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STATISTICAL DECISION THEORY AS A GUIDE TO

INFORMAT ION PROCESSING

by

Harvey M. Wagner®

Economists, statisticians, and practitioners of operations
research frequently meet nearly identicel problems in their
respective studies. Once the similarities are recoynized,
the solutions advanced by one yroup of professionalsoften turn
out to be useful to others in different disciplines., The
belief expressed here is that statistical deciction theory
provides both an enliyhteningy and a unifyiny approach to prob-
lems concerned with decision mekiny in the face of uncertainty,
As will be pointed out subsequently, statistical decision
theory is by no means the last word on such problems--at least
at fts present state of development--but the approach seems to

ask the right questions and sccurstely pinpoints the areas of

difficulty.

, ® Tiis paper was written while I was affiliated with
Stanford University and presented at the Data Processinyg and
Management Information Conference, Massachusetts Institute of
Technology, July 15-19, 1957, The suthor owes more than the
ususl debt of yratitude to Professors Herman Chernoff and
Lincoln Moses, Stanford University, for permission to read

their forthcoming book on decision theory.
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INTRODUCTION

The advance which decision theory mekes over previous
methods in mathematical statistics is that the economic con-
sequences of an action are explicitly taken into sccount., In
other words, the theory goes beyond statements about probabil-
fties of making various errors, and incorporates both the
relative losses from such errors as well as the costs of pro-
cessiny information in order to reduce the likelihood of
mistakes, One {mportant consequence claimed by decisiun
theorists is that by such snalysis it {s possible to unify
various subfields in statistics into a single conceptual
framework. For the moment we shall refrain from stating the
alleyed disadvantages of the theory.

The general problem of decision making, whether studied
by a statistician, an economist, or an operations researcher,
can conveniently be stated as follows: The decision maker hess
to choose some course of action out of several open to hil‘l
Such an sction may pertain to an existing state of affairs or
to future events, Iin sny case, the decision maker does not know
what the true state really is, and hence he has to choose an

action under conditions of uncertainty., The economic conse-

quences of the situation are a joint function of the action

lye <hall not be concerned with the oryanizational or team
problems of decision makiny. We assume that the individuel,
team, organization, etc., all have identical yoals.
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taken and the true but, st present, unknown state of affairs,
It is useful to think ot this situstion as a yame played by
Nature, who chooses the underlying state, and the Statistician
(or the decision maker), who selects an action. Usually the
Statistician, by means of relatively costly deta processing,
is able to obtain some fnformation about the strateyy Nature
has selected. The Statisticisn must balance the costs of data
processing with the costs of making mistakes at a frequeney
which could potentially be lowered if more information were
svailable, The dats conceivably aveilable to the Statisticien
may or may not be eble to yive complete information as to
Nature's strategy.

The sbove formuletion upplies easily to the case of a
menagement yroup makiny some decision about the company’s sales,
production, or investment polictes by "saapling”™ information.
The cost of sampling of course may include the use of an elec-
tronic computer as well as the expense of collecting data.
Consequently @ wide variety of data processing nroblems may
potentially ve handled by decisfon theory techniques.

QUILINE uF A DECISION THEORY PROBLEM

Statistical decision theory, not unlike schools of thought
in economics, mathematics, or philosophy, is based on 8 system
of axfoms, These postulates are far from inconsequentisl, but
space limitations prohibit a lengthy discussion of the axioms.
Briefly, their main implication is thaet it is possible to

assiyn numerical valuc: to the Joint result of the Statisti-

cian® and Nature's strateyies; these numerical values are what
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we have been calling the "economic consequences™ of the final

