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PREFACE 

This is a draft of a report which is being circulated for information 

and comment. We hope to make it a chapter of a book titled Military 

Planning In An Uncertain Vicrld, and would appreciate any comments, criti- 

cism, ideas, and examples that readers may liave. This draft began as a 

transcript of an informal talk and, despite some rewriting, it probably 

still suffers (like many such talks) from being "fashionable," We are aware 

that it has a number of other weaknesses and assume there are still others 

of which we are not aware. We hope to give it a thoughtful and leisurely 

review but are deferring this until we get some outside criticism, 

A table of contents is given on the next page to show the relation of 

this chapter to the rest of the book. The chapter may not be quite self- 

contained as a paper, as it occasionally refers to other chapters; but we 

trust this will be understood or overlooked, 

A more complete introduction and list of acknowledgements are given 

in rtM-1829-1. 
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INTHODUCTION» 

A problem doesn't have to be  very complicated before  it gets too 

difficult for even a modern high-speed computer to do in a straight- 

forvard  fashion.    One of the powerful   techniques available  that will often 

makp a seemingly intractable problem tractable,  if not   easy,  and one that 

is partici.larly well sultan to the   electronic computer,  is the so-called 

Monte Carlo method.    This rask.l^nat 1° nam-1 has been f'ivon to any technique 

which uses  sampling to pstinatc  the  answer tc a precise mathematical 

problem.    A game of chance  is devised  with the property that the average of 

the  scores of a large number of nlays of the game  is the  number being 

estimated.    While  the game .THV b'j  played by using /ambling devices such as 

a roulette wheel,  dice,  or coins,  usually the  simplest and most practical 

such device  from the viewpoint of the  computer is a table of raidom numbers. 

Such a table presents a  strange appearance to the layman.    It is nothing but 

a haphazard  collection of the digits 0 to 9| but extreme  care is taken to 

see that the-  collection Is uniformly haphazard and random«     By using this 

table it is possible tc  simulate  the   play of any   '^cha-iical gambling device. 

The  gttru,' of chance  can De a direct analogue of  the  problem being 

studied or  it  can  Le  an artificial  invention.    The only property that it 

must possess is  that its average    sec-e  is  the  answer  to  the   lesired problem. 

3 
This paper was largely irawn from another gaper written ly one of us, 

"Use of different Montr- Carlo Sampling Techniques", published by Wiley and 
Sons Co., "Symposium on Monte Carlo Methods" 19:6. The reader is referred 
to that payer for a more technical iiscussion. We are indebted to Wiley 
and Sons Co. for allowing us to io thiSo 
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lt is not necessary to use the first Rame that comes to mind since it is 

often possible to render this estimation more efficient by making changes 

in the game that do not disturb its expected  score»    The new ^ame may be 

mere efficient because it is less erratic or perhaps because it is cheaper 

to play. 

Therefore, when using the Monte  Carlo technique to  solve a problem, 

one directs attention to three main topics: 

(1) choosing the probability process (picking the game of chance) 

(2) ,'cnerating sample values of the random variables on a given 

computing machine  (playing the game) 

(3) designing and using variance reducing techniques  (modifying 

the game to be more efficient). 

The first two of these topics were discussed in the example on the attrition 

of bombers in Chapter 2,  pages 1:6-50.    The reader is referred to those pages 

if he wishes an elementary discussion of a typical Monte Carlo problem. 

This charter will discuss only the last topic,  how to  increase the 

efficiency of a Monte Carlo  calculation by proper experimental design.    It 

is,  of course,  true that  in act lal problems one  cannot   isolate variance 

reduc+ion  from the   first two  topics.    The methods that   »jan be used to reduce 

variance are often sharply dependent upon the probability model and in some 

cases on t;ic techniques used to  renerate   values of the random variables. 

Also,  the f-reat' st pains  in variance reduction are often mad'"1 by exploiting 

specific  details of the problem,   rather than by routine application of 

general principles.    However,  there do seem to be  some general ideas on 

reducing, variance which can be used in many problems.    Seven techniques 

seem tc be most useful.    They aret 
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1. Importance Sampling 

2. Russian Roulette and Splitting ' 

3. Use of Expected Values  (combination of analytic and probabilistic 

methods) 

U.     Correlation and Regression 

5. Systematic Sa-njltng 

6. Stratified Saiipling 

7. Specialized Techniques 

While all of these techniques can be used in  standard  statistical 

sampling problems, the first  three  seem to have  i'ound particular and 

specialized usefulness in Monte  Carlo applications as differentiated from 

the usual applications in ordinary sampling.    This is mainly because of the 

fact that in a Monte Carlo problem the experimenter has complete control of 

his  sampling procedure.    If,   for example, he were  to  want a green-eyed pig 

with curly hair ana six toes and if this event had a non-zero probaoility, 

then the Monte Carlo experimenter,  unlike  the agriculturist,  could immediate- 

ly produce the animal. 

