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SUMMARY

This p&per analysges a multimove infinite game with linear
payoff function. The game had its origin in the consideration
of a military problem, but is presented here solely for 1its
wmathematical intereat. It is symmetric in every respect except
that the initial conditions of the two players are different.
Cn each move, sach player allocates his resources to tasks
that might be described roughly as attacking, defending, and
cooring. His resources for the next move are diminished by the
amount that his opponent's attack exceeds hia own defense,
while his score cumulates from move to move. The value of the
game and the optimal strategles for the players are rigsorously
derived in the present paper. It is shown tlat cne player has #

pure optimal strategy and the other player must randomize.




A MULTINOVE INPINITE GAME WITH LINEAR PAYOPF

1. INTRODUCTION

Games can be classified in terms of the number of moves
by ezah player — unimove or muitimove — and in terms of
the mumber of choices — finite or infinite — available at
each move. The original work of von Neumann [1] on the
existence and structure of solutions of games was, in effect,
restricted to unimove finite games. lLe‘er, Ville [2] proved
the existence of optimal strategies for unimove infinite games
with continuous payoff function.

Kxasept for games with perfect information, multimove finite
games have been analyzad only very recently; and multimove
infinito gamepg with an arbiirery number of moves have hardly
bsen tousched upen.

In thia paper, we analyze a multimove infinite game with
& linear payoff function. The game is symwmetric in every
regpect except that the initisl eonditions of the two players
are different. We prove that one player hae an optimal pure
stritegy and that the other plever must randomize on the strategies.
The optimal strategies and gawme value are derived,.

Although this game had its or’gin in a military problsa [3],
and 1s applicable therete, it 1is pressnted here solely for its

pathematiosal interest.

2. DESCRIPTION OF QAME

We shall analyze the following multimove gero-sum twec— person




game. At the n—~th move, or stage of the game, Blue hss
resources given by the state variabdle Pn and zssigns a value
to each of two tactical variadbles under his control, and us

subject to the constraints

(2.1) & 20, uy 20, X +ug £ P,

At the szme time, Red has resources given by the state
variable qn and ocontrols the values of the tactisal variables

In and vn.nubjeot to the cunstraints

(».2) ¥n 20, L 20, V, * W, < qQ,-

L2t us numder the moves from the end of the game; i.s.,
the n—-th move means n mov-s to the end of the gams. The

state variables at the (n — 1)-st move are defined by

.
pn“l = MmaxX [0, Ph max (ot yn ~ un)-} ’

(2.3)
Q,_; = max [o, q, — max (o0, X - vn)} .

The payoff to Blue 1s given by

&4 X

(2.4) ) ‘(pn -x —-u )= (q -y, - wﬁ)! .

n=]

where N ig the numbar of moves in the game.
The play of the game proceeds by first making the N—th
move, then the (N — 1)-st move, ..., the second move, and the

first move. An n—th move ~f the game consists of a cholce




by Blue of x and u_  sutisfying (2.1) and simltaneouily a

choice by Red of y and w  satisfying (2.2). We assume that

each player lmows the manrer in whilch the game proceeds from
stage to stage; namely, each player has the 1nrorndfion expressed
by equations (2.3). We also assume that at each stage of the
game both players know the state variadbiles and the entire past
history of the play; that is, at the n—th move, both players
know N, Pys Ay and also know Xes Wys Yeo My for 1 = N, N-1,

ese, N+ 2, n+ 1. It follows that Pys Q4 for § = N, N-1,
«sep, B + 1, n, are known at the n—th move.

The strategies of the gama in normal form will be defined
inductively on the number of moves. First, a strategy for Blue
in a one-move gar2 is a point X; = (xl, “1)’ where x, 20,
uy 2 0, and Xy + uy < P+ Similarly a strategy for Red in a
one move game 1s a point Y, = (yl, vl) where y, 2 0, w; 2 O,
and y, + Wy < q,. Now let oy be a strategy for Blue in an
N-move game. Of course, Oy is a funotion of Py and Qe Then,
in a game of N + 1 moves, at the (N + 1)-st move Blue chooses
& point X, = (‘N+1’ un+1) in the triangle 4, , defined
by

(2.5) Xy 2 9 Uys 2 05 Xyi1 * e S Py o

and simultaneously Red chooses a point Y, , = (yN+1, 'N+1)
in the triangle DN 4 defined by

(2.6) el 2 O N4 20 YNsl * "Ne1 S Qg



e

These choices yield the state variables Py and Uy’ by equations
(2.3). A stratagy oy , for Blue in the (N + 1) move game 18 then
defined as a choice Xy . in A, , and a function §W that associstes,
with each point (1N+1’ Upel’ TH41’ 'N+1) ] (X."+1, YN+1) in the
product spaae AN+1 DN+1 & stratagy ah in the N-mcve game.

Thus GN+1 can be written as

ON+1 (XN+1; ’N) = (xN+1' Unel? ’N) ’

where QH assigns tho strategy o, to the point (Zp,y Uy,y
IN+1’ 'N+1)'

In a like mannar, a etrategy Zk*l £- Red in the (N + 1)-
move game is defined as a cholce Y, , &ar 1 funetion 4& that
associates, with each (X ,, YN+1)‘ a strategy Z; in the N-amove

game. Thus we have

~

i \

4 . 4 2 - -
¥+l (Yo1! NI FREA. Y *k’ .

3. SOLUTION OF OAME

™e main result of this ~aper is che following:

i

Theorem 1. If N = 1 or 2, the value of the game 18 given

5y
Vn(pﬂt QN) = x(‘pN - QH)'

Blue has an optimal pure Riretegy:

oo

I =1 =0 for e . N.
n & N
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Red has an optimal pure strategy:

Ip = ¥, = 0 form { N.

If N 2 3, the value of the game is given by the (N ~ 2)-

plecewise—-linear function.

Vi(Pyr Q) = 23py = bRy, 1 =1, 2, ..., N =2,

where the constants ari{ and b%‘ are positive and monotone decreasing

"in 1 for fixed N; the value of the supersoript 1 is determined

by the ratio ;)N/QN. The optimal strategies for the two players

are as follows:

(1) At move m = 1, 2(counting from the end) the

players choose

Xy = Uy = Ty = W, = O

(11) At move m = 3, 1if, Ps 2 LY then Blue chooses

Xys Uy such that

q Xy { min
38% 8 n .

Red chooses either '373 = q or '\33 = Q5 each with

probability 1/2.
(111) At the (m + 1)-st move, where 3 { m { N -1, 1if

Pps+y 2 Que1’ then the ratio pn+1/%+1 determines an

integer 1, 1 { 1 { m — 1, and Blue chooses

- (2m = °:)pn+1 ~ (m - %:)q‘_'_l
o+l =

i
m+bn
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%+1-pm+1-xn+1) ror’--l) 2, '.o,--a’

and
- - (22
X+l ;E:! "5 R
]

- 1l
“me1 " (1R Uyy> for i =m-=1,
4

where the constants ai and b1 are those associated

m
with a game of length m and initial condition

Py Qe Red chooses either Ymsl & Ypi1 ™ Qi with
probabillities q;-q;/(m + b:) and B;-m/fm + b:),

respectively, for 1 = 1, 2, ..., m = 2; however, if { = m - 1,

Red chooses I

i -2
Ymil = Upey XAER :;°bab111§l Ba=1/0y " OL ¥p,3 = Wyu3 = O
-l - - W
with probability Yy = 1 = Vm ~ 1/(b0),
The proof of Theorem 1 will be carried out dy induction on

41 = O, With probability alel/m, or

N, the number of moves of the game. In the courss of this
argument, recursive definitions will be given for the constants
aﬁ and bi. As an 1lluatration of the theorem, Table 1 shows the

solutions for games with eight or less moves.

