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This paper analyzes a multimove infinite game with linear

payoff function. The game had its origin in the consideration

of a military problem, but is presented here solely for its

metheuatical interest. It is symetric in every respect except

that the initial conditions of the two players are different.

On. each move, each player allocates his resources to tasks

that might be de~cribebei roughly as attacking, defending, and

-coring. His resources for the next move are dialnished by the

asmount that his opponent's attack exceeds hia own defense,

while his score cumulates from move to move. The value of the

game and the optimal strategies for the players are rigorously

derived in the present pap*r. It is shown that one player has a

pure optimal strate'y and the other player mrust randomize.
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A MMU WVE IVFIXITE GAMS WITH LIUAR PAYOF

1. INROIXCION

Oames can be classified in terms of the number of moves

by eech player - uninove or multimove - and in teos of

the nuber of choices - finite or inflnite - available at

each move. The original work of von Neumann [I] on the

existence and structure of solutions of games was, in effect,

restricted to unimove finite games. LeIer, Ville [2J proved

the existence of optimal strategies for unimove infinite games

with continuous payoff function.

zxoept for games with perfect information, nultimove finite

games have been analyzed only very recently; and multimove

infinito games with can arbitrary number of moves have hardly

been touched upen.

In this paper, we analyse a rmltimove infinite game with

a linear payoff 4'inction. 7te game is symmetrio in every

respect except that the Initial cond-tIons of the two players

are different. We prove that one player hat an optimal pure

strategy and that the other player muot randomize on the strategies.

Th* optimal strategies and game value are derived.

Although this game had its oriIn In a military problea [3],

and Is applicable thereto, it is preoented ),ere oolely for its

mathematical interest.

2. DESCRIfTION OF OAME

We shall analyze the following multimove sero-4um two- person
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game. At the rn-th move, or stag of the game, Blue h"s

resources given by the state variable Pn and asshigs a value

to each of two tactical variables under his control, xn and un,

subject to the constraints

(2.1) x% 0, UnŽO, + Pn"

At the same time, Red has resources given by the state

variable qn and controls the values of the tactical variables

Yn and wre subject to the constraint&

Lot us number thp moves from the end of the game; i.e.,

the n-th move means n mov-s to the end of the game. The

state variablej at the (n - I)--at move are defined by

= a 10, pn - max (0, Yn - Un)n

(2.3)

qn-I max l0' qn - max (0 Xn - wn)]

The payoff to Blue is given by

'2.) N" -- - -y W '

where N is the numbor of moves in the game.

The play of the game proceeds by first making the W-th

move, then the (N - l)-at move, ... , the second move. and the

first move. An n-th move nf the game consists of a choice



P-1151
9-22-58

-3-

by Blue of xn and un satisfyin (2.1) and simultaneously a

choice by Red of y and wn satisfying (2.2). We assume that

each player knows the manrnr in which the game proceeds from

stage to stage; namely# each player has the informdtion expressed

by equations (2.3). We also assume that at each stage of the

game both players know the state variables and the entire past

history of the play; that is, at the n-th move, both players

know N, PN' qN, and also know x., wi, yip w. for i - N, N-l,

... , n + 2, n + 1. It follows that pi, qi, for i -N N - 1,

... , n + 1, n, are known at the n-th move.

The strategies of the game in normal form will be defined

inductively on the number of moves. First, a strategy for Blue

in a one-move gaza is a point X1 - (XI, ul), where xl ý 0,

uI 2 0, and x + u1 K P." Similarly a strategy for Red in a

one move game is a point Y1 - (yl, wl) where y, 2 0, w1 > 0,

and Y+ + W, ý q,. Now let o- be a strategy for Blue in an

N-move game. Of course, C', In a function of pN and qN" Then,

in a game of N + 1 moves, at the (N + I)-et move Blue chooses

a point XN - (xN+l, un+i) in the triangle 6,+1 defined

by

(2.-5) x,+l 2 0o uN+l 2 o, x,+l + u,+l • pN+l'

and simultaneously Red chooses a point YN+l ' (YN+l' wN+l)

in the triangle DN+l defined by

(2.6) YN+l 2 O, wN+l 0', YN+l + N+l • qN+l
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These choices yield the state variables p. and q., by equations

(2.3). A strategy 6,+l for Blue in the (N + 1) movw game is then

defined as a choice XN+I in A.+, and a function that associates,

with each point (N+I, UN+l, yN+1 *N+I) * (XN +1, YN+I) in the

product space AN+, DN+1 a mtratzgy crN in the N-move game.