. . : . . a
sftuation from the point ol view of tne Statistician.,- {urther,

giyen Nuyture’s choirce, if oue action results in 8 nuwerical

value of 10, swvy, uud snother wction results in & nawcrical
value of 20, then the coubined "action™ of flipping a fair
coin, so0o that on hcads tue first action 15 taken, and on toils
the second action 15 token, has tne nuwerical velue of the
erfithmctical uverage ' x 1U + ‘. x 20 = 13, In most elewentary
presentations ol tle theory of (ames, the nuuerical value 1is

usually assumed to be the wmonctary counscquence or payolf of tne

situation, Such ai additional a@assuLpilon way or wa) not be

tenabic in a4 particular casey but 1w Jday event, decisiorn theory
assumwes ithat some nuwcrical indicuter of preference ftor various
situations 1o avallable, and tuat it 1> weaninygful to take
probalility averagyes o! tuese numve.s in evaluating tne rela-
tive uwerit of differcnt combinat:ions of uncertain outcoucs,

For expus:it.oagl Liwpitcity sssame tael Nuture and the
Statistica.an haeve o forite 1uwbes ol s:apie aliernatives,
Nature s cuoices A Ny, Moy eeey vy, ... and ine Statlsticiuna’s
actions are ap, &, +.., Bjo ooe The Statistician's numerical
indicator of the outcome of Nature's selecting N1 and his taking

action a, 15 denoted as u(Ny, aj) . The cntire set of conse-

J

quences can be displayed in metrix form, Exhibit 1.

JIn the technical literature the numerical indicstor is
called the Statistician'c utilitv function,



P-1100
J=20=57

=it

Suppose thet the Statistician hes the opportunity of per-
forming a single costless experiment. The experiment may be
complicated and mey offer » variety of bits of information, but
assume that the outcome of the experiment can be summarized by
a "vector™ symbol zyp, and that there are only a finite number
of 2, . For example, one experiment miyht he a yes-no question-
najre; in this event z; would be a "vector™ of information
yieldiny, the number of yes answers to the first question, to
the second question, ..., to the n-th question,

By assumption, the data z, are related to N More

i.

precisely, suppose that, given any N , the probability of

i
observing z, is known, which is denoted as the "conditional®
probability p( 'kiml ). Once ayeain the conditional probabil-
ities can be arrayed Ly means of a table, Exhibit I, Each row
in the motrix indicates the conditicnal probability of observ-
iny every z;, given thet N, ts the true state of nature.

Next we define the notion of a simple strateyy for the
Statisticisn, Hecall that the Statistician may observe any

z, and accordinyly take any action K Conceptually all

k
possible simple strate,ies availahle can be formulated by
listing all combinaticns of actions associated with ~liserva-
tions, Exhibit 3, Each row in the matrix is a simple strateyy,

which specifies the action to be taken {f a z, fc observed,

Al oyetler the number of simple strateyies sre:

number of possible observations
(number nf actions) .
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For e<smple, if there are two sctions and five possible observa-

tions, then there are 27 = 3

(£

siuple strategies.

From Exhibits 2 and 3 we are able to construct a matrix
TYor each strategy s,, which yields the probability p(ajlﬂi, sy)
of takiny @ particular action .J' gyiven Nature's Ni and
strateyy s,, Exhibit d.

Finelly Exhibits 4 and 1 ere combined to produce a table
showinyg the expected or average numerical values for each pair
of strateyies. Since for a particular strateyy Exhibit 4
gyives the probabiflty of taking an action for esch state of
nature, and since Exhibit 1 contains the numerical consequences
associated with each &ction and state of nature, we average the
numerica. outcomes and enter them in Exhibit 5 ss U(Nl' Sh ) =
> p(aJﬂNi, sp) uNg, a; ).

- Exhibit 5 completely embodies the problem as defined. It
shows all the simple2 strateyies open to the Statistician and to
Nature. In addition t» these simple strategies, esach player
can also elect tu “randomize™ between the simple strateyies,
i.e., to select each simple strateyy accordinyg to a certain
probability.