4. A THREE-~PART SUFPICIENCY CONDITION WITH MIXED STRATEGIES

Prom the statenment of the theorem, 1t is seen that mixed
atrategies will have to be introducad, at least for Red. However,
it is sufficient to introduce a restriocted class of mixed

stratugies in order to prove the theorem.
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g
For a game o one move, a Rized strategy for Ped s a
probablility distridbutioen al cver 01, Now supposg GH is s
rixed stratexy for Red in a geame of N moveg and sists
varlables px and Uy Then = probabdliity distridutisn AV
474 - f
over DN+1 and a funstion ¥, , thst 888001888 (Xy ., Uy, 9
‘ o
, wu+1) with, Gy is a mixed strategy Gy . in tho (K + 1)

Fox =
YH4l

nove game. Thus we may write the mixed strategy a:

Gy, = (Byi1s Vb

Mixed stirategiles FN+1 for Blue are defined similarly
by & distribution function fy , and a function éﬁ’ and can

be writter as

P = (fyaye &) o

1at 5&41 denote a mixed strategy for Blue in the (N + 1)~
move gaie in whiich he selects Xy . = (2,4, uN+l) with
nrababllity 1 at the (N + l}-st move. Iet &N+l dennte 2 wixed
strategy for Red in whith he selects Y, , = (yxal’ 'N+1} with
probability 1 at the (N + 1)-st move.

Supposa that Theorem 1 18 vaiid for games of length N =~ n.
ist FE and G; be optimai strategies for Blue and Red, respectively.

Tas 4 Y @ N < . ~ x4
Lat 42, ¥ ® dencte the functions thet sssociate (., 1 Wy Yooy

%

L] with Fe, G;, resperotively. Suppose, furth . that p

.
n+i nel & Yoy

{from syzmetry, 1t suffi.es to consider this cuase only).
he theorem asserts “hat at ihe {n + 1)-8% move Blue's

optimal choice is & point (ﬁpil, u“*l} that 18 determined by tne
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ratic pn+1/§n+1' Denote this point by

= { - o V)
Xﬁ+1 ‘x;+l’ “g+l) (xﬁ+l(pn+l’ qn+1)’ “;+l(pn+l’ Qne1see

and let

Phe1 7 (KR 47)

The theorem further asserts that Red chooses (yn+1, 'n+1)

to be
(1) = (2) = (3) = ¢
Yasle o, iy a, ¥ =0 0),
with probabilities a .., B .., &nd y_ , = (1 ~ @y~ 5n+1)’

regpectively, the values of a1 and ﬁn+1 being determined by
L N 4
the ratio pn+1/qn+1‘ Denote this distribution in A

5;+1(pn+l’ qn+1)' and set

n+l vy

ap, = (&r 1Py Q) woy)-

Define

Lh+1(xn+1’ Yn+1) = Phsi T %nsl T MYnsl T 41 Y Ynsr t ¥na

[

and

\ - 3 v .
Mn+1(xn¢l’ The1! = L% &n‘l) t VP qn)'

where p_ q  are obtained from p_ ... q_,, by means of (2.3} and

the cholces X ., , W Let E {Fy, 1,) denote the

+1° N)
expented payoff of th: game of length N if Blue zhooses a

U
n+l’ yn+1

strategy ?N and Red shoomses a strategy ¢ Then

N
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& A & [
zn+1(§n+1' an+1) - L'n+1(xn+1' Yn+l) + En(’n’ GN)

o
2 M (X Yp,q)s for all Y o,

where

» \
'Wh(xn+1’ Yol = 3y

Furthermore, we have
By (P Ona) - “n+1{}h+l(xn+l’ Ygii) + B (P, G;]
B [Tnes (s TaD) + B (R 0]
+ (=0 - Bn+l){?h+1(xh+1’ Y§3§> + En(’n'G;)]
L %M X Yéi%) + Bt (Xaae Yﬁi%)

4
(1w g =B I (K Y533>:

for all Xn+1, whera
dn(xnd’ Yn+1) - Py
T™he validity of the following lemma i3 now apparent.

Lemmea 1. Q@iven that Theorem 1 is irue for N = n, to

prove the theorem for N = n + ) with initial conditions p .,

. N . "
< R,y -t guffices to exhibit the X ,, & ., and 8 . for

which
ol * #
(4.1) B (P 30,1) = Vo1 {Phiys Gpa1)
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(4.2) ln+1(x;+1’ Yn+1) 2 vn+1(pn+1' qn+1)
for all ¥p,,, and
(8.3) nh+1"h+1(xn+1’ Yn+%) * pn+1nn+1(xn+l' Yiii)

+ (1 =a = B (K Yézz) $ Vna1(Prsas dnaa)

for all X .

5. SOME SPECIAL CASES

It will also be useful to tabulate the information given
by equations (2.3). We may assume that p_ 2 q,, whence y - u.
) P, 1s impessible and the equations (2.3) can be tabulated as

foliows, where the subscript n is suppressed:

TABLE 2
DETERMINATION OF VALUES OF STATE VARIABLES Ph AND 3

THReglon

Region in (X, Y) Space i,!unber P_, 9y

y —u<0, x-w<0 ? I | p q
y-u<o, 0{(x~-w(q j II i p jq -—X + ¥

y-u <0, x-w)q III l p | n

0{y~ugp, x-%x<0 % Iv ‘p-y +u | q
0(y~ugp OC(x-w {q ; v é P~y +u qQ-—2X +%

0y ~ugp, X —-w>q } 1 p -y 4u 0
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Games of length N = 1, 2, 3, &, 5 will now de discussed.
Prom the statement of the theorem, it is clesr that aeparate
argusents are needsd for N = 1, 2, and for N 2 3. The present
discussion is intended to provide insight into the strusture
of the game and to m&itivate the general irnduct.on step for
N > 3, which will be presented below. Prom *his Jliscuesion,
the proof of Theorem 1 for N =1, 2, 3 will follow. dowsver,
not all the work presented here ‘- necesgsary merely to prove
the thecrem for N = 3.

Por N = 1, an sxamin&tion of the pavoff {2.%) shows that
optimal play for Rlue is to choose Xy =u; = 0, and that optimsl
play “or Red is to choose Yy =W = .,

As a consequence of Lemma 1, for N = 2 1t suffices tv

consider

ng(xet Yg) = Pp = Xy T Uy = Qpy + ¥, + W, 4 (pl "Ql),

—

with p, p q,. Using Te“le 2 and dropping the subsoript 2, we

may write this

f'2(p -q) - (x +u) + (y +w) in region I,

2{p~q) —u +w in region II,

2p — g ~ (x +u) + (y + w) in region III,

M(x, ) - ) 2(p-qg) —x + % in region IV,
2(p ~ q) in region V,

P 2p - Q ~ X + W, in region VI,

where the region in the (X, Y) space for which each expression

on the right is valid s that given in Table 2.
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It now follows that the op~imal ehoices at the second move are
(x, u) = (0, 0) for Bive; (¥, w) = {0, 0) for Red;

and that V, = 2(p2 —-qa). Thus the theorem 1s proved for N = 2,
For N = 3, it suffices to sonsider

Bj(Xse Y3) = Py =Xy = uy = Qy ¢ 73+ Wy 4 2Py ~ Q).

where p342 G-.. It follows from Table 2 that, dropping the sub—
script 3, we may write n}(xs, !3) as

o~

(p~q) —(x +u) + (y +w) in region I,

3(p~Q) +x~u+y—w in region 1I,

Ip—-q~ (% +u) + (y+w) in region III,
H(X, Y) - <

3(p-q) ~x +u—-y +w in region IV,

M(p-q) +x+u-~y -« in region V,

3P-q—-X +u—y+w in region VI.

