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PREFACE

This is a draft of a report which is being circulated for information
and corment. We hope to make it a chapter of a book titled Military

Planning In An Uncertain wcrld, and would appreciate any comments, criti-

cism, ideas, and examples that readers may have, This draft began as a
transcript of an informal talk and, despite some rewriting, it probably
still suffers (like many such talks) from being "fashionable." We are aware
that it has a number of other weaknesses and assume there are still others
of which we are not aware, Wwe hope to sive it a thoughtful and leisurely
review but are deferring this until we get some outside criticism,

A table of contents is given on the next page to show the relation of
this chapter to the rest of the book. The chapter may not be quite self-
contained as a paper, as it occasionally refers to other chapters; but we
trust this will be understood or overlooked,

A more complete introduction and list of acknowledgements are given

in 1M-1829-1,



P-1165
7-30-57
-2-
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INTRODUCTION®

A problem dcesn't have to be very complicated before it pgets too
difficult for even a modern high-speed computer to do in a straight-
forward fashion. One of the powerful techniques available trat will often
make a seemingly intractable preblem tractable, if not casy, and one that
is particularly well suited *o the eclectronic computer, is the so-called
Monte Carlo method. This fas'.innatle rame has been piven to any technique

which uses sampling to estirate the answer tc & precise mathematical

problem, A pame of chance is devised with the property that the average of
the scores of a larpe numter of plavs of the rame is the number being
estimated, while tre rame may te played by using rambling devices such as
a roulette wleel, dice, or coins, usually the simplest and most practical
such device from the viewpoint c¢f the computer is a table of random numbers,
Such a table presents a strange appearance to the layman. It is nothing but
a haphazard ccllection of the digits O to 9, but extreme care is taken to
see that the collection is uniformly haphazard and randome By using this
table it is possible tc simulate tre ;lay of any '~chanical gambling device,
The pame of chance can te a direct analogue of the protlem being
studied or it can te an artiricial inventicn, The only ;roperty that it

must possecs is that its avera;c sccre is the answer to tle lesired problem,

#Thie paper was largely irawn tfrom ancther japer written ty one of us,
"Use of Jifferent Monte Carlo Sampling Techniques", published by wiley and
Sons Co., "Symposium on Monte Carlo Methodc" 1976, The reader is referred
to that j;aper for a more technical discussion. %®e are indebted to wiley
and Sons Co, fcr allowing us to 1o thise
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It 13 not necessary to use the first game that comes to mind since it is
often possible to render this estimation more efficient by making changes
in the pame that do not disturb its expected scoere. The new yame may te
mere efficient because it is less erratic or prerhaps because it is cheaper
to play.

Therefore, when using the Monte Carlo technique to solve a problem,
one directs attention to three main topics:

(1) choosing the propability process (picking the game of chance)

(2) venerating sample values of the random variables on a given

computing machine (yplaying the game)

(3) desipning and using variance reducing technicues (modifying

the pame to be more efficient).
The first two of these topics were discussed in the example on the attrition
of bombters in Chapter 2, pages :6-50. The reader is referr=d to those pages
if he wishes an elementary discussion of a typical Monte Carlo problem,

This chapter will discuss only the last tcpic, how to increcase the
efficiency of a Monte Carlo calculation b proper experimental lesign. 1t
is, of course, true that in actial problems vne cannot iscolate variance
reduction from the first two topics., The methods that can be used to reduce
variance arc often sharply dependient upon the prcobability model and in gsome
cascs on tie techiiques used to venerate values of the random variables.
Alsoc, the ;reatsst rains 1n variance reducticn are often made by exploiting
specific details of the problem, rather than by routine application of
reneral principles, However, there do seem to be some general ideas on
reducing variance which can be used in many problems, OSeven techniques

gseem to be most useful. They aret
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l. Importance Sampling

2. Russian Roulette and Splitting .

3. Use of Expected Values (combination of analytic and probabilistic

methods)

L. Correlation and Regression

5. Systematic Sampling

6. Stratified Sampling

7. Specialized Techniques

While all of these techniques can be used in standard statistical
sampling problems, the first three seem to have found particular and
specialized usefulness in Monte Carlo applications as differentiated from
the usual applications in ordinary sampling. This is mainly because of the
fact that in a Monte Carlo problem the experimenter has complete control cf
his sampling procedure. 1f, for examile, he were to want a green-eyed pig
with curly hair an1 six toes and if this event had a non-zero probaoility,
then the Monte Carlo experimenter, unlike the agriculturist, could immediate-
ly produce the animal.