It is now appropriaste to discuss the difficult topic of
what is a yood strateyy for the Statistician., It should De
stated at the outset that this Is a debatable subject, and
various alternative suyyestions have been put forth., Only a
few of them will be briefly explained; Blackwell and Girshick,

3

and Savaye contain more complete treatments. One proposal,
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based on a "play safe™ notion, is to ignore the data and pick
a "winimax®™ action which protects ayainst the worst possible
selection of N; by Nature. Usinyg citler Exhibit 1 or those
strateyles in Exhibit O which ignore 2, (i.e., pick the same
.J for all z, ), deterwine the worst numerical outcome that may
arise with the selection of an ay i tiien choose that particular
'J which assures the best out of the "worst"™ values previeusly
found.

An extension of the above procedure is to use all the
strategies in Exhibit O, and to select the "minimax™ from these
strateyies, now specifically allowing probability mixtures or
raudomization between strateyicvs, if desirable. The numerical
value associated vith such a generalized,wminimax strateyy is
usually an averaye value of the U(N;, sh) components in
Exhibit 5, which in turn are averages derived from Exhibits 1
and 1. -

If the Statistician uas scme a priori inforaation (say,

from past relevant expe.ience a.ad data) that Nature selects

N. with prebability w

1

go then the s, such that 2% wi UCN;, sp)

is maximized defines an optimal selection, which is called @
Bayes strateyy. Even if a priori probabilities about Nature
are not known, it is clear that the Statistician should con-

sider only strategyies which are at least optimal for some set

Jsee the Bibliography.



P-1160
8-20-57
-

of a priori probsbilities, This class of strateyies, which
here will be celled the admissihle strateyies, 4 is usually
considerably nerrower than all the simple and mixed strategies
fmplied by Exhibit 0, Interestingly enough, for each possible
set of a priorl probabilities over the N; , there is st least
one siwple strategy s) which 1s optimal for the Statistician,
In special cases it is possible by appealing to "likelihood
ratio” manipulations to determine al. the admissible strate-
yles rather easily without the ecompléte enumeration of
Exhibits & end 3,

1he general framework o1 a statistical ysme may now be
summarized: The Statistician and Neture are the two players,
a3l witﬁ certain possible strategyies or actlons; there is a
determinate economic evaluation ror the Statistician dependiny
on the outcome of botrh players' selection of strateyies; it is
possible for the Statisticiarn to ;ertorm experiments and
observe intormation ¢ ‘tain.nyg to Nature's choice of a
strategy;, cut o! @1, pussible strategres for the Statistician,
attent(on is coniined to tlie class ot edmissible strategaies,

ie., 3 siratey)y which is Bayes for at least some a priori

nrobabilities for Nature, 1t can be shown that one such

11n mathematical statlistics there is @ trine distinction
hetween the classes o: admissilie strateyies and of Layes
strateyies; further, fin special (ames a0 admissible strategies
asy oxist. bBut we shail not ble concerned with such technical
matters in this paper,
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admissible strategy is that associsted with the minimax averaye
numerical evaluation, and which may be a good strategy if the
Statisticien has no & priori information about Nature., 1In the
next section we introduce the cost of ssmpling, which pre-
viously we have ignored.
CLOSER LOOK THE DATA PROCESSING OPERATI1O

The effects of experimentation will now be more carefully
examined to demonstrate an efficient method of extracting
information out of the semple data end to delineate the
economic consequences of obtaining different amounts of costly
informetion,

Although the conceptual framework sdvanced above is
ccmplete, the extent cf enumeration of simple strategies
needed to accomplish the analysis, even 1or ordinary sized
problems, may be overwhelming if some shortcuts are not
available; furthermore, much of the effort expended in the
exhaustive spproach ts on strategyies which turn out to be
insdmissible. Fortunately probability theory permits certain
importent simplifications in the procedures previously out-
lined.