It is now no longer true that each plsyer has an ¢ptimal pure

strategy at this stage, for

(5.1) min max M(X, Y) # max min M(X, Y),
Y X X Y

as will he shown. Por esch fixed X, : straightforward but

tedious computation shows that the function

m(x, u) =min ¥/ .. Y)
Y




has the form shown in Pig. 1. Clearly, mex m(x, u)

b
;
|
|

|

1

@ =3p—qQ—X—2u

*(iel m=3p -4 +x~u

|
qﬁ(— R
me3p~Hq +X+U —~%>3\ ®=3{p-gq)-u
LN,
+ S Sppe— S ‘__‘_;
L VAN 2q 5
Pig. 1

is sattained along the line segment

\q ’
2

{5.2) X ~u =q, Ogug

gubjest to the cuastraint x + u { p, and the value of the

meximum is 3(p - q).
On the other hand, the function

ply, w) = max M(X, Y]
X




has the form shown in Pix. 2 1f p { 2G. The ocomputations are

agsin strajightf iwe~d and rather long, and so are omitted.

- “""‘”""&' q

b
t" v 2‘4)’ E p
£ - o= 3(pq)w
p o= 3p-2q : e
. R \ \ N » - )
P—q g q
Pig. 2

it therefore follows that min u{y, w} is atta:ned along v + w = g,
w ( p = q, and the value of the minisum ¢ 3{p - q). If p _ <q,
thern u = *p — 2q for all (v, wi.

The vaiidity of (5.7) 18 now spparent, and thus =&t least

one of the nlavers must randomize. The dictum of <cthe wealker player
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randomizes’ leads to a ecomputation of
E(X, 8°) = Hl(x. 'rm) + WX, r“)) ?
the results of which ars shown in Table 3,

TABIE 3
DETERMINATION OF VALUES OF THE PUNCTION E(X, G°)

-

- Regien - ; E
0{u{q 04x¢2q 3{(p - q
0L gq q { x 3 - q ~ 2x
a{u 0¢x¢2q 3p - 2q - u
q {u 2q { x 3Ip -~ X = u

Clearly, we have E(X, G*) { Z{(p — q), with the sign of equality
holding for all X on the line sagment (5.2). Since for each
fixed X on this line segment, M{X, Y) 2 3(p — 1) for all Y, the
validity ol the theorem for N = 3 follows by industion and the

u8e¢ of lemma 1,

A% N - 4, a new phenomenon mani®ests itself. Set

Eg(xg‘p “-{3) 5&%5\ Kg{}'f‘, YS}
h

and drop the sudhsceript 3. It car bs shown by straightforward,
but perhaps tedious, computetian theat m(x, u) has the lform
ahown in Fig., 2. Prom tne Vigure. 1t {8 evident that:

(&) f p\ Tq/%. then

Sax m (x, ) = maz wxin #{X, y) = g fp - 3},
X X {




m = 3p—6q+2(x+u)

2q

(v)

M1151
9-22-58

I

x o/
A &
-+
M
|
R
1
[
P
]
melip—-qe=x-—u
p3
Z "
m = - + 2X -
p - 6q u x = q
m = 4(pq) —u
_.._____.\
29 q 2q
3
Pig. 3
and this wvalue is attained on.y at the interseotion
of X -u=gqgand X + u = p - that 1s, for
B, T - B
if p 2 7Q/3, then
10
max min M(X,Y) = 4p — x4q

X Y .
and this value 1s attained only at

X = gq, u %q .
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It should be observed here that (X, u) lies on the line X + U = p,
¥ith p = 7q/3. S8traightforward calculation shows that these
choices constitute optimal play for Blue, while the optimal
strategy for Red is to randomige over Y(l) and Y(e; with
probabilities (1/2, 1/2) 1if p { 7q/3 and to randomige over Y(l),
v(2), ¥(3) with provabilities (1/3, 1/3, 1/3) 1f p > 7q/3. The

value of the game, of oourse, is the piecewise—linear function of

p and q,
v g’(p-Q) 1fg$§p
"p-%& 1r8>%.

All of the characteristics of the game's structure bdbecome
completely apparent at N = 5, and this case will now tes studied.
Suppose that Ps 2 g As before, we have

a'(Pg -'Qg) if Py < ;Qg ’
M5(XS, YS) = L5(x5, 15) +

ap, - bq, 1f py 2 ;Qu ’
where
10
*.g, - b, b = —.
a g a 3

Dropping the subscript S, we show the values of M(X, Y) in
Table &,

The particular runotionalyrorms (L.e., expressions involving
A, B) are determined by the regions in the (X, Y) space that
appear in Table 2, Each of these regions is then broken into
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TABLE &
DETERMINATICN OF VallES or THE PUNCTION HS(XS, YB;

L A e MO VTSI TR 4. > pmonsa

Region Censtraint A

- o

2]

ts

(7 ' H
< 8% 1 p* 4+ 1

" Ap ~-Bg - X -u<+y+w

et

P-Y R
[ .

v*-\‘

£

+

-

£

+

-]

— _ — —
;p -~ g+ { W &® o 1. oa% ;1
11 D - Q4K ® & +1 b+l Ap -~ Bg 4 (B-)x-usy-(B-P)uw
Iix o 2 1 1 Ay o B o= X~ U 4+ ¥ + W
- e o e : [
Iv e L L i Ap —~ B - o { A Jam{ A ) y 4w

7
Lt 5T

7 _
D — uatwked { Yo+ A L
I ﬁ*}i :‘wy-cg‘a {

- B2 }u

P $ o £ TR DRI - ronth Fo,

\5 o - %@«,34»11 . y%w a -+ 1 o+ 1 ﬁmé(ﬁ'&}?&"’{ﬁ“?}‘“(k‘é?}y

vl S a < L1 Ap-Bgeas (AR jud AR}y

Rt s i e 4 8 [N Sty ~ PO s e
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o Qe
at moet two regiors by tha cenditione 3p,  7qy, P, 2 TQy,
¥aieh determine the sonstants in Vb(ph’ qq}. It 1s this furthar
breakdswn that determines the partisular values assumed by tha
constants A and B, It ¥will bs notad that in some instances
en entirs region in the (X, Yj plare maps inte enly one ¢f the
regions in the (p,, q“) plane.

et
n{x, u) = m%n M{X, Y)

It car be shown by straightforward, but lengthy, cemputation
that m{x, u) has the f~~m shewn in Pig. 4.
8ince the line x + u = p that passes through the point
P, has p ~ 49/20 q, and the one that petsss tr-ough P, hae
p - 42/25 q, @and since a®* > 2, a > 2, and b > 2, the statements

irdicated in Table 5 hold ccncerning max wmi{x, u}.