In order to  illustrate  the  general  nature  of the  techniques,  we will 

apply them to a very simple  example — so simple,  in  fact,  that the reader 

will have  to exercise his imagination in order to  see  that there is a problem. 

Consider the problem of calculating the probability of obtaining a  total 

of three when two ordinary dice  are tossed.    Each die  is of the  standard  sort 

with  six  faces labeled from one  to  six and constructed  so  that each, face  has 

the  same  probability  (l/6)  of being on top.    This problem can,  of course,  be 

solved analytically.    Any particular combination of the dice has a prob- 

ability equal to l/6 times l/6 of occurring.    Since  there are two combinations 
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which make three (one-two and two-one),  the probability of getting a three 

in a random toss of the dice is 2/36 or l/lb. 

In doing the problem by Monte  Carlo one  could  simply toss the dice    N 

times,  count the number  (n)  of successes (threes)  and  then estimate the 

probability (p) of success by 

P * (1) 

Typically, p differs  from p;   that is,  the estimate has a statistical 

error.    This  statistical  error is usually measured by the standard deviation 

2 
<f.       In this case. 

N& 
T— (2) 

The percent standard deviation or  standard error is then given by 

100<r  .   100 ¥ (3) 

As is intuitively clear, and as is shown by formula (3), this error 

goes down (though not very ra;:idly) as the numoer of trials is increased. 

In what follows, we will illustrate other ways than increasing N by which 

the error can be decreased. These are very important in practice, for to 

Usually one would not toss physical dice, but simulate the tosses vlth 
the aid of a table of random numbers. 

2 
In Monte Carlo problems the error has  statistical properties whicn can 

usually  be described  in  the  following manner.     The probability that  thr 
absolute  value of the error will  be larger than mö' is given by the  following 
tablet m prob. 

.6? c^O 
1.00 .32 
2.00 o05 
3.00 0Oü3 
h.oo .0001 

ö" is called the standard deviation and in our case  is given by equation (2) 
above,    A more complete explanation of statistical errors can be  found in 
almost any elementary book on statistics. 
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diminish a standard deviation ten fold by simply increasing N requires that 

N be increased one hundred fold. We can often pet improvements of the same 

order by rery simple  change« in the sampling procedure. 
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1.    IMPORTANCE SAMPLING 

If by some method we can increase  the effective value of p,  equation 

(3)  shows that even though the same N is used, the percent error will be 

reduced.    This increase  in the effective value of p can be obtained very 

easily.    We could,   for exa.-nple, bias the dice so that the probability for 

either a one or a  two would be twice as  ^reat as usual,  that is l/3 rather 

than i/6.    This could be dene with physical dice by "loadin/r"  them, or with 

mathematically simulated dice by using  a biased table of random numbers. 

If a one and two each had a probability l/3 of occurring,  then the proba- 

bility of getting a three,   instead of being l/l8, would be  four times as 

great or 2/5.    The percent error is then cut by  slightly more than a factor 

of two.    Of course,  equation (1)  can no  longer be used to estimate p but 

p    -    1 n 
U* (M 

must be used instead.    The  l/h in equation (U)  is called a weighting factor. 

By using it,  the distortion introduced  by the biased sampling is removed. 

It is vital to appreciate that even if p were difficult to compute  (as we 

are in effect pretending)  the weighting  factor is still easy to compute. 

This illustrates the general idea of Importance Sampling—which is to 

draw samples from a distribution other than the one suggested by the problem 

and then to carry along an appropriate weighting factor, v^iich, when multi 

plied into the final results,  corrects for having used the wrong distribu- 

tion.    The biasing is done  in such a way that the probability of the sample's 

3 
being drawn from an "interesting"    region is increased}  the probability that 

The words  "interesting" and "uninterestinr" refer to the amount of 
effort or interest  the  sensible calculator would  show in the region. 



P-1165 
7-30-^7 
- 9 - 

it comes from an "uninteresting" region is correspondingly decreased»    The 

reader should verify for himself that it would be good to carry the bias 

illustrated in the example to its natural limit; the probability of getting 

a one or a two could be increased by a factor of three, making the proba- 

bility of obtaining one of these numbers l/2 and making the probability of 

obtaining any other number zero. 

This natural limit is not the ultimate limit.    For example,  if we  tossed 

the dice one at a time, then we might want to bias the  second die different- 

ly from the first one.    In particular,  if we were willing to let the biasing 

of the second die depend on the outcome of the  first throw, we might consider 

the following scheme. 

1. Increase the probability of getting a one or a two on the 

first die by a factor of three.    This means,  of course, 

that there will be a zero probability of getting any other 

numbers. 

2, If the first  lie comes up one,  increase the probability of 

the  second die  coming up two  by a factor of six;  if the 

first die comes up two,  increase the probability of the 

second die  coming up one ty a factor of six. 