In the case where no experimentsl deta exist but a priori
probabilities for N; are available, it has been stated that
with Exhibit 1 the probsbility averayes over the different
I(N‘, .J) for each action o would be caiculated, and the
correct action would be tihe one yreldiny the highest average,

If some experimental data L do ex:st, the procedurc outlincd
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for Exhibit 5 may be equivelently performed by using the experi-
mentel deta to trensform the a priori probabilities into what
are called » posterjori probebilities; the latter probabilities
sre then spplied to the entries in Exhibit 1 just as the
e priori probabilities would be spplied in the no experimental
data case.
From Exhibit 2 the conditional probability p(zklN‘) of
observing z, yiven Nl is known, and w, denotes the a priori

i

probability of N, . As defined by probability theory5

i
Pz INy) = p(z, and Ny ) / wy &
In other words, the conditional probability of LI given

N is equal to the joint probability of both T, and Ny

{
occuriny divided by the a priori probability of "1' Rearrang~-
ing terms gives
wip(zpINg) = p(zy end Ny ) .
The event of observiny z, is the “sum® of the mutually
exclusive and completely exhaustive events of obtaininyg zj

when Nl is the true state of nature, z,Z when N2 is the true

k
state of nature, ..., z, when Nj is the true state of nature,
etc. In probability terms

plz,) = p(z, end N)) + p(z, and Ny) + ...+ p(z, and NJ) + ..,

wlp(zklﬂl) - wzp(zkiﬂz) * o0t “19(’k'"i) + ..

SN, J. Dixon and F. J. NMassey, Jr.,
s, McGrew-Hill, New York, 1957, pp. 332-333;
ry o

o Mc-Graw-

A. M. Nood,
Nill, New York, 19350, pp. 20-30.
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Therefore the above formulas sre combined to derive the

8 posteriori probsbility of Ny given zi

P(Njizk) = p(z, and Ny ) / p(z,), by definition
= wip(zpINg) / wyp(zIN)) + ugp(zkiﬂz)o...*wip(zk'NP*...
='."

which numerically is v, transformed to sn a posteriori proba-
bility by multiplying by an epproprisate factor that is a func-
tion of the sctual observed z,. It can be proved that the
Bayes procedure as outlined with Exhibits 1-5 is equivalent to
the procedure of applying the a posteriori probabilities ;!
to Exhibit 1. It can also be shown that if successive experi-
ments are performed, e.y., if the information in the vector gz
is actually gotten single experiment by experimeat, then the
correct procedure is continually to “revise®™ or to "update® the
e posteriori probahilities using the information gained from

the new experimental data,

Is the suggested procedure a shortcut? Recall in Exhibit 3
it was necessory to construct a complete listing of every
possible strateygy: the number of such strateyies depended on
the number of all possjible z, which could be observed. The
shortcut is theat @ Bayes procedure need only csll for certain
computations utilizing an actuslly observed z, ; therefore in
practice it is not necessary to list all stroteygies taking
into account any eventuality, but rether to make computations
based on the particular result of the experiment. Analogous

reasoning applies to the results from a sequence of experiments.
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He finally come to the important point of when costly
experimentation or data processing should cease and an action
be taken. The case of a sequential sampling procedure i{s
discussed here; the simpler case of 8 fixed sample size plan
is exsmined in the following section. The mathematical condi-
tion for the correct stopping place l; a sequential geme is
well defined. The analysis, which is closely related to
Bellman's principle of optimality in dynamic programming, is
as follows: If a decision is made at tle end of some stage of
experimentation, the numerical value for the Bayes procedure
is found 1rom an average of the a posteriori probabilisies
and the entries in Exhibit 1. If further experimentation is
undertaken, the result will be a random verisble, and new a
posteriori probabilities will be derived. After an additional
observation is processed, a similar ceolculation is once agein
wade whether further ssmplinyg should follow or an action be
taken. Because the outcome of an additional observation is a
random variable, the decision of what to do next will also be
random. The prccess is repeated until further sempling is I
uneconomicsl.