Thus erN+ can be written as

N.+l- (XN+I; #) - (,+,' uN+l' t.)

where assigns the strategy cr to the point (iNI, UN+I

MN+I' WW+1I) "

In a like mannur, a etrategy N f- Red .n the (N + 1)-

move game is defined as a choice YN+I w function +, that

associates, with each (XN+l, YN+ 1 ), a strategy LN in the U ve

game. Thus we have

S+T,+
-..F (!N-+; " YNM+I 1wi~l

3ý SOLUTION O0 GAXE

The main result of this -iper is ;he followIng:

Theorem 1. If N I or 2, the value of the ga Is given

vN(P, •) N(PN - qN).

Blue has an optial pure trete• :

ý -7o f orv .
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Red has an optimal pur strategy:

ym -Wm 0Ofor m KN.

If N 2 3, the value of the game is given b the (N - 2)-

Plecewise--linear function.

vN(pN, qX,) -ip,,- NbN, i - Is 2, ... ,N- 2p

where the constants ai and b are positive and monotone decreasing

in i for fixed N; the value of the supersoript i in determined
My the ratio :)/q*. The optimal strategies for the two players

are as follows:

(i) At move m - 1, 2(counting from the end' jth

players choose

-- - - - 0.-

(ii) At move m - 3, if, p3 • q., then Blue chooses

X3 u such that

q3•x,•min(TI )
U3 x3  2:5 2

Red chooses either Y - q3 or w3 - q3 p each with

probability 1/2.

(iMi) At the (m + 1)-st move, where 3 K m K N- 1, if

Pm+ l 2 qm+l, then the ratio Pm3 l/qm+l determines an

integer is 1 IK m.- 1, and Blue chooses

- ')-Ypm+. - (m - 2m;%u+l
m + b

m
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%+I Pm+l - 21+11 for I - 1, 2, ... , m - 2,

and

(2 +l l

~+~ i~) q311, fori- m - 1,

where the constants and b; are those associated

with o Sam 2f lenth m and initial condition

Pm' qm. Red chooses either y,+l or wi÷1 - qm+l with

probabilities %-b /(m + bi) ad + +

respectively, for I - 1, 2, ... , m - 21 however, if i - - 1,

Red chooses Ym+l with robability -l/, or

.. " +l with probability Pi-l/b 02 o y3 m+I " wMl "0

With probabili•y V1 - 1- ./-- 1/(bm-2).IN a
The proof of Theorem 1 will be carried out by induction on

N, the number of moves of the Same. In the course of this

argument, recursive definitions will be given for the constants

and b. As an illustration of the theorem, Table 1 shows the

solutions for game. with eight or less moves.

4. A THREE-PART SUPFICIENCY CONDITION WITH MIXED STRATEGIES

Prom the statement of the theorem, it is seen that mixed

strategies will have to be introduced, at least for Red. However,

it is sufficient to introduce a restricted class of mixed

strategies in order to prove the theorem.
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Por a game of one move, a mixed atrattgy for Ped la a

probability distribution 01 over DI. Now WUppos4 aN is a

rixed strategy for Red Im a game of N moves and st&ts

varlables h and eN, Then r probabll1ty distribution g,+l

over N+1 and a funrtion r+1 that asseolates (x,,,, u,+,

YN÷I'R 1 +l) wit), N is a mixed strategy GV-I in the (N + 1)-

move ;•xw. 7•1hus we may write the mixed itrategy ac

Mixed strategies FN+1 for Blue are defined x~milarly

by a distribution function fN+l a" a function 4,, and can

be writter ar

F N+1 "'*i(f

* ti Fh- denote a mixed strttegy for Blue in the (N + I)-

move gat in t;ich he seleots XN4I (x,+÷i UN,+) with

pribabllity I at the (N 4- 1)-st move. ITt 0N+1 dernte a mixed

strategy tor Red In Vbich he selects Y +1 " (YN.I' W1+1) w) t~h

probabillty I at the 'N + i)-at move.

Suppose that Theorem I is valid for gazes of length N - n,

Lett ?* and 0* be optimal btrategles for Blue and Red, respectively.n

L't , denote the fnctionc that associate (Xn. Un, Yn.

W ) witt Fn, Gn, -espo-otively. Suppose, furt. that pn~l

(fror mvy-aetry, it suffi-es to considerb this ca-e only).