If     ils  sch' j.e is  followed  every toss of thu dice will  yield a three   so  that 

the number of successes  (n)  will  re equal  to the number of trials (N).    The 

weighting  factor will be  i/3 times 1/6 or l/    and the estimate will be 

p    -    n 
IM (b) 

-    1 
TH 

which is exactly equal to p.    We  have   :evised =   sampling procedure which has 
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zero variance.    It is always possible to design an Importance Sampling 

scheme that has zero varianc«, but the computation needed to compute what 

the proper biasing procedure may be is exactly that needed to solve the 

original problem and in some cases even more. 

Examples 

One of the major problems on which Mont« Carlo is used is to calculate 

the probability that nuclear particles will penetrate shields.    In such a 

problem, the particle  starts at one  side of the  shield,  and has collisions 

of different types with the atoms of the shield,  finally being either re- 

flected backwards,   absoroed in the  shield,  or transmitted.    The calculation 

can be done by Monte  Carlo by simulating the particle histories with the 

aid of random numbers.    As this idea of Importance Sampling suggests,  the 

simulation should not be  faithful.    For example,  the following types of 

random events (typically)  increase the probability of penetration and 

should be emphasized at the expense of equally,  or even more probable, but 

less "important," ones: 

a. collisions resulting in a forward direction of motion 

b. collisions that result in small  energy  leases 

c. long forward ju^ps and short backward Jumps (the so-called 

exponential  transformation) 

d. survival  vs.  absorption (if carried  to  the  limit,  this can be 

looked on as an  application of Use of Kxpected Values). 

Some of the  examples discussed at  the end  of each  section may be 
hard for the non-professional to  fellow.     He will find that if he  skip' 
the«, the lat«r text starts again from the beginning. 
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The calculator is, of  course,  confronted with the problem of how far to go 

in altering the  sampling.    In deciding this he must use a combination of 

judgment and calculation which cannot be entered into here. 

Another important application of Monte Carlo is in the design and 

analysis of reactors.    Here again we are studying the various ways in which 

nuclear particles—particularly neutrons—behave  in matter.    It is found 

that those which wander away from the center of the reactor will not con- 

tribute much of interest to the process.    Qn the contrary,  these neutrons 

which wander back toward the  fissionable material are the ones which con- 

tribute most to the answer.     The sampling must then be designed to  sample 

more frequently among the second type of neutrons and less frequently among 

the  first type of neutrons, 

Monte Carlo is also applied to Operations Research problems.     In a 

typical problem of this type we might try to  calculate the vulnerability of 

a piece of equipment or 01  an airfield to some offensive weapon.     In such 

cases,  one often Monte   Carlos,  for example,  the error of the missile which 

is doing the destruction.    The distribution of errors is determined by a 

parameter called the Circular Probable Error  (CEP).    The CEP is the  radius 

of the  circle about the  aiming ; oint into which the rr.issile will  fall   50$ 

of the  time.     Since we   are interested her^ in destruction,  if we Monte  Carlo 

from a distribution defined   frorr. a smaller CEP than that which obtains  in 

the  real world,  we will  find  that more of the  interesting processes (hits) 

happen in the  simulated experiment  tnan would happen naturally.    The  less 

interesting processes   (misses)  are  then discriminated against. 

5 
See previous reference or RAND  report ;iM-1237  "Applications of Monte 

Carlo." 



p-1165 
7-30-57 
- 12 - 

For another example in the same field,   consider queuing problems.    In 

these problems one is often interested in the mean and variance of the 

waiting time.    One then wishes to bias the  sampling to emphasize long waits. 

This could be done by sampling from new distributions that simulate increased 

traffic,  increased  servicing time,  or increased servicing requirements. 

It is worth noting that any set  of  camples obtained with the use of 

Importance Sampling is less effective  in estimating certain auxiliary quan- 

tities than a set that has teen obtained in a straightforward  fashion.    For 

instance in the  shielding problem,  a sampling design that leads to aa accurate 

estimate of the probability of penetration will be very poor for estimating 

the probability of reflection;  in the reactor problem the  suggested sampling 

would not be good at estimating leakage;   in the vulnerability problem we will 

lose information about  light   iamage and  the  location of misses;  and finally 

in the queuing problem we will not get a good estimate of the idle time of 

the servicing facilities. 

It is in fact usually (but not   always)  true that to design an efficient 

Monte Carlo calculation one must direct attention to those  things he is really 

interested in and ignore other aspect? of the problem.    It may even be better 

to do more than one  calculation than to compromise the goals of any particular 

design.    This can be a  serious disadvantage  if the computation is lengthy, as 

the decision about what aspects to concentrate en must  oe made early and there- 

fore may easily be made  wrongly. 
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2.    HUSSIAN ROULETTE AND SP1JTTINGC 

Let us assuine that the dice are tossed one at a time and that  the cost 

of the problem is measured by the total number of individual tosses.    Now 

it is immediately clear that if the  first die is tossed and if it happens 

to come up three or greater,  it will be impossible to f-et a total of three, 

no natter how the   seccni die ccmes up.    Under these cimuristances,  there is 

no point in making the  second tons and we   can  simply record a zero  for the 

experiment.    This makec it unnecessary to  toss the second die  2/3 of the 

time.    Therefore on the  average  we will  dc  1/3  fewer tosses in an experiment. 