Whenever inspection continues, tlhe cost of making each
experiment, reckoned in numerical values consistent with those
in Exhibdit 1, must be subtracted in order to arrive at the net
valustion 5i further experimentation. Usually more information
about Nature's straoteyy will increase the expected Bayes

average valuation. The question is whether the increment in



P-1160

8-26-57

w] Jo
economic value of more deta is offset by the cost of obtaining
it., 3Since the experimental results are random varisbles, at
each stage of the amalysis @ complicated procedure is needed
for computing sverayes reflectiny the valuation of some parti-
cular overall ssmpling strategy. The final decision about a
new experjiaent rests on a comparison of the present a posteriori
Bayes average value and the net expected value if another
experiment is achieved and the Steatistician acts optipally
thereafter. As Blackwell and Girshick have demonstrated, in
certain special cases (analogous to elementary cases in
sequential analysis) the operating procedures for a "sequential
statistical game”™ are fairly simple. In yeneral, a computing
procedure for solviny such problems is very complex.

AN_ILLUSTRATION IN QUALITY CONTROL

An application in the area of quality control will serve
to illustrate the decision theory technique.b Small lots of a
complex assembly item are to he subjected to an acceptance
samplinyg procedure. It is known from experience that the
number of defects per item occurs according to a Poisson
probability distribution; and for the sake of simplicity, it

is postulated "ere that Nature "produces” lots after selecting

“For a challenyging presentation of quality control applied
to data processing problems of an accounting nature, see
L. L. Vence and J. Neter, Statistice ing for Auditors

and Accountants, Wiley, New York, 1900.
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a Poisson distribution with an average of either 10 or 20
defects per 100 items.’ 1In the former case, the lots are
acceptable, and in the latter case unacceptable. Exhibit 6
contains the Statisticien's paynf{ matrix. In tlis example,
instead of representing losses as negative numbers employed
in a maximizing operation, they are treated as positive
nunbers, and strateygies which minimize loss are to be investi-
gated. It is assumed that these monetary outcomes are yood
approximations to the Statistician's "utilities.”
The minimax strateyy for the Statistician, if he does no

sampling, is to select a, with probebility 1/3 and 8, with

]
probability 2/3. The expected value of the outcome, $6.56,
is ihen independent of Nature's strateyy. If the a priori
probability w, = 3/4 and Wy = 1/4, then a; is tue optimal
action, giving an expected value of £5.00.

Although the size of a sample is a varisble which should
be subiect to economic analysis in a proposed statistical
procedure, assume that for various reasons only 2 items drawn
randomly out of the lot are to be inspected. The samle

observations will be classified into three categories:

2 = 0 defects, z, = 1 defect, z3 = 2 or more defects (if two

Tie utilize the distinction employed in quslity contraeil
of defect vs. defective. The latter is defined in terms of
the particular number of allowsble defects per item.
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defects are found in either or both items, inspection ceases).
The conditionsl probabilities for 2, are showr in Exhibit 7.8
There are 2 poscible actions and 3 possible observations;
hence 23 = 8 simple strategies exist, Exhibit C. Strategy S40

for example, specifies selecting action e if z, occurs, and

1
a, otherwise., If Nl is the true state of nature, then zl
occurs with probability .J2, and consequontly action 8 is
taken with probability .82. Exhibit 9 gives the action
probabilities for each strategy.q

Finally Exhibit 10 combines the previous matrices to yive
the expected or sveraye losses for each of the strateyies., A
first jlance at Exhibit 10 does not reveal which strategies,
if any, arc insdmissible; a yraphical analysis aids in the
process, Fiyure 1. The expecied losses &#re plorted as two
coordinate points with reference to axes for Ny and N,. The
bottom bLoundary, which is the lowest convex-to-the-oriyin
boundary defined by strategy points, has tle admissible
10

strateyies as vertices: S1 v S0 e Sy e £y

81f the number of defects in 100 items hes a Poisson dis-
tribution with en aversye ¢, then it is postulated that the
number of defects in 2 items is distributed as a Poisson with
an averaye 2q/100,

“The mathematician states that each strategy defines a
“mapping® from the sample space to the action spesce.

105n alternative delineatinn nf admissible strategyies may

be found in J. U. Williams, The Compleat otrategyst, McGraw-
Hill, 1954, pp. T1=-72.
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The minimax strateyy, found at the intersection of the
bottom boundary and a 45° line through the origin, is to select
84 with probability .40 and sg with probebility .54, Given @
priori probabilities, the correspondinyg Bayes strateyy is found
either by spplying the probabilities to Exhibit 10, or by
finding et which of the admissible strateyies it is possible
to construct a tangent line with slope ‘"g/'l- If “l = 3/4
und W, = 1/4, s4 is the optimal strateyy.

