of lattice points within the domain of 

Interest.     If there are    M    different possible  values of    c,, 

of    c2,     and so on,  the total number of grid points will be 

n.    For    M - 100,    and    N - 3,     this yields a quantity out- 

side of present capabilities. 

In various papers,   |4   ,   '5],  we have Indicated some 

methods which enable us to  circumvent these difficulties. 

These methods combine analytic devices with the method of 

successive approximation.     In this paper,  we wish to present  a 

new method,  based upon approximation techniques,  which appears 

to have wide applicability. 

3.    One-dimensional Case 

In order to illustrate the application of the method In 

Its simplest  form,   let us  consider the problem of determining 

the  sequence of  functions      lfn^0^   »    n "  1»2»«''f    given by 

the recurrence relation 

(1) f (c) - Max    g(c,v), 
v 

r 1 
fn+1(c)  - Max   |g(c,v)  4  fn(h(c,v))|. 

Let  us  suppose that    c     takes values only  over      — 1,   l|     and 

that  the   function    h(c,v)     similarly assumes  values over this 
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Interval   for all c-values and all permissible  v-values. 

The  standard approach  Involves a grid of values In the 

Interval     I"" 1»  l]    where  the number of grid-points depends 

upon the accuracy that we desire.    Let us proceed In a 

different  manner.    In place of considering that the  function 

Is determined by the set  of grid-points,  we  shall consider 

the  function to be determined by a Fourier expansion In terms 

of a suitable orthonormal  set.    For the Interval 

a convenient  set Is the  set  of normalized Legendre polynomials 

Thus,   for some  fixed vaxue     H,    we write 

[- 1,   l]. 

(2)     fn(c) 'io**'^0. 

This  Is,  of course,  an approximation comparable with that of 

using a  finite number of grid-points. 

We could envisage  using a power series expansion rathet 

than an expansion in terms  of orthogonal   functions.     Generally 

speaking,   an orthogonal  expansion Is to be preferred,  both on 

the grounds of accuracy  and  the grounds of ease of determina- 

tion of the coefficients.     As  far ac the calculation of the 

values  of    ?\,ic)    are concerned,   the simple  three-term 

recurrence  relations connecting the successive members of the 

sequence of Legendre polynomials make the  computation of these 

values  not  much more difficult  than that of the calculation of 

the powers    c   . 

The   function    f (c)     Is now replaced,   as   far as storage 

In the  computer Is concerned,  by  the set of coefficients 
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(3) A, n ^n'^n'-'-'^n 

V/henever we wish a value of    fn(0)»    we compute It by means of 

the approximate relation In (2).    Consequently,  In computing 

the  values of    fn+i(
c)     ^Y way of t1)»  wc  require only the 

storage of the set of values given by    A   . 

There Is, however,  a difficulty In this approach.    The 

coefficients are determined by the relations 

('»> Vn "41 r^KM*' 

How  are we going to  calculate them?     If we  replace the  Integral 

by a simple Rlemann sum,  we are led back to the necessity  for 

tabulating the values of    fn(c)    at a 8«t or grid-points. 

It  Is here that we Invoke the theory of mechanical  quad- 

rature.     In place of evaluating the Integrals In (4) by means 

of Rlemann sums,  we use an Interpolation  formula of the 

following form: 

(5) /^  fn(c)Pk(c)dc  - J^/n^W' 

where  the    a1    and    c.    are carefully chosen. 

If the quantities    c.    are chosen to be the zeros of the 

Legendre polynomial of degree    S,    and  the coefficients    a. 

are  chosen to be the  Chrlstoffel numbers,   the  formula    In   (5) 

Is  exact  If the Integrand     f (c)P (c)     Is a polynomial  of 

degree    2S - 1. 
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Slnce the quantities    a.    and    c.    are tabulated,  and In 

any  case,   could easily  be determined In advance,  the amount 

of effort  entailed depends upon the choice of    S.     Since our 

original  approximation,   contained in (2),   is equivalent  to 

that  of assuming that     fn(c)    l8 a polynomial of degree    R, 

it would be reasonable  to take    S    equal  to    R.    However, 

there  is no necessity   for doing this. 