In more corv. licated examples where the   sampling is done  in  stages,  it 

is often possible   to examine  the  sample  at each staf'e and clarify it  as being 

in seme sense  "interesting" or "uninteresting."    The  sensible  calculator is 

willing to spend more  than an average amount of work on the  "interesting" 

ones and less on  the  "uninteresting" ones.     This can be done by splitting the 

"interesting/1  sajn. les into independent branches,  thus getting more of them, 

and by killing off  some  percent  (in the  at,eve example 100^)  of the  "uninteres- 

ting" ones.    The  first ; recess i:. 3:'. ittir.g and the  second iiussian Roulette. 

The  "killing  off"   is usually   done  by   a  ru:;lamentar}   game  of chance.     If 

the  supplementary game  is lest  the  sam: lo   is killed;  if it is won the  sample 

is counted wit:,  an •:x,.r.i weight   *;  ma^e  un   for th(   fact that  it   ran  seme risk 

of bcinf killed.    Th*'  ^ame  liar-   >  r^~-,-::\  si; Clarity +i    ihe Russian ga^.e of 

cb.ancc played with  r^ved'.'■ rs and   fere1-ads--whence  the  name. 

The  idea of Russian dculette  a;-i  S;1. : + t:ii-   is  similar in  snlrit  to the 

3cth  'ne  iaea and  the nameu are due  tc  J.   ven Neumann and S.  Ulam. 
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sequential  samj linp schemes of quality  control,   tliough quite different in 

detail.     It was first thcupht of  in  connection with particle diffusion 

problems.    Particles that ret into  interestinj' regions are  split inte n 

independent  sub-particles,  each with one n'th of  the weight of the original 

particle.     Particles that ^et into uninteresting regions are,   in effect, 

aunalgamated  into a smaller number of heavier particles.     In this way the 

calculator achieves his goal  of allocating his el'fort sensibly. 

Most of the examples mentioned in Importance Sampling also could be 

used to illustrate the use  of Russian Koulette and Splitting.    However,   there 

are  differences.     In Importance  Sampling th^1  samples  are   forced into the 

regions and  preventpd from entering  "uninteresting" regions.     Sometimes, 

though,  tids  is  hard to  arrange—particularly when the  sampling distribution 

is not given explicitly,  but a complicated process fo-  _    tting sample values 

is givor, instead.    In these  circumstances we may have  very good estimates of 

the  relative   "importance" of different  regions and still not be able to 

arrange  for  tv 0  proper biasing.    We  can tr.en use  Russian Roulette and 

Splitting which,   in effect,  does  the   same thing  ad hoc)   that is, we wait to 

see what  region  is entered and then decide what the  size of the sample 

should  be. 
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3,    USE OF EXPECTED VALUES 

If the  sampling is beinp done  in twc  stagr-s, then even if we aren't 

clever enough to calculate the combinatorics of the whole problem, we still 

might be  clever enough to notice that there is no point in tossing the 

second die;  that is,  once the  first die  is tossed,  it is trivially easy tc 

calculate the  probability of obtaining  a total of three.    Kor example,  when 

the first die  comes up one,  the only way we can get the  three total is  for 

the second die  tc  come up two.    This event obviously nas a probability of 1/6. 

Similarly if the first die comes up two,  the only way to get  three is for the 

second die to  be one.    This event also  has a probability of  l/6.    Finally, 

all the other possibilities for the  first die (three to  six)   have a zero 

probability of giving three.    If we  record the probabilities rather than 

toss the   second die,  then it  is a  fact  that the average of these probabili- 

7 
ties is an estimate of p.      This method  simultaneously reduces the number of 

tosses we need by a  factor of two  and decreases the variance,   so that  the 

tosses we do make  are mere effective. 

The possibility of using expected  values tc  great advantage occurs 

frequently  in  practice.    The  illustration is not artificial.     In many 

probabilistic  problems, rauen  of  the  variance or  fluctuation  is introduced  by 

a part wnicn  can  ; t-  calculated   u.alytically,  while  anot'rer  gart, which  is  t^ard 

to  calculate  analytically may,   .::  fact,   net   inlroiuce much   fluctuation.     In 

these  cases  the   sensible calculator  combines a:ialytic and  probabilistic 

method3--calculating analytically  tr.at   wkich  is easy and Monte Oarloing that 

7 
It   is     robably worth while   t    point out that   the Lse  of r.xpected 

Value:;  is quite different  from using  an •■xj-ct, d-value mc iel   (see  Jhapter 
]).     The   former is exa :t  and  the  latter  is an -ip; roximaticn. 
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vrtdch is  hard. 

Exam] les 

Expected values can be used in all the problems mentioned under Impor- 

tance Sampling.    In the  shielding problem,  for example,  instead of ccuntint; 

the particles that succeed in piercing the shield,  we  can calculate the 

probability after each collision thai the particle vnuld go directly through 

the shield.    An unbiased and improved estimate of  the penetration is obtained 

by summing these probabilities. 