If 2« minimax procedure is to be employed, it has been
stated that the expected loss without any data is $6.606; with
data, the minimax expected loss becomes $0.20. Therefore, it
does not pay to take s sample of 2 items unless the sampling
cost is less than $ .40.11 In the case of w, = 3/4 and

1
wip, = 1/4, without data the expected loss is $5.00 , and with

-

date is $4.70, Hence¢ with this @ priori informatiom it pays
to inspect two items only if the cost of observation is less
than & .30. Such considerations are st the heart of selecting

a single stage sample size or s sequential sampling procedure.l2

Hthis statement must be qualified if there is some value
in collectiny data, say, for meakinyg a future estimate of the
8 priori probabilities.

1225 the reader may verify, incressiny the ssmple size has
the effect of lowerinyg the boundary line in Figure 1 toward the
oriyin. But the maryinal value of successive observations varies
with the form of the probability distribution, the sample size,
and the e priori probalilities. Hence depending on the afore-
mentioned considerations and daste processing costs, it may,
for exsmple, pasy to take two observations where it would not
be economical to take one.
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The use of a posteriori probabilities to arrive at a
procedure identical to the admissible strateyy defined in
Exhibit 10 is illustreted with w, = 2/4 and wo = 1/4, for
which s, is optimal.
If 2 is observed

= 3/4 X J—B:;: = .7(). "7.)
_ 1 3/4 x .32 + 1/4 x .07 -

L and 72 to Exhibit o, a, is found optimal.

v = .21; upon epplying

If z., is observed

2

- 3/4 x 106 - -

wl 3/4 % .lb + 1/4 % .27 - 064. wz o .30' and R: iS
optimal.

If z3 is observed

- ) - - .

s T 3/4 x .géd+xl'%;§ .06 = 50, Wiy = .50, and iz 18
optimal,

SUMMARY AND EVALUATION OF THE DECISION THEORY APPROACH

As claimed at the begyinning of the paper, the statistical
decision theory approach to data nrocessiny seems to isolate
the cruciesl points of decision makiny problems. The outcome
of the decision maker's action is a function of not only what
he does but what the true state of nature is. In spite of the
difficulty of measuring economic vconsequences of different
situations, it seems necessary to assume some sort of economic
evaluation in order to arrive at any semblance of rationality
in a8 systematic approach to decision making. The decision
theory.technique "automatically® weighs the different economic
considerations involved in taking actions and gathering infor-

mation.
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In closiny, some of the serious drawbacks which appear in
the suggested approach should be discussed. It is very impor-
tant to reslize that the limitations cited below may very well
apply to any systemotic method. Criticisms have been made ot
several levels of analysis. One set of criticisms concerns
(a) the possibility of sctting up a meaningful yame in the
first place, and (b) the feasability of placing economic
evaluations on different outcomes. The latter is partly
enswered by the reply that sany statistical procedure has in
it either an implicit or an explicit economic evaluation of
outcomes., It is more realistic (and coursgeous]) to meke such
considerations explicit rather than implicit. The former
argument, for example, questions the notions and assumptions
involved in Exhibit 2. Whether the requisite probebility
information is available is a factual matter to be determined
for verious situations. When such information is lacking, one
should immediately be on yuard in judging alternative approaches.
A second level of difficulty is the amount of mathematical

manipulations necessary to obtain an answer. This criticism
includes (a) the hiyh level of theoretical mathematics demanded
to snalyze a statistical game, (b) as a consequence, the con-
centrated effort needed to attain new theoreticsl asngwers, and
(c) the difficult computations required to solve a particular
case., Persons familiar with dynamic progremming will recognize
that, although the latter technique is a very powerful conceptual

mode of anslysis, even modern-day high speed computers are not
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economically able to apply, to particular cestes, some of the
theoretical results which have been found.!3 Thus decision
theory possibly may become a helpful way of taking a first
look at a problem or checking an approximste solution,