In order to illustrate the pereral nature of the tectniques, we will
apply them %o a very simple example--so simple, in fact, that the reader
will have to exercise his imagination in order to see that there is a problem.

Consider the problem of calculating the probability of ottaining a total
of three when two ordinary dice are tossed. Each die is of the staniard sort
with six faces labeled from one to six and constructed so that each face has
the same probability (1/5) of being on top. This prcblem can, of course, be
solved analytically. Any particular combination of the dice has a prob-

ability equal to 1/6 times 1/6 of occurring. Since there are two combinations



which make three (one-two and two-one), the probability of getting a three
in a randem tcss of the dice is 2/36 or 1/18.

In deing the problem by Monte Carlo one could simply tcss the dicel N
times, count the number (n) of successes (threes) and then estimate the

probability (p) of success by

/\
P " x (1)

Typically,'?’iiffers from p; that is, the estimate has a stetistical
error. This statistical error is usually measured by the standard deviation

2
o. In this case,

o - 1-

£l

The percent standard deviation nr standard errcr is then given by

1000 « 100 %:2
3

P (3)

As is intuitively clear, and as is shown by formula (3), this error
goes dewn (though not very ra;idly) as the number of trials is increased.
In what follows, we will illustrate other ways than increasing N by which

the error can be decreased. These are very important in practice, for to

lUsually one would not toss physical dice, but simulate the tosses with
the aid of a table of random numbers.

21n Monte Carlo problems the error has statistical properties whicn can
usually be described in the following manner. The ;robability that the
absolute value of the error will be larger than m¢ is given by the following
tablet m Prob,

Ny 250
1.00 .32
2.C0 .05
3.00 003
.00 .0001

¢ is called the standard deviation and in our case is given by equetion (2)
above., A more complete exjlanation of statistical errors can be found in
almost any elementary book on statistics.
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diminish a standard deviation ten fold by simyly increasing N requires that

N be increased one hundred fold. We can often get improvements of the same

order by very simple changes in the sampling procedure.
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1. IMPORTANCE SANMPLING

If by some method we can increase the effective value of p, equation
(3) shows that even though the same N is used, the percent error will be
reduced. This increase in the effective value of p can be obtained very
easily. We could, for example, bias the dice so that the probability for
either a onc or a two would be twice as yreat as usual, that is 1/3 rather
than 1/6. This could be dcie with physical dice by "loading" them, or with
mathematically simulated dice by using a biased table uf random numbers.
If a one and two each had a probability 1/3 of occurring, then the proba-
bility of getting a three, instead of being 1/18, would be four times as
great or 2/9. The percent error is then cut by slightly more than a factor

of two. Of course, equatica (1) can no longer be used to estimate p but
p = 1ln

LN (L)

must be used instead. The 1/L in equation (L) is called a weighting factor.

By using it, the distortion introduced by the biased sampling is removed.

It is vital to appreciate that even if p were difficult to compute (as we

are in effect pretending) the weiphting factor is still easy to compute.
This illustrates the general iiea of Importance Sampling--which is to

draw samples from a distribution other than the one su;yested by the problem

and then to carry along an appropriate weichting factor, wich, when multi-

plied into the final results, corrects for having used the wrong distribu-

tion. The blasing is done in such a way that the probability of the sample's

being drawn from an "interesting"3 region is increased; the probability that

The words "interesting" and "uninteresting" refer to the amount of
effort or interest the sensible calculator would show in the region.
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it comes from an "uninteresting" region is correspondingly decreased. The
reader should verify for himself that it would be good to carry the bias
illustrated in the example to its natural limit; the probability of getting
a one or a two could be increased by a factor of three, making the proba-
bility of obtaining one of these numbers 1/2 and making the probability of
obtaining any other number zero.

This natural limit is not the ultimate limit. Fror example, if we tossed
the dice one at a time, then we might want to bias the second die different-
ly from the first one. In particular, if we were willing to let the biasing
of the second die depend on the outcome of the first throw, we might consider
ihe following scheme.

1. Increase the probability of getting a one or a two on the

first die by a factor of three. This means, of course,

that there will be a zero probability of getting any other

numbers.