If we use the equation in (5) to compute the values of 

the coefficient set A . it lu clear that at ^ch stage we 

require only the values     fn(c<)#    J  " 1,2,...,R. 

The computation then proceeds in the   following fashion. 

Oiven the values of    fn(c4)»     we compute  the coefficient  set 

A  .     Using these coefficients we can determine the values of n 0 

f (h(c,v))    which occur in  (l)  in the course of computing the 

new values    f-..i(c,). 
n+1     j 

4.  Discussion 

Apart from the fixed set of instructions, and the values 

such as  aiPi,(ci) which are determined at the beginning of 

the process, we require the set  A « |a0 _.*&,  ,...,aR 

to be retained in the fast memory at the n-th stage.  This is 

a set of (R + l)  values. 

On the other hand, a grid size of h    over  - 1, 1 

would require 1/6 values.  In one dimension, the difference 

between  rt W and  1/6 is not particularly Important, and 

the great amount of additional computation required by the 

method described above can more than outweigh this advantage. 



P-1176 
Revised 4-28-59 

-7- 

Conalder,  however,  the two-dimensional case.     The straight- 

forward approach based upon a grid  size of    6    In the c,     and 

Cp    Intervals requires    (1/6)       values of    ^n^0]»0?^* 0n the 

other hand,   If we set 

VVV  " ,J^alJ,nPl<cl)P/c2)' (1) 

and proceed as above,  we require only    R(R -f l)/2    values,  the 

coefficients    a. .     ,     1,J ■ 0,1,...^. i j ,n 
■> proceedlng to three dimensions,  we compare    (1/8)      and 

R(R + l)(R + 2)/6,     the number of coefficients    a. ..      .     Let 

us use some typical  values of    6    and    R    and compere  the 

values,  say    6 -   .01    and    R - 5,10. 

Dimension (i/6)N R - 5 R - 10 

1 100 6 11 

2 lO4 21 55 

3 106 56 286 

4 108 126 1001 

5 iO10 252 3003 

We see that   varlatlonal problems Involving four and five 

state variables which are completely untouchable by direct 

methods are within the  scope of the method we have outlined. 

Combining this method with the Lagrange multiplier technique, 

and the method of successive approximations, we have a way of 

attacking previously impregnable problems. 
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3.     A Numerical  Example 

Conalder the problem of determining the sequence 

so as to minimize the  function 

w 

(1) 
N    2 

FN "     Z Uk N      k=l  K 

N 
I 

k-1 
-^   ?l 2 v 2 

k' 

where 

(2)     (a)     un4l  - 2un - u^ +  vn,    u0 - c, 

(3) 

(b)     v      must be chosen  so as  to keep    u    ,     within the v   '       n y      n+1 

Interval    I— 1,  ll. 

Introducing  for    N 2 !     and    ~ 1 ^ c ^ 1#     the  function 

rN(c)  - Mln PN, 

we derive  the recurrence relation 

(M fN(c)   =  Mln 
v 

C       4    /\V       +    f N-l (2c c     + v) 

f^c) = c2. 

N 2  2. 

This yields  a simple computational  determination of the 

sequence     jfN(c)| . 

As a test of the  foregoing method,  this sequence was 

first  determined by the usual  method based upon a grid of 

values over     [— 1,   1   ,     and then  following the  procedure 

described above,  using the approximation 
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(5) fN<c)   ' kf0
ak,NPk(o)' 

and a  value of    S « 14     In  (3.5). 

Let    l^(c)l     denote the  sequence determined using the 

grid,   and    SfjC0)?     the  sequence obtained  via  .^egendre 

polynomials.     A comparison of values  Is given below  for 

k - 6. 

0 fg(c) f6(c) 

1.0 1.782 1.77 

.8 1.370 1.36 

.2 .153 .145 

0.0 .006 0.0 

-   .2 .202 .20 

-  .8 4.876 4.89 

-1.0 8.666 8.67 

As  can be  seen,   the  agreement   Is  quite good 
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