The theort-m asserts that at the (r + u)--aet ve iue's

optimal choice Is a point (XI Un"I that is determined by tre
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ratio p n+/qn+l. Denote this point by

X"+I (Xn+l) - (X;+l(P+i 4 ) .n+l(Pn+l' qn+l

and let

The theorem further asserts that Red chooses (Yn+l' wn+l)

to be

y(i) =(q, 0), r(2) - 05 q)., y(3) 0 )

n+l n+l n+l 0

with probabilities an+i' On+l' and yn+l : (I- an÷1 - On+l),

respectively, the values of anel and 0n+l being determined by

the ratio pn+l/qn+l Denote this distribution in An+l by

g•i(Pn+i, %+il)' ad aet

an+i" (q+i(Pn~i' qn+i )l n*)

De fine

Ln+(X n+' 1n+1) -Pn+i - 'n+1 -un41 - n+l + n4l

and

%+i(xn~i' Yn '-riu(Xn+i Yn-i) + Vn(pn' q),

where pn qn are obtained from pn+l: qn+l by means of (2.3) and

tV. cholces +n+ , ul, V wnl Let X NO• . )N) denote the

expected payoff of the. game of length N it blue chooses a

str•tegy FN and Red chooses a strategy t ThN, n
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r1+1( 0+1' aC~) -~l "n+ Xn ~ I+n# n N

'nX*l Ynl) for all11 l-

Purthermore, we have

Rn+1(*n+X1+1 Yn(I - y)) + Anl~+(Xi ~ l Yo(2])

+ - %+l - On!% l(nl Yn+

for all Y-n+l' where

no vF~1t'ity of the following lemma is now apparent.

Leuma 1. Given that Theorem 1 is iLrue for N . n, to

Rrov# the theorrm for N - n .,I with initial cond-.tions

nl't sufficas to exhibit the a~~ an sd 13 or

which
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(4.2) nn+I(Xn*+10 Yn.+l) 2 Vn+I(Pn+l, %n+l)

for all Tn+ ad

(43 (1l)) + 0(2))( ) %+I,•+l(Xn+.I %+1 n,+l%+i(Xn+i*.Y+l
(Y(3)+ (%1- %•+l- An+ ()X+l n+l -V+l(Pn+l" %+,)

for all Xn+l

It Will also be useful to tabulate the information given

by equations (2.3). We may assume that pn ý qn' whence Yn - Un

> Pn is impossible and the equations (2.3) can be tabulated as

follows, where the subscript n is su22resseds

TABIE 2

DETERMINATION OF VALUES OF STATE VARIABLES pn-- AND qn-1

TRep'1.onReglon in (X, Y) Space $ _e__ n___..1 M.inh=er P-1 -I q ..

y-u O, x--w I P q

y-uKO, < 0 x- w q II p q -x

y u <O x- w > q III p

0 y-.u p, x- w < 0 V p - y+u q

ol,-u.•p, oiz--Kq V •p-y+u q-x+,,
0 y - u p, x - w > q I p - y + u 0
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Games of length N- i, 2, 3, 4, 5 will now be discussed.

Prom the statement of the theoreu, it is elear that separate

arguments are needed for N - 1, 2, and for K , 3. The present

discussion is intended to provide insight into the structure

of the game and to notivate the general irduot:on step for

N > 3, which will be presented below. from *his Jiscupsion,

the proof of Theorem 1 for N - 1, 2, 3 will follow. However,

not all the work presented here !- necessary merely to prove

the theorem for N - 3.

For N - 1, an examination of the payoff (2.4) shows that

optimal play for T-lue is to choose xI W U1  0 0, and that optimal

play ror Red is to choose y, - wl = 1.

As a conseauence of Lemma 1, for N - 2 it suffices to

consider

K2(X2, Y2 ) = P - x' - u2 - q2 + Y2 + w2 + (Pl - Ql)

with P2 • q2" Using Te"'le 2 and dropping the subscript 2, we

may write this

2(p - q)- (i + u) + (y +w) in region I,

2(p - q) - u + w in region II,

2p- q - (x + u) (y - w) in region III,
M(x, Y)

2(p - q) - x w In region IV,

2(p- q) in region V,

2p - q -- x + w, In -wegio- v1,

where the region In the (X, Y) space for uhloh each expression

on the right is valid is that given in Table 2.
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It now follows that the optiml *ho6ees at the seco-Ad move are

(i, •) - (o, o) oro 3iue; (:, W) - 'o, 0) for Red;

and that V2 - 2(p 2 - q2 ). Thus the theorem is proved for N - 2.

For N - 3, it suffices to oonsider

3(X-' Y3) " P-- '3 u3- q3 + w3 + w3 + '(P 2 - q2 ),

uere P3 > q-" It follows from Table 2 that, dropping the sub-

script 3. we ma~y write '43( 51 0 Y3)

3(p - q) - (x ,, u) •- (y + w) in• rgLon I,

3(p - q) + x - u + y - w in reglon II,

3p- q - (x + u) + (Y + w) in region III,
3(p -- q) - x 4 u - y + w in region IV,

3(p -q) x + u -y- w in region V,

S3P - q - x + u - y + w in region VI.