2. If the first iie comes up one, increase the probability of

the second die ccming up twe by a ractor of six; if the

first die comes up two, Increase the probability of the

second die coming up one ty a factor o! six.
If 1ls sch re is fcllowed every toss of thu dice will yield a three so that
the number cf successes (n) will te equal to the number of trials (N). The

weighting factor will be 1/3 times 1/6 or 1/ and tre estimate will be

n

PT Tw (5)
)
18

which is exactly egual to p. we have ievised 2 sampling procedure which has
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zero variance, It is always possible to design an Importance Sampling
scheme that has zero variance, but the computation needed to compute what

the proper biasing procedure may be is exactly that needed to solve the

original problem and in some cases even more.

Examelesh

One of the major problems on which Monte Carlo is used is to calculate
the probability that nuclear particles will penetrate shields. In such a
problem, the particle starts at one side of the shield, and has collisions
of different types with the atoms of the shield, finally being either re-
flected backwards, absorndd in the shield, or transmitted. The calculation
can be done by Monte Carlo by simulating the particle histories with the
aid of random numbers. As this idea of Importance Sampling suggests, the
simulation should not be faithful. For example, the following types of
random events (typically) increase the probability of penetration and
should be emphasized at the expense of egually, or even riore probable, but
less "important," ones:

a., collisicns resulting in a forward direction of motion

be collisions that result in small energy lcsses

c. long forward jumps and stort backward jumps (the so-called

exponential transformation)
d. survival vs. absorption (if carried tc the limit, this can be

looked on as an application of Use of kxpected Values).

44L50me of the examples discussed at tlie end of each section may be
hard for the non-prcfessional te fellow, He will find that if he skip-
them, the later text starts again from the beginning.
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The calculator is, of course, confronted with the problem of how far to go
in altering the sampling. In deciding this he must use a cumbination of
judgment and calculation which cannot be entered into here.S

Another important application of Monte Carlo is in the design and
analysis of reactors. Here again we are studying the various ways in which
nuclear particles--particularly neutrons--behave in matter. It is found
that those which wander away from the center of the reactor will not con-
tribute much of interest to the process. On the contrary, these neutrons
which wander back toward the fissionable material are the ones which con-
tribute most to the answer. The sampling muszt then be designed to sample
more frequently among the second type of neutrons and less frequently among
the first type of neutrons.

Monte Carlo is also applied to Operations Research problems. In a
typical problem of this type we might try to calculate the vulneratility of
a piece of equipment our or an airfield to some cffensive weapon. In such
cases, one often Monte Carlos, for example, the error of the missile which
is doing the destruction. The distribution of errors is determined by a
parameter called the Circular Protatle krror (CEP). The CEP is the radius
of the circie about the aiming :oint into which the missile will fall 50%
of the time. 3Since we are interested herr in destruction, if we Monte Carlo
from a distribution defined !rom a smaller CEP than that which obtains in
the real world, we will find that more of the interesting jrocesses (hits)
happen in the sim:lated experinent tuan would happen naturally. Tre less

interesting processes (misses) are then discriminated ayainst,

5

See previcus reference or HAND re;crt :M-1237 "Applications of Monte
Carlo."
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For another example in the same field, cousider queuing problems. In
these problems one i1s often interested in the mean and variance of the
waiting time. One then wishes to tias the sampling to emphasize long waits.
This could be done by sampling from new distributions that simulate increased
traffis, increased servicing time, or increased servicing requirements.

It is worth noting that any set of sarples obtained with the use of
Importance Sampling is less effective in estimating certain auxiliary quan-
tities than a set that has been obtaired irn a straightforward fashion. For
instance in the shieldiny ;rotlem, a samjling design that leads to a. accurate
estimate of the probability o! penetration will be very poor for estimating
the probability of reflection; in the reactor j;roblem the suggested sampling
would not be pocd at estimating leakage; in the vulnerability problem we will
lose information about light lamage and the location cf misses; and finally
in the queuiny problem we will not get a good estimate of the idle time of
the servicing facilities.

It is in fact usually (but not always) true that to design an efficient
Monte Carlo calculation one must direct attention to those things he is really
interested in and ignore other aspects of the ;roblem. It may even be better
to do more than one calculation than to ccmpromise the goals of any particular
design. This can be a seriocus disadvantage if the comjputation is lengthy, as

the decision about what aspects to concentrate cn must ve made early and there-

fore may easily be made wronrly.
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2. RUSSIAN ROULETTE AND SPLITTING®

Let us assume that the dice are tossed one at a time and that the cost
of the problem is measured by the total number of individual tosses. Now
it is immediately, clear that if the first die is tossed and if it happ:ns
to come up three or greater, it will be impossible to et a total of three,
no matter how the seccrd die ccmes up. Under these circumstances, there is
nc point in making the sccond toss and we can simply record a zero for the
experiment. This makes i* unnecessary to toss the second die 2/3 of the
time. Therefore on tre average we will dc 1/2 fewer tcsses in an experiment.