Another application of the same idea is in the calculation of multiple 

scatterinfr- effects in nuclear cross section measurements. In this calcula- 

tion one   simulates a scattering experiment in which the main interest is in 

the number of i articles that enter a detector.    This probability may be very 

-u -6 
small,   say of the order 10      or 10    f  so that if one  sampled in a straight- 

forward   fashion,  there would be practically no counts.     It is,  however,  very 

simple  to  calculate the probability thnt the particle will enter the detector 

from any  point in the  system.     If these probabilities are recorded,  rather 

than the  number of particles counted, one  usually finds that the percent 

variance  is enormously  reduced,   factors of 10      being typical.    The factor 

is larger in this case than in the previous (shielding)  example because in 

this [ roblem many samples tend to get into a region where the particle has 

a relatively high (though absolutely low)  probability of getting  into  the 

detector;   in the previous problem this is not   true unless Importance 

Sampling, or Russian Roulette  and Sj litting is also  used. 

This  idea car. be  applied  to more (:er,eral   problems than particle diffu- 

sion.     For example,  in vulnerability studies,  it is oft«ri true that the 

problem being studied involves several stages and  that in the final stage 
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there  is ^iven a probability £ of achieving or not achieving a kill.     It 

should be obvious to the reader at this point that it would be wrong to 

sample  from this binomial distribution;  rather,   the ^'s themselves should be 

recorded and their average  used  for the estimate. 

A  similar situation occurs in the particle diffusion problems mentioned 

previously.     Usually there   is a non-zero probability that   the particles  will 

be  absorbed after they have  had a collision.     This  binomial process  could   be 

sampled,  but it is generally more  accurate not to   sample,  but t'imply to 

weight the particle with the probability of survival,  multiplying all  the 

probabilities together after it has had all its  collisions.    This increases 

the average length (number of collisions) of a history and therefore its 

cost,   but this effect is usually dwarfed by the decrease in variance. 

Another way to use expected values is to  integrate a sample over the 

Initial  conditions.     Kcr example,   in particäe diffusion problems,  it  is not 

much work  to translate,   rotate,  or reflect histories  (thus getting new ones) 

and  then average these  translated,  rotated,  or reflected histories over  their 

a rricri   probabilities. 

The  three  techniques discussed  above  ran be  most  effective   in  realistic 

applications.    The  autnors  are fa.-'.iliar witn  cases in which each technique 

has,   by  itsQlf, decreased the effective  variance   by factrrs of the  order of 

h 6 
10    to  10  ,     In iiiCSt  ca^es   this means changing the  problem from one  which 

cannot  be   lone  because   it   would  be  toe  exjensivc   or  lengthy tc enc which  is 

easily acne on mo ierr:  computing machim s or ever,   by hand computer's.     However, 

these  large  reluctions were   al.  abeociated with  physics or engineering 

problems,     in Operation rtesearch applications the  reductions while  important 

are much more modest.    They   tend  to  fall   in the  ranee  2-100.    This is  still 
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of value  if the problem is at all  lengthy. 

The  techniques that we are now going to discuss are,  in general, not 

as effective as the three already mentioned.    Hovever,  they often are very 

easy to use and may yield wrrthwhile  improvements. 
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U.     OCRHEUTION XND REGRESSION 

Correlation or regression is used when we are goin^ to make comparisons 

or calculate differences and wish to eliminate irrelevant fluctuations which 

do not affect the comparison or difference. 

In order to illustrate this technique,  it will be necessary to  change 

the problem slightly.    Assume,  for instance,   that the proprietor of one of 

the  gaming establishments in Las Vegas wants  to  change  the rules in  fcrce at 

his dice  tables.    Under  current  rules,  if a ; layer  tosses a 2,   3,  or 12,  on 

the  first ULTOW of dice,   the player loses.    If he  tosses a 7 or 11,   he wins, 

and if he tosses a U,  5,  6,  b,  9, or 10,   he will win or lose, depending on 

whether or not that number or a 7  comes up first   in his subsequent tlirows. 

Now let the rule  change being considered be the interchange of the 

roles of  3 and U and assume that,  unlike most of the  ;roprletors in Las 

Vegas,  the one we are  considering is unsoi histlca-od and wants to   ietermine 

by  sampling what the change  in his revenue will  be.     The obvious way to do 

this is to run  two  sets of experiments,   one  with  the old rules and  one  with 

tne  new rules,   and then   com;are  the  two  experimentally-determined  revenues. 

Under theöe  circumstances,  one   is  suot ract . r.g  two   relatively  large,   fluctu- 

ating quantities to  .ietermine  a  small quantity.     In general,   tnis  viel is a 

process with f»   larg^   ; nrcent  error. 

There  in a tetter way  to do this [ P Llem.     Instead of running  two  inde- 

pendent ,'ame3,  the proprietor could  run only one  game and apply both sets of 

rules simultaneously  tc   this game,    ^.n  fact,   he  oa:,  moose  to  estimate  the 

difference  in  revenue  directly  rather tr.an   the  revenue  that would   t>e  achii ved 

und'T each  ^et  of rules. 