TABLE 5
DEYERMINATION O max m(x, u)

, T Foint at which
(p, q) Reglen | zax n(x, u) | max le sttained
i ! Y o
;P B2 | 108 - : =1 _ Tp+10q
g - 18 (p -
, u 17,(:) a)
{ .
42 . p .k LI ) o7 Falg Tg
3R hoe-we gL O
¢ | ) .|
| | 11
| .
| : T 17
X =
22 - i RS
20 = 9 b < T .
i U e
L | i




a = (a+l)p—-io+ajg+{b-ijx+(a=1)u
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Coordinates of points (u, x)

Pyt (%! %q)

o 73 (Q"’?gp;&;u;p)
| 2
q . A mf »
7 : st (5 a)
& 2%
- Pyt (B S5
: x
f T | Py (0, %?,o-q - ?p)
! !
T { |
I
A & ® = (a+l)p ~q - X —u
®-Ed
n A 1
8 ‘ /,Ekuww—m» —_— e e R Y% Q
: &V{ m o~ (8+1)p ~ 2bq + (b~i) X — u
; )
LB Cx - 2q -7
n - (a+1)p — 2a*q + (a%-1)x ~ u
Z TN 2% - Bu = 10q -~ p
i S | x-gq
6’”‘\\4 - ldx 4 28w - Bp o+ 11gq
s 51'\ p
’{'€§‘h Qu 4+ TX = 7
!// : ‘X/— { 3 q
o X % m = (a%+1)(p-q) ~ u
AN S
é’ B VI W
POCEE <
i N
%SL N i 2‘ _______ b
x 5 q

Pig. 4
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Straightforward caloulation shows that
w@, ) - w@. ¢?) - ’% (p - a},
(s.7) w(¥, v{2)) - w2, v(?)y . (lbp - 15q),
M@, ¥y - w(@, () (@, ¥ 25 - e

It is thus reasonable to sssume that if 20p { 49q then Red
randomizes over Y(l) and Y(e). and that if theinequality is
reversed then Red randonizes over Y(l). Y(Q), and ?(5). Proceeding
on this assumption, we compute M(X, Y(l)), M(X, Y(2¥), and
M(x, 1(3)), and then seek to determine probabilities a, B, whiah

may depend on (,', q), such that for all X

(108 y p .k
an(x, (1) & (adm(x, Y1)y ¢ jv‘Mz 11CENE -
x (\VT (163~75q) ’-f!g$§$:§
(5.4)
au(x, YH) . au(x, 1?1} &+ (1aspim(x, Y3
S 50 - o \ugp_;g.

T™he problem of determining a and B {s not &3 dAifficult ss
it may at first sppear. Mor in view or {(5.3) it is clear that
a and 2 mist have the property that, for a given sector ¢f the
(p. q) plane, the suxz in (5.%) sust eiiser be independent of X
in a r»agion of the (x, u) plane sont&ining the appropriste

.--1

X", 1+ =1, 2, 3, or must be of the fcrm ®(p, q, * C{%X + u),

whers 7 is soms function and C is & positive scnstant, in that regiern.
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Guided by these observations, we compute a and B to be the
following:

a—%. 1-0-% torlgggggi

, 1-0-161- rox-;%g%gg%;

a3, B-Fp(l-a=-8)agytorgB.

It 1s then an easy matter to verify that, for these values of

G w

-

a and B, (5.4) 1s valid. Thus the optimal strategies for both
players at the fifth move are determined; namely, Blue chooseas
! for appropriate 1 determined by the ratio p/q, and Red chooses
the appropriate randomization over Y(1), ¥(2), ¥(3) 4qtermined
also by the ratio of p/q.

6. DEFINITIONS AND PROPERTIES OF CONSTANTS
The first step of the proof of Theorem 1 is to define the
sequences {arj&} ’ {bﬁ} R {X%‘} « To this end, consider the

following sequencas defined in the manner and order indicated:

(6.1) a% -3, a::i' -(a:'e +1); n Q2 3;
6 w3es l-(boduode). n2x
&n Ly

(6.3) vy =al=0,n)3

n—2 1 1
(6 h) .2 - ‘n (abn + .n)
* n+l bI+ e
nt& 5
?1 1}!\"—'14*2,14*3,...)
1 30020

(6.5) bl " T
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(6.6) "l w v 0, n=3, 8,5 ...

(6.?) )\; - 1‘

n—1 n—1
Mgl ™ (3 n-2 n—{’) (bm»l ) »rn=3, 485 ...y
pi-1 _

(6-8) Xi = -'i‘q_—% » n 2 u} 1 - 1, 2' " es0 p l""‘}o
a

n ~ %

The following properties of the foregoing sequences will be
useful in the proof of the theorem; indications of the derivations
of the properties are given after the listing:

(6.9) a2 . n, n23;

(6.10) al = bl n> 3

(6.21) > P15 02 5 5, n ) 3

(6.12) aszril)O, 11,2, «oo, n—2;
n=3 45, ...

(6’13) nsa’rii<2nl 1-1, o0 0y n—2’

n=73, u: 5, ooy 3

i 1-1
(6.14) a_ < a ",
1 1 1 nz}, 1’2, 3’ ev e, n-.2;
b { w4,
n n
1 3n ki
(6-15) kn"‘l o T nl 1—; n 2 3, 1 - 1, 2, ooo’n -— 2}
(2n—an)xn+(n+bn)

(6.16) 3> I>A™2 52, a3y
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(6'17) kli.l+1/\kil IXZ}; 1=2, 2, LN n-?;
(6'18) kx11+1$k!tl nZB; 1"1, e e e n-—z.

Statements (6.9) — (6.11) f¢.low from the definitions and
from trivial inductive arguments.

Inequalities (6.12) and (6.13) are pr ved by induction on
n, n i+ 2, for each fixed 1.

The menoteniocity proportios in (6.13) are eatablished as

i
n+l

by inductisn on n, from the nonotoni ity of 1b ?, 1 =1, ...,

n—e
n+l

> 4, This inequality, however, is ebvious froz (6.%) and (6.11).

e
1-1 b
n+1 = Bps)’

follows. The msnotonicity of <b 3 y, i =1, 4o., n ~ 2, follows,
n - 2. To show that bnu > bml, 1t surncu to show that b

When we computie a i =2, 3% ..., n-2, wm obtain

n fa-1 ] 1 1-1 1-1 1
> "(2n -a%) — b (2n -~ 8777) + n(a -a)]
{ﬂ+b1;1)(n+b1) |

where the subscript n is omitted. Mrom the inductive hypcthesis
et {ni} is menotens dscreasing in 1, and from (6.13), the
braok;tea expresaicn in turn (s seen to bde lorger than the
pozitive quantity

1-1 1-1 1
} (

b (2’!’\'-‘ j = b -1

2ra'™l) - (3wt (natTh

pirtherwoire, for n 2 3, by (£.1}, {c.3), aud (£.11} we have

n—"’{
an~2 &n-} . bn (r=1)-1 n—-1)-a o
n+l n+1 N— & : ‘
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1

n+1} is monotone deoreasing in 1 1is

Thus the fact that {a
estadblished.
To prove (6.15), we use (6.%) and (6.5) in the definition
(6.8) of A% ..
Inequality (6.16) is obvious, and (6.17) is established
inductively as follows. Suppose 13*1 > 1: for 1 =1, ...,

n -1, Conaider

1+1 .
Xn+1 - Ai+1 2n-c.1 Ai + n+b1 - ,ol=d, 2, oo, n =73,
1 A Pttt 4 (nedtt)] ' '