In more com;licated examples where the sampling is done in stages, it
is often possible to examine the samplc at each staye and clarify it as being
in some sense "interecting" or "uninterestir,." The sensible calculator is
willing tc spend more than an average ancun* cf work on the "interesting"
ones and lecss on the "uninterestiry" ones. This can he done ty splitting the
"interestiny" sam, les into inde;endgnt tranches, thus petting more of thenm,
and by killiny off some ;ercent (in the atcve example 100%4) of the "uninteres-
ting" ones. The first ;rocess 1o O:litting and the second Russian Roulette.

The "killing off" 1s uscally dore by a aur;lementary came of chance. If
the sup;lementary cane 1o lcst the sam;le s killed; if it is won the sample
is c¢ournted wit: an 2xtra wolcht ¢ mare 2 Por tie fact that i* ran scme risx
of beinp willeds The pune has o e~ sl [larity t¢ the Russian pare. of
chance played witl revelwv ors and fore’ . ads--wience the name,

1

The idea of Husslan Jdoulette and Splittin - is similar in spirit to the

-
J
Jc*h ttie iaea ani the names are due tc J. ven Neumann and S. Ulam.
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sequential sam; ling schemes of quality control, though quite different in
irtail, I*t was first thoupht of in connection with particle diffusion
problems, Particles that et intc interesting regions are split intc n
independent sub-particles, each with one n'th of the weight of the original
particle. Particles that pet into uninteres.ing regicns are, in effect,
amalgamated into a gmaller number of heavier particles. In this way the
calculator achieves his yoal of allocating his elfort sensibly.

Most of the examples mentioned in Importance Sampling also could be
used to illustrate the use ot Russian Roulette and Splitting. However, there
are differences. In Importance Sampling the samples are forced into the
regions and preverted from entering "uninteresting" regions. Sometimes,
theuprh, thds 1s hard te arranre--particularly when the sampling distributicn
is not given explicitly, but a ccmplicated process fo- _ tting sample values
is given instead. In these circumstances we may have very good estimates of
the reiative "importance" of different repions and still not be able to
arrwnpe for t'e proper biasing., We can tnen use Russian RHoulette and
Splitting whicn, in eflfect, dees tre same thing ad hoc; that is, we wait to
see what reprion 1s entered anq then decide what the size of the sample

shiould be.



3, USE OF EXPECTED VALUZS

If the sampling is being done in twc stages, then even if we aren't
clever enough to calculate the comtinatorics of the whole problem, we still
might be clever enough to notice that there is nc point in tossing the
second die; that is, once the first die is tcssed, it is trivially easy tc
calculate the probability of obtaining a total of three. For examjle, when
the first die comes up one, the cnly way we can get tle three total is for
the second die tc come up two. This event obviously nhas a prcbavility of 1/6.
Similarly if the first die comes up two, the only way to get three is for the
gecond die to be one. This event also has a probability of 1/6. Finally,
all the other possitilities for the first die (three to six) have a zero
prorability of givine three. If we record the probabilities rather than
toss the second die, then it is a fact that the average of these probabili-
ties is an estimate of p.7 This meti.od simultaneously reduces the number of
tosges we need by a factor of two and decreases tre variance, so that tle
tosses we do make are mcre effective,

The possibility ¢f uding exjected values tc jreat alvantuare cccurs

frequently ir practice., The illustration 1s not artiticial, 1u many

O

probabilistic protlems, muc:. of trne varlance or 'y .ctuaticn is introduced by
a part wnicn can e calculated walytically, wnile awctier ;art which is hard
to calculate analytically may, .n tact, nct intrciuce zuch fluctuation. In

these cases the sensible calc.lator comuiirs analytic and jrebatilistic

met! ods--calculating analytica 1y trat whkich ig easy and Monte Carloing that

It is - robably werth while t. ;cint cut thar the Use of nxpected

Valueus is quite different from using an ox;-ct d-value mciel {see Jlapter

P

1), The fermer is exact and the latter is an np:roximaticn,
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which is hard.