This clearly  arr.runts  tc  playing the  following game: 
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1. Whenever a 3 comes up, continue to toss the dice until 

either a 3 or a 7 comes up.  "- i the first happenstance, 

record a minus two, since under the old rules the customer 

would have lost a dollar, but under the new rules he wins 

one; in the second happenstance, record a zerc because 

under both s^ts of rules the customer loses. 

2. Follow similar process if a U cojnes up. 

3. If a number other than 3 or h comes un ttrmlnate th« nlay 

then and there and record a zero.  (Brcause of this rule, 

the effects of chance fluctuaticns in the proportionate 

number of times thai the numbers 2, 5, 6, . , ., 11, 12 

coae up are «llminated from the comparison.) 

The specific game that is played is quite different from the two games 

that are being compared. In this case there are three sources of savings; 

first only one r,et  of rames i? played, and second the number and kinds of 

chance fluctuations that can affect tne results are greatly reduced and 

lastly the stop rule makes the average game shorter. It is in fact generally 

true that ir we wish to compare two or more situations, we can, by combining 

this comparison into a single problem, reduce the work substantially. As in 

thr' example, only one problem, rather than several, has tc be done, and the 

direct estimate of the difference can usually be made more accurately than 

estimates of separate individual quantities. 

This is a substantial virtue of the Monte Carlo method.  In many com- 

plicated problems we are not actually interested in absolute values but only 

in comparisons, Ws ma;, wish, for example, to know if Strategy A is better 

thai: Strategy B, or if Engineering Desi.'n A is better than Engineering Design BO 
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We might,  in  fact,  not even believe the absolute  values because the  idealiza- 

tions are so rough,  but do believe  in the existence of the qualitative 

features implied by differences in the calculated performances.    Monte  Carlo 

can then be used to estimate  the thing that we  actually desire to know and 

that  we believe, ana we  can thus bypass the estimate of less important 

quantities.     Usually however,  we can obtain these  less important quantities 

also,   but at  some extra cost. 

Correlated Sampling can also often be used  to  test the accuracy of an 

approximate theory.    If the approximate theory happens tc be an exact treat- 

ment of an idealized  situation,  and if the idealized  situation happens to  be 

"structurally"  similar  to  the  unidealized  situation,   then it is often possible 

to design very efficient sampling  schemes tc  calculate the difference between 

the id'alized and unidealized  situations.    The answer tc the problem posed by 

the unidealized  situation can then be obtained  by addia^  together the results 

cf the  approximate analytic  calculation and  the Monte Carlo difference  calcula- 

tion. 

Comparing Difteront Bombing Strategics 

If a strategic or tactical bombing campaign is  studied by Monte Carlo, 

one usually has tc estimate the effects of the  following sequence of random 

events. 

1. Number of aircraft that abort. 

2. Number of aircraft snot down Dy area   iefenso on the wa^   into  the 

target 

3. Number of aircraft  ij.at,  ati'ay inroj •:   n:v,ri,--;5tional errors 

I».     Numoer of aircraft  shot .low:, by  Jcjil   Iefenso a*   the  target 

S.    Weatf.er conditions  rver target  (affects rt.-cc inaissa-.ce and  CEP) 
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6, Place where bombs land 

7. Daraage done 

Ö.    Number of aircraft  shot down by arei   lefense on the  way out 

of the  target area 

9.    Number of aircraft that don't »-et back for miscellany of 

minor reasons. 

In comparing different bombing  strategies it is often effective  to use 

correlaticn to   cut down the  sample  size  required  to  get significant Infonna- 

ticn.     If the  correlation is done  by using  the  same random numbers the  com- 

puter cannot use a  single list of random numbers in sequence  in the  two 

problems,  for they would soon get out of  step.    He  can either throw away the 

excess  random numbers or,  what   is  sometimes better,   save them  for use on 

later  strikes.     For example,   if a larger number of targets were  atticked on 

the first  strike of one of the  strategies,   the extra random numbers that 

were used to determine the weather on these excess targets can be  saved.    If 

in a later strike  an excess number of targets is attacked under the other 

strategy,  the  previously  saved  random numbers can  then be used on these 

targets.     Correlation  can t:.us be  achieved by using the  same  random numbers 

whenever the two  strategies give  rise  to  the  same  type of contingencies— 

even if they are  en different  strikes with different planes and  targets. 

Because  the  point is sometimes misunaerstood,   we woul;  like  to emphasize 

that when the results of the  saae  type  of contingencies are  being  correlated, 

the  contingencies do not   necessarily  ;.ave  the  same detailed  character.     If 

for example in Strategy A,  n^   aircraft  come up tc   the area defenses and  in 

Strategy B,   n    aircraft are  used,   the  problems  can   still be  correlated  by 
2 

using  the  same  random numberr  in  computing   the numoer that  survive.    This is 
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true as long as the picking is so arranged  that   the degrees of  succecs are 

monotone   functions of the uniform random numbers,   so  that  fluctuations in 

the  values of the uniform raxidom numbers affect the  twe   situations  in the 

same qualitative way. 