7\n+l

where the subscript n is omitted. To prove that this ratio exceeds
l, it therefore suffioces to show that

Upon replacing 2141 on the right by its definition (6.8), we mee
that this last inequality is equivalent to

(n + %) (1 -ty >,

the validity of whioch follows from the inductive hypothesis. The

ohain

o }nkn-e ann—e an—e

- - ~ < A
n+l (xh—a“‘l)n + bn—-? bn—?(n+1) S bﬂ

2 ¢

1
A xn+1

completes the proof of (6.17).
It 1s seen from (6.15) that to verify (6.18) 1t suffices

to show that 1
(6-19) anzn 1' nZ}]lnl, 2, ...,n-—a.
- A

n
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This inequality is shown to hold by induction on i, as follows.
Por 1 « 1, equality is odbvious. Suppose that the inequality
holds for 4 = k. It 1s then seen to hold for 41 = k + 1, 1 { 1
{ n -3, by writing (omitting the subsoript n)

xk+1(2rr-ek+l) - (2n-bk+1) - lk+1(2n—0.k) - (2n-—bk)
+ xk+1(ak-ak+1) - (bk-bk+1) S
A(2n-a¥) — (2n2¥) > 0.

T. MISCELLANEOUS PREPARATIONS
For N S 3, Theorem 1 has been proved in Ses. 5. The

theorem will now be proved inductively for arbitrary N ) 3.
Suppose then that it has been established for N = n > 3. It is
required to show that it holds for N=n + 1,

In order to simplify notation, for the remainder of the
proof we shall omit the subscript n. Thus the symbol a;, say,

1 1-1 -1 ,1+1
will be written merely as a~, the symdbol Xn+1 as xl ’ bn__1 as
biil, eto.

Prom the symmetry of Theorem 1, it is clear that it suffices
to consider the case p, 2 qy. Define X} =- xi(pl/hl) as follows:

™ - P 1
Xy = Q3 = (%3, 9 1rx{_<.a-i-gxl*1 , 121, vee,n =1

1-
where
b 1
2n-a")p, — (n—2b")q
A ( 1 ) v | -l
) xl- br+n - » ulﬂpl--ll,i-l,.-o,n—z.
(7.1)

-1 1 =1 1
S T U o= (1 -Fey .
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Define a, = a,(p,/q,) and B, - bl(pl/hl) thus:

p N
a) 1rad (gl ad, 1{1¢n-2,
then . bi .
17Ty T TAT T
P o §
b) “E’i’le ’
then
an—l - 1 pnul - 1l
1 n' 1 bE:E *

Clearly, a] > 0, 81 > 0 for a1l 1 sattsfytng 1 {1 ¢ n -1,

ol 4 pi = 1 for all 1 satisfying 1 {1 {( n - 2; and al 4 Bi <1

for { « n - 1. Thus ay and bl are probabilities. Jlenma 2 will
show that x; is an admissible cholce for Blue and will furnish some

useful bounds for §i and Ei.

Lemma 2, The point x; is an admissible choics of stratexic

variable for Blue. PFurthermore, for all i satisfying 1 {(1¢{n -1,

»we have
7.3)

Sinace x; is defined pilecewise, the first step in showing

that x; 1s admissible 1s to show that the pieces come together —

n—1

1.e., that x; 18 well defined. Bubstitution of p, = AJ™1 q, into

the definition (7.1) of x? 2, and application of (6.7), show that
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1f p, = xi"‘l qy, then 'i‘l‘"z - ’i’l“l . Similarly, 1t 1s seen that

W2 2 @ for py = AT} q,. Substitution of p, = A} q;, 1 =1,

+ees N — 2, into the definition (7.1) of xi, and use of (6 15), show

-1 ( M

\
Substitution of p; = ki+l Q,, and use of (6.15), show that,
for pl - xi-*l qlp 1= 1; evey N = 3’
. )‘1+1
"= 'I'I' *

/
*
Thus X; 1s well defined, and for A} { p,/a; { M*, 1.1, 2,

.?o; o W 3;
7
kA ki+1\

A
(7.3) 2-;-} q, {5 ¢ 2—)\%:;;)«1

—

-—w__
with equality on the left ooocurring for Py = xlql, and on the
right for p, = xi*l q,- S8imilarly, we obtatn

xn—?
(15) (2= ) u <7 <F .

Clearly, (7.3) implies X3 > 0, i) 2 O for all 1 satisfying 1
{1 ¢{n =1, By definition, Ei + ﬁi =py for 1 {1¢{n=~2; and
for {1 = n -1, we Obtain

-l -l o §
) +uy = A LPy

Thus thu establishment of the lemma depends on the proof of (7.3).
Por L = n ~1, (7.3) is obvious. The inequality (6.18) implies
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Ai { »*, whence it follows that (2 — Ai/\i)ql 2 q, for 1 = 1,

2, «vo, n — 2, Clearly, the inequality (2 — xi/ki)ql < 2q, holds

for 1 =1, ..., n — 2. Hence, we odbtain

qls.i-i<2ql fO!'i-l, sosy n-2.

To verify O g,ﬁi {qy for 1 {1 {n—2, we substitute from
the definition of Ei into the definition Gi = P -i% and obtain

61 ) (b1+a1-n)p1 + (n—ebi)q1
1 (b1+n)

r» 11 ¢{n-~-2,

Hence, showing that Gi < q; 1s equivalent to showing that Py/a, <
}bi/(b1 +al — n). 8ince pl/'q1 (4 Xi*l, it clearly suffices to
show that Ai*l < }bi/(b1 }>li ~n). Prom (6.15), it follows that

this last inequality is edquivalent to

bi'-ki(ai"‘n)>°. 1-1, 2, e 0 ey n—?.

—2 n, 1t follows that for 1 = n ~ 2 the expression on

n—2

Since a
the lefrt of this inequality is equal to b , which 1s positive.
Purther, the left hand memder is a monotone deereasing funotion
of 1, as can be seen by forming the difference of the left-hand side

for superscripts 1 — 1 and 1 and getting
G-l Yy (@1 -n) Do .

This inequality follows from (6.13) and (6.17). Thus it follows
that Gi < Q,- The inequality Ei'z 0, follows from

(b'4alen)p, + (n-2bl)a; 2 (aldl)q; 205 11 ¢n-2,

and the lemma is proved.
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.
Y¢ Tnllows fros lewmma 2 8hé ths definitions of Xl, al, 51,

end from the industive hypothesis to the effect that Theoreuw 1 is
vaiid for N = n, that the validi(y of Theor:m 1 will be sstadbiishasd
1 (4.1), (4.2), and (&.3) of Tasume 1 are shown to hold for

thiaz x;, @, 51. T™he next 2cationa of the proof will be devoted

to the verilication of these thrve riatements.