Exam;les

Expected values can be used in all the problems mentioned under Impor-
tance Sampling. In the shielding problem, for example, instead of countiny
the particles that succeed in piercing the shield, we can calculate the
probability after each ccllision that the particle would go directly through
the shield. An unbiased and improved estimate of the penetration is ottained
by summing these probabilities.

Another applicaticn of the same idea is in the calculation of multiple
scatterin, effects in nuclear cross section measurements. In this calcula-
tion one simulates a scatteringy experiment in which the main interest is in
the numter of particles that enter a detector. This probability may be very
small, say of the order 10 ° or 10-6, so that if one sampled in a straight-
forward fashion, tlere would be practically no counts. It is, however, very
simple to calculate the probability that the jparticle will enter the detector
from any point in the system. 1f these probabilities are recorded, rather
than the number of jparticles counted, one usually finds that the percent
variance i3 enormously reduced, factors of 10 being typicel. The factor
is larger in this case than in the previcus (shielding) example because in
tris jroblem many samples tend to get intc a region wWwhere the particle has
a relatively high (though absclutely low) probatility of gettiny into the
detector; in the jrevious problem this is rnot true unless Importa:ce
Sampling or lussian iloulette and 5;.itting is aleso used.

This ideca can be app.ied to more perneral ;roblems tlan particle diffu-
sion. For example, in vulneratility studies, it is often true that the

problem being studied involves several stages and that in the final stage
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there i3 pgiven a probability p of achieving or not achieving & kill. It
stiould be obvious to the reader at this pcint that it would be wrong to
sample from this binomial distribution; rather, the p's themselves shculd be
recorded and their average used for the estimate.

A similar situation occurs in the particle diffusicn problems mentioned
previously. Usually there is a ncn-zerc probability that the particles will
be abscrbed after they have had a collision. This binomial process could be
sampled, but it is yenerally more accurate not tc sample, but cimply to
weight the particle with the probability of survival, multiplying all the
probabilities together after it has had all its collisions. This increases
the average length (number of collisions) of a history and therefore its
cost, but this effect is usually dwarfed by the decrease in variance.

Another way to use expected values is tc inteprate a sample over the
initial conditions. ¥er example, in partic.e diffusion problems, it is not
much work to translate, rotate, or reflect histories (thus retting new ones)
and then averaye these translated, rotated, or retflie-tei histories over their
& rriori jprctabilities.

The three techniques discusse: above can te mcst effective in realistic
applicaticns. The autrnors are fariliar witn cases in which cach techrnique
has, by itsolf, decreased tle effective variance !y facters of the order of
107 to 10, In wrst cases this means chan,/iry the ;rctlem from one whicl.
cannot be ione lecause 1t would be too ex;ensive or lenpthy tco one which is
easily aone on moler: comjutines macrines or cver. Ly hand computers. However,
these large retuctions were al. asgociated with [ hysics or engireering
problems. In Uperaticn Research applicaticns the reductions while impcrtant

are much nore moiest, They teni to fall in the ranye 2-100., This is still
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of value if the problem is at all lenythy.
The techniques that we are now going to discuss are, in general, not

as efective as the three already mentioned. lowever, they often are very

2asy to use and may yield wcrthwhile imurovemen®s.
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L. CORRELATION AND REGRESSION

Correlation or regression is used when we are goiny to make comparisons
or calculate differences and wish to eliminate irrelevan*t fluctuations which
do not affect the comparison or differences.

In order to illustrate this technique, it wili be necessary to change
the problem slightly. Assume, for instance, that the proprietor of one cf
the raming establishments in Las Vegas wants tc change the rules in fcrce at
his dice tables. Under current rules, if a ; layer tcsses a ¢, 3, or 12, on
the first threw of dice, the j;layer loses. I1I: he tosses a 7 or 11, he wins,
and if he tosses a L, 5, 6, v, 9, or 10, he will win or lose, depending on
whether or not that number or a 7 comes up first in his subsequent throws.

Now let the rule change beiny considered be the interchange of the
roles cf 3 and L, and assume that, unlike most of the ;roprietors in Las
Vepas, the cne we are considering is unsornisticared ani wan's to letermine
by sampling what the chanvre in nis revenue will be. The cuvious way to do
this is to run two sets of experiments, one with the old rules and one with
the new rules, and then com:iare the two exjerirmentally-determined revenues,
Under these circumstaices, one 13 subtract.r, two relatively larpe, fluctu-
ating quantities to tletermine a small quantity. I peneral, this vielis a
process with & AaTPEa | aroeiil enrer.