It is now no longer true that each player has an optimal pure

strategy at this stage, for

(5.1) min max M(X, Y) # max min M(X, Y),

Y X X Y

as will b* shown. .or each fixed X, ,. straightforward bvt

tedlous conputation shows th.at the 1"unction

y
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has the form shown in Pig. 1. Clearly, max z(x, u)

N •

M
N

I

3q + m 3p q - u

M

2q

41m M 3P- 4q + x- u
q x. a

m.3p-4q+x+u -- ' ( - q) - u

q/2 ýz 2q

Fig. 1

Is attained along the line megment

(5.2 x 2

uubje!t to the ouistraInt x + u P p, and the value of the

maximum is 5(p - q).

On the other hand, the tuinct.on

X
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has the form shown in Fig. 2 if p ý 2q. The oonputatlons are

again straightfr.-d and rather long, and so are omitted.

y

q

4'p

J •.. 2V-'y - p

ad t- u- 4(p-q ) few

" ", : , 2b

~it therefore follows that mn ui(y, w) is •tta'ned alon.g y + v - q

w i q, and th~e value of the um1ninmi !. 4(p - q). If p •-£q

then u • %p- 2q for all (y, Vi.

The validity of (5i) is now apptreint, and t?-us -t least

one of thot playirs wust randomize. Thne dictum of the weaker playvr
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randomizes" leads to a computation of

Z(X, 6*) - x{(x. T~(1)) + 11m '(2))

the results of Whioh are shown in Table 3.

TAMAZ 3

DETMIXATIOW OF VALUES OF THE FUNCTION E(X, 0G)

- Eu X

0 u q 0 x 2q V(p -q,

0 q 2Q ý X3p - q 2x

u x 2q 3P - 2q - u

q u ?q x 3p-x-u

Clearly, we have E(X, 0e) -1(p - q),. with the sign of equality

hoU.1ing for all X on the line se~uent (5.2). Since for eaoh

fixed X on this line segment, M(X, Y) > 5(p - 1) for all Y, the

validity or the theorem for N 3 folnmws by it4uotion and the

as* of Lo*na 1.

t. N -- , a new phenomenon manifests itself. Set

kX(4, u-4) % in N4\., ,.%
Y4

and drop the ehbacrlpt .. It -,an be hown. by etrf'i[htforvard,

but perhops tedlo-4 , ompttti'on t!hat ue(x, u) has the form

shovn in 'Pg. "A, Prom tn1 TI's ý ,ir11 0 is 1d e nt thatt

(,) it p \ 'q/3. .he.

if * (x ',P
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+

2q -. m-4#p-q-z-u =
S=4p-q x -

,3

-- - 6q +2x-u X-

cm m - (p-q) -u

M2 q 2q
U 3

Fig. 3

and this value in attained on.1y at the interseotion

of x -u - q and x + u - p - that is, for

~ ~ U 7- ;

(b) If p 2 7q/3, then

max min M(X,Y) ý 4p - ,

x Y
and this value is attained only at
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It should be observed here that (7, u') lies on the line x + - p.,

With p - 7q/3. Straightforward calculation shows that these

choices constitute optimal play for Blue, while the optimal

strategy for Red Is to randomize over y(1) and I with

probabilities (1/2, 1/2) if p K 7q/3 and to randomize over '(l),

y(2), Y(3) with probabilities (i/3, 1/3, 1/3) if p ý 7q/3. The

value of the game, of course, is the piecewise-linear function of

p and q,

All of the characteristics of the game'. structure become

completely apparent at N - 5, and this case will now •e studied.

Suppose that P5 • q5 ' As before, we have
4a'(pj 1-qj) if Pjif 4

M5 (X5, y5 ) - L5(X5, y5 ) + 4ap4 pbq if P-Ž q

where

Dropping the subscript 5, we show the values of s(X, Y) in

Table 4.

The particular functional forms (i.e., expressions involving

A, B) are determined by the regions in the (X, Y) space that

appear in Table 2. Each of these regions is then broken into



TABLE

DETRIMATIC'N OF CoF u Tf-E ?UNCTION A5 (x 5 y 5

R~li Constr&4nt AB

qX-qx~+ . b +~ Ap Bq y

- I IBq x y w

IV I- c

VI, a A -3 I ix A-21
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at weot two xegi,:nx by the oondltionn 3Pk ý 7q4, 3P4 ý 7q4,

wteh determine the 3nota~nts in V4(p 4 , q4). It il this Parther

breakdown that determines the parti3ular values assumed by th,

constants A and B. It will be noted that in some instances

an enti.rs region in th- (X, Y) plane maps into only one of the

regions in the (p4, q4) plane.

Let

M(z, u) -w min M(X, Y)
Y

It car. be shown by st'aightforiwd, but lengthy,, caputation

that m(x, u) has the fovm, shown in Fig. 4.

Since the ling x + u - p that passes trc-ugh 'he point

P has p - 49/20 q, and the one that posses tt-vugh P2 has

p 42 /25 q, and since a* > 2, a > 2, and b >2, t• statements

indicated in Table 5 hold conoerning max re(x,, u).