In the course of this wverification, 1t will de ns.assary to

(1) = L, 1,1+ V(B a)

§
= Ll(xl‘ Yl) + ajp ~ bv¥qg, J=al, ..., n= 2,

wxrileitly in terms of Pyr Gy, X, Yl’ for csrtain chelces of
-« -

&

., Y. Per any given fized initlal conditior (pl, ql}, an

%
P

S

integer 1 { 1 { n =~ ! ig detarmined by the incquality 2 $ Pq/a
. A

i
B T ;
< Ay 7. Esch cholcs {Xys YE) bty the players fulls ints one of
b ES

=

tng a'a reglons anumeratsd i Table 2% and determines p and q and

. P . . ki . . . AT 1
nence An dnteger oo 1 don o~ 2 vis the ipequality 2Y { p/1 AT

It i8 thle integey ! that appeers in (7.0}, Clearly, * is 2 funs-

N

tlom of po. q. 7., &nd ¥, In computing ¥ {XS, ?i} expliaitly

e

n termg of the 129418 aonadliciane and choloes X Y it w11l

1;

thus e necamsary %o take intc account tha region of zne (1.,

Y,! plane and the supsrssript . The statement {X.. ¥.,) leads
A A,

e ocase IIT 77 wil. mean that, Por the initial condition belng

*The tabie 18 gffcn for passags rom n o 8§ -~ 1, ﬁ%ara&ﬁ
the present e*tustiorn ;ﬁ for passugs I'row n o+ 1 Lo o
adfustment of suhscrip ta 1¢%t to the resder.




B-1151
-2 258

-3 Dun
corsidered, the pair (X,, Y,) falls into region III of the (X,,
Yl) plane and the ratic p/q is such thet j = Jor At first glance,
1%t epper»as that there are 6{n ~ 2) casez. Actually, not all of
thesa cases are poaidihle; and sincs some specialization of

Xys Yl wlll oeovr, not all of the pyssible cases will o=

&

sncountered,

8. JRRYFJCATION, FIRST PART OF SUPICIEHNCY CONDITION

We divide ithe disgcussion into two 3ases.

Case 1: yyhjszdg

Por this initial condicion, it is readily assen from Table 2
, D
thet fX’, Y§l)) leads to cese VI“"‘, (X;, Yig)) leade to case
1%, ana (X", Y§3)) ieads to case III™°, It then follows

by straightforward comptrtion and the definition of 8ec. € that

Pals
[ ¥

\ re? {1 ry® 2) * 3 "
.1} LI CSIR & )) = ﬁlfxl, !§ } e nl(xl, Y§ )) = vl{pl, q1§,

,*\Q »
The equelity E {¥ , 61} = V‘(pl, ql) now follows from

4

, ; “w‘* J € {1) * (2:
v e (¥, (X, ¥ )4 ByMy (X, ¥Y1°0) +

(1 ~ay ~a) &0, B3y,
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1 1+1 p
Cose 21 Ay {Py/Q (M s 1=1,2 ..., n-2.

Fer this initial condition, it is immediately seen from

1)
Table 2 that (X, yglf) leads to oase VI, wnile (X, Y§2))
lesda to cese IIJ for sppropriate j. To determine the value

of j, we firet obsarve that

R.. D1

q =

2q) - %

It follows from (7.4) and (7.5) that § = 1. Straightforward

computation and us. of the definitions in Sec. 5 now show ihat
* 1 8 2

(8‘2) “1(x1: Y§ )) = Fi(xl’ Y§ )) = Vl(pl' ql)’

and heneca (4.1} follows as before.

G. VERIFICATION. SRCOND PART OP SUFPICIENCY CONDRITION

Again, as in 8Sec. 5, we divide the discussion into two cases.

-yl
Since X, = 2 q, (X;, Yl) can never tfall into region I or IV

L
of the {X,, Yl) plane. Since (Xl, Yl) 1ying in region V implies

that
N { SRS 50 4 1 i
> S - R . S ; ,
ST WAL L5 T R B

thie event ig also impossible.

Por Y, such that {x;, Yl} fa*le in region II, we have
p._ 0 . 2! o2 P no

;n_é < . S NV ;
? U -xy " ewy 2q, Xy RR!




the last inequality following from (5.11) and (6.16). Hence,

the superacript assosiated .-ith region II is n - 2, and

N2

R -

M (], ¥;) = (n+d)p; — (b = . (1

-2 o _(2)
(b —1)'1 Z ﬂ1<xly Yl ) - Vl(pl’ ql)’
the last inequality following from (8.1).
T™he only superscéipt that can be associated with region
II1I or VI 18 n — 2. Having noted this, we easily see that for
(XQ Y,) in region III, mi M (X. Y,) ocours for Y. = Y(j)
1’ N1 g c By, At 1 1" 1
and so (4.2) follows from (8.1). Similarly, for Y, such that
*
Xy Yl) 1s in VI,
min M, (X,, Y.) = u (x5, ¥{3)) - v (p., q,)
Y 1V’ °1 ) RS 1*%17 %17°
1
i 141 "
C&le 2‘ Algpl/qlgxl y 1'—’ 1' e s 0 ) NN - <.
=i < .
Since X 2 qy, (Xl, Yl) cannot fall in re.ion I or IV. If

(X., Y,) 18 in . :glon II, then we have
1 1

A i . ) 3 -d -y
ul(x}, Yl) - (a“+1)p1 - (% +1)ql + (b --l)x1 - Uy

where | is dstermined by the ratio

-
M=
-

e

b i
x:-—-—-:-:i-—
oy e
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Clearly, J is a noninsreasing function of w, alone, d - 5('1)‘
Prom (7.4), 1t follows that J(ql) = {. Por each J, the minimm
L I
of ll(xl, Yl) is achieved at & point Y, = (vy, '1)' where y, = 0
«
and where w, 1is the largest value of w sueh that (x,, Yl), Y, -
(0, w), leads tc ocase 1. Henoce, by the eontinuity of nl(x;,
Yl), it follows that the minimum of ul(x;, !1), over all Y, such
that (x;, Yl) is in regien II, occurs at Yga), Thus, using (8.2),
we get
. » 2
HI(XI, Yl) 2 nl(xl. Y% )) - Vl(pl, ql).

The only superscript posasidle for (X,, Yl) in region T1I
is n — 2; thus for Y, such that (xI, Yl) 1s in XII, we have

L 2
ul(xl, Yl) =np, —q + (y1 + '1)‘

The minimum of this expression over region l.ii is assumed at
Y, ~ (0, 0} and is np; — q,. Since we ore sonsidering the case

i 1*1
Py/8y S Ay, the inaquality

(9.1) (b3 = 1) —al*t (8] = n) 20

ke

implies the inequality np; - q, s a§p1~ biql, and so it suffices
to smtablish {9.1) 1in order to v-rify (8.2). With the aid of
{6.8) ané (6.13), it is sasy to 3ee tnat the left-hand side of
{9.1} 18 a dscreasing fusst'on of the supersoript. Purthermore,
for { s n — 2 1t follows from (6.8), (6.5}, and {5.7) that the
laft~hand side of (9.1) is gzero, and so {G.1) 1s verifted.

In the svent that Y, is such that (X;, Yl) is in region V,

e have




P-1151
Q-2

(9.2) My(x3, ¥y) = (ad41)p, = (vT42)qy + (B9} (Bimwy) + (ad1)(T}yy),

where j 1s determined by

i

Py=Y,+U
XJS; 1‘-1 1 SXJ+1, ‘5-‘1; 2’ o sy “"'21
W™

8ince x; is fixed, al) questiona soncern~4 with detarmining

&
which points in the (11' Yl) plane lead to the different caaes
VJ are thus seen to devolve upen questions oonseriing point sets

‘n the Yl plane. Clearly, the linas LJ,

§ =1 | —1
’1 a«kjwl + k“(xl o ql) + pl + ul ’

in the (yl, 'l) plane form a finite pencil through the point

-1 -4 .
Yy = Py * Uy, Wy = Xy = Gy Prom the monotonieity properties

of the mequence {’kl} , it follows that for any ’ixed Y, =¢
with ¢ Py * E; (and #o particularly for Yy < ql;, as one moves
alcong Vo= ¢ in the direoction of increasing ., the lires L’
are encountered in order of decreasing J. with the iins LPMQ
being intercepted at a value of "y > Ii ~ Qy. shus, tho sets
in the Yl plare giving rise to the various cuses v ars, in
general, a3 indicatedé by the hatahed regiong in Fig. >.