Trhere is a tetter way tc do thris protlem.  (nst'ead of running two inde-
pendent ,ames, the jprojrietor couid run only ore yame and apply both sets of
raies simultaneously *'c tils pane.  an lact, he can croose to estipate the
di fference in revenue Jdirectly rather tran tie revenue that would be achic ved
vnrter earh et 2f rules.

This clearly arcunts tc plasiny the following pame:
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1. Whenever a 3 comes up, continue to toss the dice until

either a 3 or a 7 comes up. 71 the first happenstance,

record a minus two, since under the c¢ld rules the customer

would have lost a dollar, but under the new rules he wins

one; in the second happenstance, record a zerc because

under both sets of rules the customer loses.
2. Follow similar process if a L comes up.

If a number other than 3 or I comes uv terminate the nlay

(WS )
.

then and there amd record a zero. (Because of this rule,
the effects cf chance fluctuaticns in the proporticnate
number of times tha' the numbers 2, 5, 6, « . ., 11, 12
come up are eliminated from the comparison.)

The specific game that is played is quite different from the two ganes
that are being compared. In this case there are three sources of savings;
firs* only one set of ,ames is ;jlaved, and second the number and kinds of
chance fluctuations that can affect tne results are greatly reduced and
lastl;’ the stop rule makes the average yame sherter. It is in fact generally
true that if we wish to compare two or more situations, we can, by combining
this compariscen into a sinyle protlem, reduce the work substantially. As in
the exam;le, only one problem, ratler than several, has tc be done, and the
direct estimate of the difference can usually be made more accurately than
estimates of separate individual quantities.

This is a substantial virtue of the Mcnte Carle method. In many com-
nlicated problems we are not actually interested in absolute values but only

in comparisons., We ma: wish, for example, to know it Strategy A is better

than Strategy B, or if Enpi:eerin, Desirn A is better than Enpineering Design B,
g) > E) ¢ “) g
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We might, in fact, not even helieve the absolute values because the idealiza-
tions are so rough, but do believe in the existence of the qualitative
featuras implied by differences in the calculated performances. Monte Carlo
can then be used to estimate the thing that we actually desire to know and
that we believe, ana we can thus bypass the estimate of less imjortant
quantities., Usually however, we can obtain these less important quantities
also, but at some extra cost.

Correlated Sampling can also often be used to test the accuracy of an
approximate theory. If the approximate theory hapvens tc be an exact! treat-
ment of an idealized situation, and if the idealized situation happens to te
"structurally" similar to the unidealized situation, then it is often possible
to design very =fficient sampling schemes tc calculate the difference between
the id-alized and unidealized situations. The answer tc the yroblem posed by
the unidealized situation can then be cbtaired by addiig topethier the results

cf the approximate analvtic calculation and the Monte Carlo difilereiice calcula=-

tion.

Comparing Dilterent Bombing Strategics

If a strategsic or tactical bomoing campaign is studied ty Monte Carlo,
one usually has tc estimate the effects o!f the follcwing sequence of random
events,

1. Nurber of aircral't tiha' avort

2. Numter of airc.aft stot down vy area ‘efense on the way into the

target
Namter of aircralt Liadl stlay tnreol o noan cational errors
L]
L. Numger o aircraft shot down by icosl icfencse a* tle torget

€, weatrer couditizis ocver tarret [affects recc .naissa.ce and CEP)
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6. Place where bombs land

7. Damape done

s Number of aircraft shot down by arca (efense on the way out

of the target area

9. Number of aircraft that don't ,et back for miscellany of

minor reasons.

In comparing different bombing strategies it is often cffective to use
correlaticn tc cut down the sample size required to get significant informa-
tien., If the correlation is done by using the same random numbers the com-
puter cannot ugse a single list of random numters in secuence in the two
problems, for they would soon get out of step. He can either throw away the
excess rardom numters or, what is sometimes better, save them for use on
later strikes. For example, if a larger raumter of targets were attacked cn
the first strike of one of the s‘ratepgies, the extra random numbers that
were used to determine the weather on these excess targets can be saved. If
in a later strike arn excess number of tarycets is attacked under the other
strategy, the previously saved random numbers can then be used on these
targets. Correlation can t:us te achieved by using the same random numbers
whenever the two s*trate;ies yive rise to the same type of contiryencies--
even 1f they are cn different sir:xes witn different planes and targets.