TABL 5

DRIMINATION O0 ma•x m(x, u)

ut IRos attained

17

. (I -2 15 )
4 -2

[3

ztý~L6Q Ar
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2 Coordinates of points (u, x)

P21: (q, 2q)

3q 1

P5: (o, q

a a (a l)p q x u
2 +

/ m (a+l)p - (b-'.) x -- ,
/P2

2 .x - 2q - 3p/7

m- (a1.+I)p- 2 +q (a*-1)A - u

q Xq
I i 2-l,3p + 1.lq

.+ J +-+,• +

'+ • q 2q

+7-q

-.. ±1 q 2 3
+

4, pig. 4

XA

4-
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Stralihtforward calculation shows that

17 -

(5.v) (12 y(l)) _ M(X-; y(2)% . 1 (lbp _ i5q)

M(13, y(1)) . M(13, y(2)) .1(f,, y(3)) =- 5p- q.

It Is thus reasonable to asstume that if 20p K 49q then Red

randomisa over y(l) and Y(2), and that if theinequality is

reversed then Red randoedzes over y(1)- y(2), and (). oeedr

on this assumption, we compute M(X, y(1)), N(X, y(2%), and

M(X, Y(3)), and then seek to determine probabilities a, 1, wVlich

may depend on (,;, q), such that for all X

(5.4) 
. k

oZ(X, Y(x, 1(2) + (1-04-NX0,

?he Problem of determining a and 4 Is not as difficult 9s

it may at first appear. For in view or (5-3) It is olear that

o and • must have the property that, for a given sector of the
(p, q) p'.ane, the su= in (5j) must *i&ser be Independent of X

In a ".gion of thv (x, u) plane --,ontaining the appropriate

7, 1 - 1, 2, 3, or nu.at be of the tcr-m (p, q; -( u),

were 7 Is some function and C is a positive constant, in that region.
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Guided by these observations, we compute a and 1 to be the

followings

8 p 42

It is then an easy matter to verity that, for the1e value, of

a and •, (5.) ii valid. Thus the optimal strategies for both

players at the fifth move are determined; namely, Blue chooses

Sfor appropriate I determ ined by the ratio p/q , and Red ohooses

the appropriate randomization over y(1), Y(2) Y(3) determined

also by the ratio of p/q.

6. MMINoi s AND PROMlTIU OF COSTANTS

The first step of the proof of Theorem 1 Is to define the

sequences &{a I} f {b' I {, i} . To this end., consider the

following sequences defined in the manner and order Indicatedt

(6.1) al " 3, a"n+ n2 ) n23
3 n n1 n

(6.2) b1 - 3, b 1 - -- > , n 313 n+1.3} -Q - bni.o.T)

0 0

(6-3 i M % M 0 n 3,

n-2-21b'
(6.5) % a n a!bn + n

3a-ib Ž1; n I + 2, i + 3, ..

(6.5) b1  n n
n1 b I+ar--

n
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(6.6) n- + co, n - 3, 4, 5, ... )

(6.7) X- 1,

n+1 .

býil - -y bP 1 nso34,5b -1 b

(6.8) xi = n n n 1, -- 2P 3P *0n, fl3n 1 £-1 r •j I=i ,• .,n•
a n an

The following properties of the foregoing sequences will be

useful in the proof of the theorem; indications of the derivations

of the properties are given after the listingi

(6.9) an-2 = n, n 3;

(6.10) i - bn, n , 3;

(6.11) 4 > br+-1 > br' 2 3, n 3;
n n

(6.12) a 1>0,n- 1, 2, 5oo, n - 21

(6.13) n < ai < 2n, I - 1, ... , n- 2j

n = 3, *, 5, ... ,

(6.i14) a' < a- '
n • 3;i- 2, 3, ... , n -23

n nbi <i--IPn 
311-23P n ;

(n 
-

2n 
-

nn n

X n+l"( n n n n .• , +" .. , . , - , , .. n - ,
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(6.17) nn • ; I f=X 2p s.,. n -- 2;
"n'

(6.18) X•1  nn+1 • 'n23 ,.. -2

Statements (6.9) - (6.11) fc-low from the definitions and

from trivial inductive arguments.

Inequalities (6.12) and (6.13) are pr ved by induction on

n, n ý i + 2, for each fixed i.

The aenotenlolty properties in (6.14) are established as

follows. The minotonicity of b+ 1  i - 1 , n -2, follows,
by induction o n, frem the monot1nizity of , 1 i .. ,

Sm- n-2
n 2. To show that bn!1 > bn+I, it suffices to show that b

n+ u ten+ n +

>4.This inequality, however, is obvious froz1. (6.5) and (6.31).