If  the different  strategies are  such that  a definite   typ« of event is 

all-important to the  comparison,   then  correlation by weighting may  be better 

than by using the same random numbers.    For example,   if the effect of differ- 

ent types of defensive  armament  is being  studied,   the  same kill probabilities 

could be  used  for the enemy  fighters in  the   sampling,  and weighting  factors 

carried along to account  for the  differences  being  studied.    The correlation 

may be higher if this  is done,   recause exactly the  same number of bombers is 

shot down each  time,   so all of the  subsequent  history is the  same.     If the 

correlating were done  by  using the  sane   random numbers,  different numbers of 

aircraft would be shot down and  the  actual  prt gress of the  two   strategic 

campaigns mignt be  quite different.     It  would  still  oe possible  to  obtain 

correlation by using  the   same  random numbers for the  same contingencies,   but 

it  is unlikely that the  correlation would be as high.    Weighting will,  of 

course,  not work well  if by  its use one  is  forced  tc  use probability   iensity 

functions for the  sampling which will  themselves introduce  a lo+  of  variance 

because  the  sampling  is  thf-n not  good  Importance  Sampling  for all  the  cases 

being considered. 

Another case where weightinr might be  preferable  to using  the  same 

random numbers would  be when two different   reconnaissance devices were being 

compared.    The  jcsslble  weather  situations can  then be classified according 

to  the  following criteria: 

lo     Both devices werk 
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2, Onf  vorks arid  t-he other does not, 

3. Neither works 

Only situation 2 makes a difference   L^tween the  two  devices  so  that  In 

the  sampling only it sncuid be allowed  tc uccur.    ii   1 and  3 occur,   the 

sample  would  ^ive  zero  for the estimate,   so  they need not  be  calculated; 

only the   fraction  r of  time ' hey occur : s  r.eeded.    Account  of  this is 

automa+ically  'aken  by  the wei^htinr   ''actors.     If  instead  of wei^htinp 

factors  the  random numbers were us'd  to   1c   the  correlatin.',   then  (l-r)  cf 

th0 tlm*'  the   samj'le would be  calcuL-.tinr  zero and  be wasted.     If  instead of 

beinp an all  or nothing  situation  the   ievices have different probabilities 

of workinp as the  weather changes,   then  the appropriate modification must 

b*3 made  In the  sampiinp;.    T.'.is last is  as much an example of Importance 

Samplinp as of Correlation. 
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bo    SYST^UTIC SAMPLING 

If we are doing a multi-dtage  sti:..pling pjroblem,   it often turns cut to 

be very easy to do  the   first  ata^e  systematically.     For example,   in our 

problem,   if we  are going to  toss the  dice  one at a time,   t.nen  there  is 

really no point in actually tossing the -first die.     If,  for example,  we 

were planning on getting 600  samples,  we  would exoect on the  average,  that 

each die would  come up one about   100 times,   two another 100,  and   so on.     It 

is ea?y to show that we dc  not  bias  the  results if we assume  that   the  first 

100 tosses of the  first   die  actually do  come up one,   the  second  100 tosses 

of  this die  come  up  two,   etc.   and  so  only  toss  the   second  die.     The  main 

advantage in 'loin,' this is that we  have eliminated  the error causei  by 

fluctuations in the  proportions of cries,   twos,  etc.  which would  result if 

the  first, toss was  random. 

In practice,  however,  doing  the  first  stage of the  sampling   systemati- 

cally does not  usually  lead to  substantial  Improvements  in efficiency. 

Generally,  in fact,   it will only reduce  the number of samples required by 

relatively  few percent--say  :   to  30.     However,   it ordinarily   Joes not   cost 

anything to  apply this  technique,   JO  tnat  taere  is nc  point  In  not   usinp  it. 

Also,  it  is sometir.es  interest.ini'  thus tr   estimate  now t;.e  expected  score 

depends on what  happens  at   the   first   ;:tage.     About   the  only   time  we  may not 

be  able   tr  use   it   conveuieutly   is when  we    io  nc   Know  in  a-ivance  how  tdj-  a 

sample we will   want,   and  even  then  it, may  ;i' •   t <-'  i ■.; ractical. 

The main airlicaticr.  "f Systematic  Sam; Iinr  is   In tnosf multi-stage 

problems wh'ire   it   is  trivial   tc   calculate   th»-  i! n* r: tat i' r.  of events  at   the 

first   stage.     In  that   case,   th(   sam; ling   she.id  be dene  systematically. 
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6.    3Ti<ATlri:-U GAMPLINQ 

This tectinicue ib a sort of ccr.bination of Importaiice Sampling and 

Systematic Sampling.    Kcr example,   if we wert  only a  little bit  sophisti- 

cated and wpre  doing the systematic  sampling   lescribsd above,  we would roon 

notice  that there  is no point in  considering  ^he aOO tosses in vthich we had 

assigned the values three  to  six  for the  first toss of the  die,  since under 

these  circumstances, we  can never  .-et   i total of three.     T.ierefore,  we might 

systematically divide  the  sample  into halves rather than  sixths.     In the 

first  half we  would  say that  the  first,  uie  came up rne,   and  in the second 

half that  the  first die came up  two. 