Because the point is sometimes misunaerstoci, we woul: like to emphasize
that when the results of the same tipe of contingencies are beiny correlated,
the continpencies io not necessarily t.ave the same detailed character, If
for example in Strate, v A, n1 aircraft come up tc the area defenses and in
Strategy B, n2 aircraft are used, the protlems can still be correlated by

using the same ramiom numbers in comjuting the numver that survive. This is
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true as long as the picking is so arranged that the degrees of succecss are
monotone functions of the uniform random numbers, so that fluctuations in
the values of the uniform random numbers affect the twc situations in the
same qua.itative way.

If the different strategies are such that a Jefinite type of event is
all-important to the cocmparison, then ccrrelation by weiphting may be better
than by using the same random numbters. For example, if the effect of differ-
ent types of defensive armament is beiny studied, the same kill probabilities
could be used for the erem; fighters in the sampling, and welghting factors
carried along to account for the differences bein; studied. The correlaticn
may be higher if this is dcne, recause exactly the same number of bombers is
shot down each time, so all of the subsequent history is the same. If the
correlating were done by using the same random numvers, different numvers of
aircraft would be shot down and the actual prcyress of the two strategic
campaigns mignt be quite different., It wculd still be possible tc obtain
correlation by using the same random numters for the same contingéncies, but
it is unlikely that the correlation would te as hiph. weiphting will, of
course, not work well if by its use one is forced tc use probability ‘lensity
functions for the sam;ling which will themselves introduce a lot of variance
because the sampling is then not geod Importance Sampling for all the cases
beiny considered.

Another case where welivhtine might be preferable to using the same
random numbers would be when two different reccrnnaissance devices were being
compared. The ;ossible weatrer situations can then be classified according
to the followiny criteria:

1, Both devices wocrk
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ce One works ard tre other does not
3. Neither works
Only situation 2 makes a difference t-tween the two Jevices so that in
the sampling only it sncuid be allowed tco uccur., 4: 1 ard ¢ cccur, the
sample would give zero for the estimate, suo trey need not ve calculated;
only the fraction r of time ' Ley occur i3 reeded. Account of this is
automatically taken rty the weiyhtins Yacters. IY instead of welgphting
factors the random nurmters were usrd tc ic the correlatine, then (i-r) of
the time the sample would be caliculatine zero and be wasted, If instead of
being an all or nothing situaticn the levices tave different probabilities
of working as the weather changes, then the appropriate motiflication must

te mide in the samnrling. Tiis las® 13 as much an example of Im;ortance

Sam;line as cf Correlation.
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5. OYST:MATIC SAMPLING

If we are doing a multi-stage sa.pling problem, it often turns out to
be very easy to do the first stage systematicall.. For example, in our
problem, if we are goirny to toss the dice one at a time, tren there is
really no point in actually tossing the first die. If, feor example, we
were planning on getting £00 samples, we would exvect on the average that
aacl die woculd come up one about 100 times, twe anothar 100, and sc on. It
is easy to show that we dc rnot bias tre resiits i! we assume that the first
100 tcsses of the first die actually Jdc ccme up one, the seccnd 1CC tosses
of this die come up two, etc. and so cnly toss the seconi die. The main
adva.tage in loiny this is that we have eliminated the error caused by
fluctuations in the propecrtions of ones, twos, etc., wnich would result if
the first toss was raniom.

In practice, hcwever, doirng the firs® ctase of the sampling systemati-
cally does not usually leai to suts*tantial mjrovements in efficiency.,
senerally, in fact, it will oniy redice the numver cf samjples required bty

relatively few :ercent--say ° t¢ 0. However, 1t ordinarily loes not cost

-

anything to apply this tecluigee, 50 tnat tiere ig nc peint in not using it.
Also, it is sometimes invergstin, tius tr estimate 10w t.e rxjmched score
derends cn what ha;jens at the first :*ve. Aiout the only ' ime we may not
be able t~ usc it convenlently i1s when we ic not £now 1o atlvance how ti; a
sample we will want, and even then it may oo te {ractical.