When we compute a 1- A i - 2, 3, ... , n- 2, we obtain

n b#-! (2n a') - b(2n a- aaI

where the subscript n is omitted. Prom the In~uctive hypothesis

oat 1 a• Is a.teme decreasing in i, and from (6.13), the

Wraoceted exprossion in turn "s seen to bt lc.-Vr than the

positive quantity

b- -I I i-1 i-1 ) - - .

P irtherwore, for n • 3, by (6.I), ()., &AA. (6.11) -have

b •nl )-I
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Thus the fact that a+} is monotone decreasing in £ is

established.

To prove (6.15), we use (6.4) and (6.5) in the definition

(6.8) of xi

inequality (6.16) is obvious, and (6.17) in established

inductively as follows. Suppose Wn > for i - 1, ... ,

n - 1. Consider

i+1
-';+l " x+_ flf, ii)x.l . + (,bl ~) 1# 2# n- -3

Wn+1 lý )X +(~

where the subscript n is omitted. To pmove that this ratio exceeds

1, it therefore suffices to show that

n(7,i+l -- Ai) + Xi+1 bi -- Xib'+1 > X'X'+'(a' - a'+').

Upon replacing Xi+l on the right by its definition (6.8), we see

that this last inequality is equivalent to

(n + bi) (7i+l - NI) > O,,

the validity of which follows from the inductive hypothesis. The

ohain
- 3nX 3nl nhn-. 31 n-2.

n+l (0-ý'+l)n + brr2 brQ (n+l)' br2 <

completes the proof of (6.17).

It in seen from (6.15) that to verify (6.18) it suffioes

to s.)ow that 2n - b
n >2n - &I

n 2~n-aAn 3i 12,.,n-.
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This inequality is shown to hold by induction on I, as follows.

For I £ 1, equality is obvious. Suppose that the inequality

holds for i - k. It is then seen to hold for i - k + 1, 1•i

n - 3, by writing (omitting the subscript n)

x k+1 Pn-ýk+l) - (2n-4bk+l) - ,k+l(2rw_) _ (2n~k)

+ ).k+l (ak-.ak+l) - (bk..bk+l) >

k(klk•ak) - (2r'bk) ý O.

7. MISCELlANEOUS MREARATION(S

For N • 3, Theorem 1 has been proved in See. 5. The

theorem will now be proved inductively for arbitrary N > 3.

Suppose then that it has been established for N - n • 3. It is

required to show that it holds for N - n + 1.

In order to simplify notation, for the remainder of the

proof we shall omit the subscript n. Thus the symbol an say,

will be written merely as ai the symbol ai-Is -- bi+l as
n+l 1 1 n-

bi+l etc.
-1

From the symmetry of Theorem 1, it is clear that it suffices

to consider the case p1 ý ql. Define X- X(pl/ql) as follows:

* _=1 , -b I Pi - '+l"x - i ,-( 1 l IN )l i - it 0.-.. n-- I

where

"I bi + n Ub D P1  al, I - lo .a*, n - 2#

(7-1) 1''" (•-b---~,•:.ql, -1  m
"(2 -1 ul )ql
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Defn Ins - a1 l(pl/ql) and Ai pl(Pl/q1l) thust

a) ifX i + 1 i~ n 2,

then

(7.2) a C ~ +
b1~

b) if > n

then

Gn- 1 n-1 1

Clearly, a' > 0, A' > 0 for all I satisfying I £ I n 1-
a I + 1i. for all i satisfying I K i K n -- 2; and a I + Pi < I

for I - n - 1. Thus a1 and P1 are probabilities. Imua 2 will

show that X1 is an admissible choice for Blue and will furnish some

useful bounds for x and -i"

L--ma 2. The poinX t is an admissible ohoice of stratesic

variable for Blue. Purthermore, for all I satis[Lng 1 K I K n - 1,

we have

q, K !x-' K 2q1,

0 <_ < ,l1

Since X is defined piecewise, the first step in showing

that X is admissible is to show that the pieces come together-

i.e., that X is well defined. Substitution of p1 " s- q, into

the definition (7.1) of X- , and application of (6.7), show that
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if p1 - AFI ql, then - -1. Similarly, it is seen that

"1 for p, 1 Q1 0 Substitution of p1 - i - 1,

•.., n- 2, Into the definition (7.1) of x, and use of (6.15), show

that, for p3 11 ql-

S(2 q)

Substitution of p1  Ai+ ql, and use of (6.15), show that,

for p I -l ql I - 1, **a, n -3,

,Li~l;L. 2 --- _

Thus X.in well defined, and for A, K 1 q Pj~ K 1 I 1, 2,

(.4) 2a -- 3,

with equality on the left ooourrir4 for p, - W1 q1, a on e("

right for p, " + ql" Similarly, we obtain

~11

1

-!- II K n -- . By definition, Xi + U 1  Pi for 1 K I n - 2j and

for I - n - 1, we obtain

-4-. 1-n -

Thus tho establishmnt of the lemma depends on the proof of (7.3).