In theory,   this method  cou]~.  b-i  as powerful   ^s Importance Sampling. 

In actual  practice,  the  fact  that you  have  tc   sample  systematically turns 

out  to decrease   sharply the number of places  in which it  can be used con- 

veniently.     However,   at these  plar   s  in a calculation where  it can be used, 

it is usually better  than Importance  Sampling and  in any  case never wcrse. 

Therefcre,  whenever the  costs of the   two  technique« are  comparable,  Strati- 

fied Sarulinp is preferable   to  Important.- Sam; ling. 

The  last  remark on the  a,; :icatioas of Systematic  Sampling also applies 

to Stratified Sar.plinp:     it   is usually  useful  when  it   :s  trivial  to calculate 

the distribution of events  at the  first   ntapo.    There  is only the  additional 

fact  that  in m^re  general  problems    ne must  have  some  idea of the  relative 

importance where  inaortance  is defined differently  from the  systematic 

sam; ling   ca:5e. 
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7.     SPFClALI'/.i'.:) T^CJjjlCUgS 

I!' oiv   «ore  throwing thfi die" one  at  a tin.e  in a naive  fas;.ion,   it would 

be a luiRtakc  tc   sei^arate throws   into  aisjoint  ; airs and  lock   just  a*   these 

pair."  to   ;3ee  if  they iiad  produced  any threes.    For exan,;le,  cr.3  can lock not 

only  V  dire  one  and  tw    and   'hen at   three  and four,  but also dice  two and 

three  and  also  four and   '"ive.      One   will  ther.  nave doubled to  a  first 

approximation  the  total   effective number of  Ti.rowb  for  the  saiae  amount of 

work.     Actually  this  doubling   is not  a?  effective  as one  mi^ht   first  think 

because there  is a  hi^h  correlaticn  between  successive  throws and,   therefore, 

the  fluctuation  will   not be decreased  as rauch as if all   the  ;airo  had been 

independent.     However,   this teennique   should be used because   it  Is essentially 

free. 

.   r'cr another exaraplc,  assuine  that one  hau; ened  to  have  a machine wr.ich 

could   throw,   say,   six dice at a   time.    One way tc  use  this machine would be 

tc  simply (Tou;   the   six  lice  into  three disjoint   pairs which would correspond 

to the naive   estimate.    A much better way would be to  consider all possible 

pairs cf die"  that  coiln  he obtained   from  the  six.    This  is  not Us difficult 

as miiu.t  seem a4   first   glance.     One would   first  calculate   the total  number of 

possible  pa.ra that  one  er ., ,   have   (6  x  h/2  -  1: )   and  then  by   superficial 

otservation  rind  the number of pairs whien enuln   yiel i a  total   of  tnree   ^i.e., 

if there are m  2,s ajid  n  I's,  there  are m x n ; airs that'«ill  yield  j's;   the 

estiii.ate .. * 11   then  b€   ;i   x r. /I1   for  tnat  sam; le). 

The  reader will  undoubtedly  thir.r.   of maay ether  specialized estimates 

that de: end  upe-n  the   fact th.a*   cne   is  specifically calculating  the probability 

We are   indebted  tc J.   T.   Kcbacker for  s.^/eirtin^ t his  idea. 
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of getting a three on a chrow of tvo dice and which could not be generalized 

to other problems.    This lack of generality is no reason for not  investing 

at Aast a modest effort in looking for such methods aid using them. 

T 
« # # 

It is probably clear to  the  reader that the prcbleres faced by the Monte 

Carlo experimenter in trying to ctit iown hib  statistical fluctuations are in 

some  respects  similar  to  those  thai are  faced  in almost  auv application of 

sampling.    Therefore,  much of th»-  literature of  statistics ib relevant to 

the problems we have  been  considering.     Ir.  fact,   a fairly complete discussion 

of the  fifth and  sixth techniques,  »id  to a slightly lesser extent,   trie pro- 

ceding tvo,   can be  found  in many  statistics textbecksj   only  the first  two   'o 

not  seen to be applicable  to oraincry  statistical practice and have  therefore 

not been discussed.    For  this  reason it,  is very valuable tc have prcfersional 

statistical help in designing these calculations.    However,  if one has to 

choose between a person who  is mainl>  interested in statistics and one who is 

mainly interested in the problem itself, experience has shown that,  in this 

field at  least,  the latter is ; referable.    This last ren.ark is not   intended 

as a  slur on  statisticians,   but  simply to amplify a comment made earlier,  that, 

"the  greatest gains in  variance  reduction are often mude  by  exploiting  specific 

details of the problem,  ratner  than by the routine application of general 

I rir.ciples." 