A third level of difficulty pertains to the selection of
a yood streategy. Often a priori probabilities of Ni are not
xnown, and correspondingly a Bayes solution is not defined.
One answer given to this criticism is that sufficient experi-
menteation will result in a posteriori information “swamping"”
the a priori assumptions. Such an answer is hardly a convincing
defense of the approach. Statisticians, much like economists

-14 have often

writing in the ares of “"new welfare economics,
contented themselves with merely characterizing the class of
admissible strategies, with the viow that this is the class
containing ell rational strategies., But the practiciny
statistician will undoubtedly want some further help on
choosinyg one strategyy out of this class, and some indication

of how his present operating procedures compare with those

suyyested by the decision theorists,

13
S. E. Dreyfus, "Computastional Aspects of Dynamic

Progremming,” Operations Research (5), June, 1957, 409-416,

14For an elementary presentation, see F, M, Bator, "The

Simple Analytics of Welfare Maximization," Amerjcapn Economic
Review, March, 1957, pp. 22-59.
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In conclusion, the decision theory approach presents a
challenying and compreliensive way of lookingy at data processing
problems. Surely any alternative approach should be iequired
to answer the questions posed by decision theory. It remains
to Le seen whether decision theory has posed all of the
essential questions, and furthermore whether it will be able

to answer those queries which already have been formulated.
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Possible Actions
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Exhibit 1 The Statistician's Economic Eveluation of Possille Actions
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Exhibit 2 Conditional Probebilities p(zy/Nyg)
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Observations
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8,k: action to be taken using strateyy L if
2z, is observed.

Exbibit 3 Simple Strategies

Actions
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Nature . .
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Exhibit 4 Action Probabilities for Strategyy s,



Statistician's Strategyies
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Exhibit 5 Averaye Economic Evalustion
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STATISTICAL DECISION THEORY AS A GUIDE TO INFORMATION PROCESSING

Possible Actjons

b | ot
Accept Lot Reject Lot
States 10 defects
N=  per 0 $10
f
Y 100 {tems
Nature 20 defects
N,=  per $20 0
100 items
Exhibit © Statistician’s Losses
ble rv 0
g, =0 defects in z, = 1 defect in 2z, = 2 or more
2 items = 2 items - defects in
2 items
States
of
Nasture

Exhibit 7 Conditionsl Probesbilities
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TATISTICAL DECISION THEORY AS GUIDE TO INFORMATION PRO ING
Observations
‘ z) 22 2,
s
STRATEGIES 1 *1 *1 ')
52 ll l al l2
$3 0 ay °)
84 .1 82 82
l $5 L] 8) ')
5o 2 " .
ol 2 02 ']
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Exhibit O Simple Strategies
Slrategjes
s s s
| 2 3 4
" % ® ' ' ', " P
States
N 1.00 o f .9u .02 .04 Jdo || .82 .18
of 1 .
Nature N2 1.00 0 Y4 00 73 27 07 .33
s A 4
s s s
5 7 4]
°, ., o ., .1 -2 .l 12
States
Nl .10 .82 10 .04 .02 .90 0 1.00
of USSP,
Nature N2 .33 .07 o 2T e 13 .00 .94 0 1.00
Exhibit 9 Action Probebilities for Simple Strategies
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STATISTICAL DECISION THEOKY AS A GUIDE TO INFORMATION PROCESSING

STATISTICIAN'S
STRATEGIES
ll 82 Sq ’4 $5 .0 ‘7 Su
States "1 0 20 1.60 1.00 | .20 s.40 1 9.60 19.00
of
Neture N, | ¢0.00 13.80) 14.50] 13.40 | 0.00 5.40 1.20 0
2 . e |

Exhibit 10 Average Econcmic Evaluation in Dollars
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STATISTICAL DECISION THEORY AS A GUIDE TO INFORMATION PROCESSING
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