For i - n - 1, (7.3) Is obvious. The inequality (6.18) implies
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X whence it follows that (2 - ,/-/A)qI Ž_ for i - 1,

2, ... , n - 2. Clearly, the inequality (2 - ),,Ai)q1 < 2q, holds

for i - 1, ... , n - 2. Hence, we obtain

ql i 7 < 2q, for I - 1, ... , n - 2.

To verify 0 K -U1 < q, for 1 K i K n - 2, we substitute from

the definition of 71 into the definition u1- 1, - x n oti

- (bI+a n)pl 4 (n-2b1 )ql 1 I
-I " (b 1+n) n 2.

Hence, showing that U, < q, is equivalent to showing that pl/q 1 <

3bi/(bi + a1 - n). Sino p,/Ql K X/+l, it clearly suffices to

show that Ai+1 < 3bi/(bi I/ai - n). Prom (6.15), it follows that

this last inequality is equivalent to

bi - )A(a1 - n) > 0, i - l, 2, ... , n - 2.

Since an-2 . n, it follows that for i - n - 2 the expression on

the left of this inequality is equal to b r•', which in positive.

Purther, the left hand somber Is a monot•e decreasing function

of i, as can be seen by forming the difference of the left-hand side

for superscripts I - 1 an i amid getting

(xt •l1)(at- n) > 0.

This inequality follows from (6.13) and (6.17). Thus it follows

that '. < ql. The inequality 0--2 O, follows from

(bi+a1 --n)p 1 4 (n-2b1 )qI ý(al-bi)q, 2 0; 1 < I K n - 2,

and the lemma is proved.
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considered, the pair (X., Yj) falls into region III of the (Xj,

YO) piane and the ratio p/q is such that J - Jo. At firet glanoe,

It appep-g that there are 6(n - 2) casea. Actuali1, not all of

these cases are poxfiihle; and mlnoe some speoialisation of

X1, VY will oceo,", not all of the pisblbe cases wiil 4

encountered.

8. 4c I7CATION, FIRsPART ? OF3UPCnqCY CONDITION

We divide the d.lcusclon into two &ases.

Caie> V, "q1 ~.

?or this Initial condition, it Is readily seen from Table 2
that (Xl, T l)) leade to cesz , (I, Y lc!a4, to case

I ,and(X, y(3)) leads to case III!. It then follows

by 8traiehtforward comprt~tlon and the definWt.on of See. 6 that

(!"1) /~X* f~) ~ x, y(2)) =~) 1 M(x*, 4N) -

The equa-litY 0? 0 V16(p 1, q1 ) now follows trot

F (Fj 0 ( +) +E 0 +

, lL(x 1 p YJ + E(? a

(:L- ;L -( • y, Y Ep) -0,*)-

* (2
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case 2: < pl/q1  12 , 2 -2.

ftr this initial condition, it is inwdiately seen from

T'able 2 that (x*, y4I)) leads to Coa. V1r, t %ile (X*, y(2))

le&ds to case IIJ for appropriate j. To dete•anti the value

of J, we rirmt observe that

k ..
q 2q,

It follows from (7.4) and (7.5) that J - i. Straightforw-rd

computation and usc of the definitions in Sec. 6 now show that

(8.2) MI(x*, YM) - M (X*. Y(,) -Vlp,.,

and hence (4.i) followe as before.

9 VRUYICATIOH. SECOND PART OP SUFFICIENCY CONDITION

Again, as in See. 8, we divide the discussion into two cases.

Cae: p II q

Since r(4 Y) can never fall into region I or IV

of the (X,, YO) plane. Since (XI, YI) lying in region V implies

that

1 W., x q, q ~ b

thli event It also imsposIble.

Por Y sxcd that VY fIaI.e in, region II. we h.ave

£P, Pl

q2ql
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the last inequality following from (6.11) and (6.16). Hence,

the superscript associated .th region II Is n - 2, wad

* n-2_1-r-"-2 - (-"Nl(x, Y1) (n+l)p, - (b x- I - - (14+ )ql + yj

(bn--1)wl x 0(x Y(2)) . v1 (p1, ql),

the last inequality following from (8.1).

The only supersorLpt that can be associated witn region

III or VI is n - 2. Having noted this, we easily see that for

(xI, Y1 ) in region III, N (X1 , ¥I) occurs for Y1- 41(3)
aiud so (4.2) follows from (8.1). Similarly, for Y1 such that

(xI, Y1) is in VI,

min 1 (x, Y) - N,(X*, Y4)) - V1 (pl, qj).