¥rom the fact that &) © b, 1t follows that the minimum of
nl(x;, Yl}, over esch set V' of Pig. S, is assumed at the upper

laft-hand vertex of VJ. Henoce, by the continuity of !,(X;, Yl)

@
in ¥;, 4t follows that the minimum of nlixl, !l), over all Y,
) * . ; . -1 _ _
such that (xl, Yl) 18 in V, 18 Achleved at w, - X ~q,, ¥, = 2q,
-1 -

-

X). Suds.ituting these vslues inte (5.2) and using Il + Uy = py.
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we see that the value of the minimum ia 2n(p1 —‘ql). It remains
to show that

|
2“(91 - ql) i 1 Pl bl Ql .

Since py/a; 2 21, this inequality is implied by the inequality

2n—d
i
A —T
1 2 2n—sl

which 13 established by induction in exactly the way that (6.19)
was establighed.

Pinally, the case in which (X;, Yl) l1ies in region VI must
be considered. Examination of Table 2 shows that the only

superscript possidble 18 ! w n - 2, and so

u(x;, !1) - (n+l)p1 -3 - Ei + (n—i)ﬁ% - (n----l)y1 + .

The minimum ¢f this expression is assu:d at Y, = Y(I). Since

1
(X , Y( )) = V,, the proof of (8.2) 18 now ceonolutied.

10. VERIFICATICN, THIRD PART OF SUFPPICIEXCY CONDITION

The proof cf (4.3%) will clearly involve the computation of
{(30.1) 70 (X)) = oMy (X, Yi ))*§1‘1( X,Y 1(’)}+{1~c1-a1)x1(xl,1§3)).

TH.s, lor each Xl it i neceszary o know the gsse to wiich ws
are lsd by «_ch of the peints

-
Cs (xl, Y‘i)),

(1) . .
Ad (11' Y, ) s (X, Y ]
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Part of this information is tabdulated in rig; 6. In this tabula—
tion, a symbol such as, say, AVJ in a given region means that,

for all X, in that region, (X,, !gl)) leads to case V3. In some

l
inatances, the value of J 1s indicated; in others, the determina-

tion of J will be made in the discussions of cases 1 and 2

below.
b ¢
A
A VIT2 A ITIMR | A 1Ire
B 1112 B 1112 | B 1rrt2
c 11r"2 c 1Ir2 | ¢ 1ir2
2q s
A vIT2 A III™2 | A e
B 11J B 11 e 11J
c 112 ¢ 1Ir= | ¢ 11rv=
q
A v A 11Y A 11d
B 1’ B 19 B 1’
11 c 11/ 11’
—— —— _-_> u
PMg. 6
Case 1: 1?"1 < pl/'q1 .

Pirst, the values assumed by the superscripts J will be
determined. In the ocose BIJ, Table 2 shows that pl/'q1 - p/q;
and since, by (6.16), k?—; 2_\“-2, it follows that § = n — 2.

Also, in the case BIIJ, we have § = n — 2, because



o P
R.,1 b 3
q Ea'I:-EqZQI' q {x £ 29
Similarly, in AIIJ and CIIJ, we have § = n — 2, because the rela—
tion

T @ = q

holds there. In the case AVJ, the value of J is determined bdy

the ratio

+u
B-——-——'l— SXJ*.I, J-I’ s 00y n"‘2-

The lines

form a finlte pencil through the'point Xy = Qys Uy = -(pl—ql).

It follows from the monotonicity of the A\'s that if a line u; = ¢
with ¢ > -(pl—ql) is traversed from x, = q; in the direction of
decreasing 3T then the lines of the pencil are encountered in
order of decreasing J, with i"-e being the first line encountered.
Thus, the lines 29 aivide the square 0 Xy 4 q;, O { uy < Qy

into subregions over each of which a different superscript j 1is
applicable. The number of subregions depends on the ratio pl/hl.
Por sufficiently large values of this ratio, the entire square
will have the superscript value n — 2 apsociated with it. The
important fact to be noted is that the regicn with superscript n — 2
always exists and contains the 11ne’aegment X, = qy, 0« uy < Q-

Clearly, %y(xl) 18 continuous and 1is of the form
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where P(pl, ql) is a step function on the (xl, ul) plane whose
values are expressions involving the constants aJ, bJ and the
initial conditions Pys Qy° Its sxact form is of no concern here.
The coefficients R and 8 &re also step functions on the (xl, ul)
plane whose values involve the constants aJ, bJ. The information
concerning P and 8 shown in Table 6 i1s easily obtained from

Pig. 6, the preceding discussion, Table 2, and the definitions

(7.2) of a, and By -

1

TABLE 6
DETERMINATION OF VALUES OF THE COEFFPICIENTS R AND 8

Region of (x,, “1) plane |Region
X m Number R ]
1 1
2q, S_xl uy 2 qQ, (1) ~1 -1
ql S xl S 2q1 ul 2 ql (2) o} -1
0<x {q uy 2 qy (3) |[v™ -2 -1
2q, { x, J u £ qy (%) -1 o
q1-<‘11$2q1' ulsql (5) 0 0
0g Xy S ) Uy < 9 (6) LbH—ILbJ -1 (..i _ 1'
bn—? n )

The supersoript J in the entries for region (6) variea as the
supersoript in AVJ, and assumes the same values as the super—
soript in AVJ . )

Por each of the regions (1) through (6) of this table, the
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set of points at which the maxismum of ﬂﬂ(xl) is achieved on that
region is easily determined from the tabulated values of R and 8
in the region. It then follows from the continuity of 77(X,)
that the maximum of z7Z(x1) is achieved at all points of the square
q £x;,{2q,,0 {uy {q;+ In particular, it is achieved at
(x? 2, u? 2), s2..:e by (7.3) this point is in the square. It
now follows from (8.1) that

L ]
M(xl) S m(xl) - vl(pl' ql) .
b 141
Caﬂe 2: Xl S pl/ql Skl » 1 - 1, 2, seey N = 20

Under these initial conditions, Pig. 6 is modified from
the outset as follows. Point C is eliminated since we have ai +
Bl = 1 for 1 {1 {n ~2; and the region x; 2 2q), u; 2 q, need
not be oconsidered since pl/'q1 { 3. In determining the superscript
4 and the modifications of Pig. 6, it will be convenient to
distinguiasl: two cases, namely pl/'q1 2 2 and pl/'q1 { 2.

Suppose that pl/'q1 2 2. The supersoript J in BII’ 1s determined
by the ratio.

P .
(10.2) q ga;—_-_——x—l- »
where 2q1
qQ, < xy { min .
Py ™4

Thus J 18 a nondecreasing step function of Xy alone whose

value at Xy = 2q1 is n - 2, and whose jumps ococur at



oTo328
a3

p
(10.3) X, = 29, -;% ’

where j is such that 2q1 ---pl/\J 2_q1. At the jump points, J is
continuous from the right. Ilet JO denote the lowest value of
the superscript J. This 1s clearly assumed at Xy = ql, and the
defining relation for JO can be taken as

P Jatl
nh Jo "i o .
(10.4) Ao ¢ T <A
Since, by assumption and (6.18),
P1 .14 , 101
a“ S Al < A ’
1l
it follows that

Jo$ 1.