The main a:rlicatic:. ~f Lyatematic Sam: lin, is in thcge nuiti-staye

protliems where it {5 trlvial tc calewlate the atrivution of events at the

firse stage. In that case, the sunling sro.it be done syscomatically.
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6o STHATIFIYD CAMPLING

This technicue is a sort of corbinaticn of Importance Sampling and
Systematic scampling. Fcr examrle, if we werce only a little bit sophisti-
cated and were doing the systematic samplin, :escribsd above, we wouli coon
notice tnat threre is no point in rconsidering .he 40O tosses in which we had
assirned the values three to six fcr tle first toss of the die, since under
these circumstances, we can ncver et 1 total of three. T.erefore, ;e might
gvstematically divide the sample into halves rather than sixths. In the
first halfl we wnu:ll say that the first die came up cne, and in the second
nalf that the first die came up two.

In theory, this metiod couls v as rowerful as importance Samjling.

In actual nractice, the fact that you have tc sample systematically turns
out tc tecrease sharply the numter of jlaces in which it can bte used con-
veriiently. ‘towever, at thcse plac-s in a calculation where it can be used,
i1t 18 usually better than Imrortance sSampling and 1n any case never wcrse.
There{cre, wrenever the costs cf the two techniques are comparable, Strati-
fied Samiling is preferable tc importance Sam:ling.

The last remarx on the ap;:icaticns of Systematic Sampling also applies
to Stratified sarplinst it is usually usetul when it is trivial to calculate
the distritutinn of events at the Uirst ctace., There 1s on.y the additional
fact that in mcre general j;rohblems ne must hLave some idea o the relative

importance where iryjortance is defined differently from the systematic

samj liny case,
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7. SPFCIALIZID T ChNIQUES

1f one were throwing the dice one at a tine in a naive fas:ion, it would
he a mistake to ceparate throws into auilsjoint ;airs and lock just at these
pairs L0 wee i they had rroduced any threes, Fer exam;le, cn2 can lock not

on.y a* dice oze ani tw ani *hen at tiree and four, but alsc dice twc and

I3

~

ive, One will ther. nave doubled to a first

three and also fewr and
approximaticn thle tetal ¢ffective number of rtirows for the sane amcunt of
werKk. Actually this doublingy is not as effective as cne mipht first think
because trere is a hip! correlaticn tetween cucce:ssive throws and, therefcre,
the fluctuvaticn will rot be 1ecreased as much as if all the :(airs had been
inde; erdent. Hewever, th:is tecniique snould be used because it §s ecsentially
e el

Yor anciher example, assume that one har;ened to have a maciine wilcen
could ‘l‘row, s34y, six dice at a time. Une way tc use tnrnis machline would be
tce simply ,rrou; tre six dice into three disjci:nt pairs which wouid correspond
to ttie naive —stirate. A much tetter way would le to consider all pessitle
airs of dice *ha*t co.ln he obteined from the six. This is ot as difficult
as miynt seem a* irst plance. Cne wo.ld Tirst calculate the tctal number of
possibie jalre that one o 1L have (5 x /2 ® 1) and *hen by superficial
ot servation “ind the number cf pairs wrden coulir yielt & total of tnree (i.e.,
if there are m 2's and o l's, there are m x n ;airs that«ll yield }'s; the
estinate . *11 then e » x o /1Y fer tnat sam; le).

Tre reocder will unccubtedly thine ¢f many cther s;ecialized estimates

that derend upen tie fact tha* ne is s;ecifically calculatin, the prerability

we are indebted tc J. T, ichacker for 9.pcectinge this idea.
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of getting a three on a Jhrow of two dice and w'ich could not be generalized
to other problems. This lack of generality is no reason for not investing

at ?ast a modest effort in looking for such methods and using them.

* 8P
It is probatly clear to the reader that the prctlems faced ty the Monte
Carlo experimenter in trying to cut Jown his statistical fluctuations are in
some respects similar to those that are faced in alrcst auy application of
sampling. Therefore, much: of the [iterature ¢f sta'istics iu relevant to
the preblems we have bteen considering. Lo fact, a Tairly complete discussion
of the fifth and sixth techniques, &d to a slightly lesser extent, the pre-
ceding two, can be found in many 3tatistics textbccks; only the first two 79
not seen to be upplicable t¢ crainary statistical practice and rhave tlierefore
not been discussed. For this reason it is ver: valuatle tc have prcfessional
statistical help in designing these calculaticns. However, if one Las to
chooge between a person whc is mainly interested in statistics and one who is
mainly interested in the problem itseit, experience has shown that, in this

field at least, the latter is jreferable. This last remark is not intenced

as a slur on statisticians, but simuly to amplify a comment made earlier, that,

"the greatest gains in variance reduction are olten made by oxploitlng specific

details of the problem, rather than by the rcutine application of general

jrirciples.”
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