It is also necessary to have some information concerning

the superscript at uy = ql, Xy = Py = Q- Substitution of this
value of x, into (10.2) gives the quantity pl/(jq1 - pl). It
can be shown that

P < A1+l
3q; = Py ’

and hence it follows that J { 1 at the point X, =Py — Q.
Lll = qlt
The superscript J in BI) 1s determined by the ratio pl/hl;

and, in view of (10.4), this makes ! = JO' In AIIJ the super—

soript is determined by
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p. 1
1T 947
Thus j is an inoreasing step function of Xy alone, having value
Jo at x, = 0, and n — 2 at xl - ql. The remarks made under case 1
concermning AVJ are applicadble here, too. It is not diffiocult
to see that the lines 49 split up the square O g_xl < q,
0 {u; {q, as indicated in Pig. 7, which summarizes the fore—
going discussion.

Suppose now that pl/'q1 { 2. Most of the remarks ooncerning
the superscript j in BIIJ in the ocase pl/'q1 2 2 are also valid
hers. Now, however, u,y cannot exceed q, when Xy 2 9 and so
there 1s no need to discuss the point u; = 4y, X; =Py —Qqy:

Ir Jl denotes the maximum value of the superscript Jj, it no

longer need be true that J] = n —2. However, the relation

21

does hold. Por, the maximum value of pl/'q1 is pl/(2q1 - pl),

and so the assertion J, 2 1 1s equivalent to

P S N
24y = Py )

This relation, however, 1is easily established.

A8 before, the supersoript in BIJ takes on the value Jo.
In AIIJ, it 1s readily secn that the supersoript J is equal to
Joat x; = 0 and increases to the maximum value of j;. In AVJ,
the remarks made in the discussion of pl/q1 2 2 st1ll holg,
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X AVI™ applies whenever X, 299 £q
4 ' .
u?n—a | X229
BI o] " " ‘1 S ql
N
N\
\\\
AN
. ~— BIIT2
....... , _‘\_\/— BIrd, 1< Jy<n-2
J \\:; x
BIIY, 4, <3< 1 &
<

_____________ — e c— — o

BII© i/- ATI

AV, g g n-2
' ]

o AIXY, J, CJ<{n2
i\ \\ ~ - - ‘J ! .
l Y A It
~ < AIX

l!vJ’ J < JO S . - _._\..l\ - -1
o qQy 2q, 1
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except that for x, _}_ Py = 9y the regions are truncated by the

iine x +u1-p1‘

1

Furthermore, the smallest supersoript in-

velved in a truncated region is clearly Jl’ and a0 i grester

than {. This information is summerised in Pig. 8, below.

3
BI *

AVI‘""Q applies whenever Xy 2 qy
o
BI applies whenever Xy < q

1<14Y
1Y, 5, < 1< 1
‘;0
av
% J
¢ AL !
N
e
. 4 .
ALI?, g, <3<y,
» ;
‘ Axy °
- - }
. N & U
Q, ]
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Regsrdless of whether p, 232q1, or py £ 2q,, we may write

7 (X)) = H(py, q;) + Txy + Wy,

where ¥, T, and U are stsp functions having values that depend

on the choice of X but do net involve the variablea x, or Uye

1’ b

The functionel valuee ¢f H, T, and U 4o involve the constraints
ai, bi, aJ, bJ, and these of H invoive Py and q, in addition.
The superscripts j, of course, are determined by Xl. T™he values
of T and U are shown in Table 7, and t¢he regions of constinay
are indicated. Clearly, the regicns of constancy of P coincide

with these of ¥ and U.

TABLE 7
DETERMINATION OF VALUES OF THE COEPFICIGNTS T AND U

Region of | Region 1 -
{x,u} Plane | Mumbar ' T U ‘ Remarks
2q, S % bt "~ Only applieg if Py
(1) -l g -1 s o
w Sy B
y |
Qy ﬁ x4y 5?41 (2 an y - Only applies 1if p1
¢y ] blen - -1 . 2Qy; exponent |
P aYy varids as ;upjr-
e P : soript in BII
q, L x, L 2q 7
1=1 s 1 (3} nb” _ 4 nb{m‘ — 3 Bxponeni J variss
uy < @ - Lran . ;T;n  supersoript in BII
1 1 :
0ex 8 q | 3
(%) ' !;I“'-1§ -1 Exponsnt ! varies 22
qy &Yy g | ~ superscript in AIIJ
0 ¢ X, g q, : N Exponent J varie= am
. (s) b blgs superscript in AV
et b4 T
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Suppose now that Py 2 2q1. Since nb' o n + bi, the max—
imum of )W(Xl) over region (1) ef Tekle 7 oesurs at 2 -3, W =By
- 2q1. Then the following four facte, {a) ad* > » +n, (2) the
v g are decreasing in J, {c) the point X; = Py Uy = Qy lles
in a set for which the superscript j in BIIJ doea net exceed 1,
and (d) the ocontinuity of 7/(X,), have the follrwing implications:
(a) the maximum of ,M(xl) over region (2) and that part of region
(3) 1ying below X) = p; —Qq; is attained &* x; = py ~ q;, Uy = Qy;
(b) the maximum =f 7 (X,) over that part of reglon (2) lying
above X, =P — 9 is attained st &ll points of thks line Xy +uy = Py
that lie in the strip for which the superseript ir. BII' assumes
the vslue 1. Denote this set of points by £ . Again appesling
to the continuity of fr(xl), we see that the maxiwmum of hﬁ(xl)
over all admissible X, for which X, , q; 18 achiev.d on ¢ .

It is now asserted that X; lies in &£ . 1In view of (10.3),

this is equivalent to showing that we have

aq - 31 p ’i’i Ve a?q - pl 1 - l " o 2‘
1 XI_ .\‘ lb- 1 :'I—;!I’, ) e ey ek »

£

The right-hand inequality follows immediately from (/.%) and the

initial conditions. The left-hand inequality follows frcm the

definition {7 1) of ;i, (€.15), °na the initial conditions.

Thus, it haas been proved *hat
‘ ” N
(10.6) ™ (x]) { 7(x,)

&

1
esomplete the proef of (4.%) in the case A

for all X, such that x, | q;. 9ince o (Xy) = vilrpys ql)g to

141

SPrapad Ty

ek poe
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pl/'q1 2 2, 1t 1s sufficient to show that (10.6) holds for all
X, such that ‘1'$ q,- Prom the form of S in region (5) of Table 7,

it 1is olear that 7?(x1) attains its maximum along the line u = q,

whenever x, 4 q;- From the form of R in this region, '
1t 1s olear that 1f b'b™2 D bl 4 n, then the maximum of
Zq(xl) is attained at (x;, u,) = (q,, q,). Hence, (10.6)
follows for all X, in this event. On the other hand, if b'y™
< bl + n, then the maximum of 77(X,) will be attained at one of

the points
Py
X = qy -;3 2 0. or X, = 0

of the line Uy = qy. In this event, it ocan be shown by lengthy
computation that (10.6) holds for such Xy. Thus (4.3) 1s estab—
lished for ki < pl/'q1 g_xi*l. P, 2.2q1. By similar methods,

which will not be carried out here, (4.3) oan be eatablished for
P, < 2q,. Thus the validity (4.3), and hence that of the theorem,
is established.
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