Case 2? t Pl/q 1  ^ I , 1, ... , n - 2.

Since ql' (XI, YI) cannot fall in re~lon I or IV. If

(xl, y1 ) is in A&ion II, then we have

,!(x• y ()..(JlpI- +1)ql (b,- I -x U

where J is determined by the ratio

a.-
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Clearly, J is a nonincreasing function of w alone, $ - 3(w1 ).

P,-o (7.4), it follows that J(qj) - i. Por each J, the min.lum

of Nl(xI, Y) is achieved at a point YI - (YI' W), where Yl 0

and where wi is the largast value of w such that (x4, YI)' 1-

(0, w), leads tc aase IIJ. senee, by the continuity of 'l(XI,

y1), it follows that the ainlmum of MI(X*, Yl), over all Y, such

that (xI1 Y1 ) is in region II, occurs at Y 2) Thus, using (8.2),

we got
"xl(x ' Y) z1x'Y )"v.(Pl' q!)"

The only superscript possible for (X,, Tl) in region TT.I

!.s n- 2; thus for Y1 such that (Xl, YI) Is in III, we ha*e

"11 (XIO T1 ) - np, - q, + (y l + l)

The miniwum of this expreossion over region I. is assumed at

YT - (0, 0) and is npI - ql. Since we are i3onssderIng the case

Pl/q the inequality

(9.1) (hb -- I -k + &•-n) > 0

implies the inequality np1  q1  aP a~- b'. and so It wiff'ices

to establish (9.1) in order to v.rif-l (4.2). With the aid of

(6.8) and (6.13), it il #4sy to szo t&iat the !eftha-bnd aide of

(9.1) is a decreasing Pt.i..t'n of the suprscript. iartheruore,

for I• n- 2 It follows r (6.4), (6.5), and .') that the

left-h4and side of (9.1) is zero, and &o (9.1) is verified.

In the event that Y is rj'h that (X*, l) is in region V,

we have
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(9.2) M1(X:. Y1 ) - (-J+l)pl (bj+1)ql + (bj-l)(i4-v1) a -l

where j is determined by

q -- W +

Since X is fixed, all questions oaanoem-n4 vit deoa.uining

idIch points in the (XI, YT) plant lead W0 the diff'erent cases

Vj are thus seen to devolve upon q'uestions oonterilng point sets

'n the Y, plane. Clearly, the linot LJ

Yl + - + + U1

in the (Yis wl) plane form a finite pencil throujgi the point

Yl p1 4 u 1 , wi I - ql". Fro the monotonicity properties

of' the aequence , It followu that for any xIzed y- - c

with c ý P, + i (and so particularly for yl ý ql.. as one moves

along y, - c in the direction of increasing w,, th' liras LJ
, • ,n-2

are encountered in order of decreasing s with tlhe Uin. L

being intercepted at a value of wI - ql" Ahus. tho sets

in the Y, plane giving rise to the various canne Vý ar*, in

general, &a indicated by the hatched remgions in Yi1. 3.

•om the fact '.hat aj ' bV1 it follows that the manimum of

X I(X], T)I over each set VJ of FI. 5, lt assumed at the upper

left-hand vertex of V'. Hence, by the oontinu.ty of M,(XI, Tl)

in Y1, it follows that the milr~wma of' MXI(XIj l), over all T
- -

suoh that (Xi*, Y1) s in V, In achleved at w - 1 - l" Y

Xl. 3ibs!titinS theae voluen into (9.2) and uslnA xi I'll % P1
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we see that the value of the minimm i@ 2n(p 1 - ql). It ramins

to show that

2n(p1 -- ql ) a - bp 4-

Sl-nce pl/ql , Xli this inequality is implied by the inequality

N I
2n--& -

which Is established by induction in exactly the way that (6.19)

was established.

Finally, the case in which (X lies in resion VI ust

be considered. Examination of Table 2 shows that the only

superscript poozible is J n - 2, and so

N(k, Yl) - (n+1)p- , - , + (n1-) - (n-l)y, + wi.

The minimum of this expression is asnu" -d at Y " l). Since
I1

X (xi. Y(,)) v1, the proof of (4.2) is now ooluoIUd.

10. VERIICATI THIRD PART OF SU"ICIKCY CO"ITION

The proof cf (4.3) will clearly involve the computation of

in mjx- xNI j. 1)+O Xi(Xi~ T +(i•,i -- !)Ki (Xl, PT()).

This, for each X1 it is necesrty u- know the 0ase to which

are led by •c-h of the perints

A, (x(, ,))) • (x , ( • , x1, ,(1).
A X,7, ( I Y Il
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Part of this information is tabulated in Fig. 6. In this tabula-

tion, a symbol such as, may, AVJ in a given region means that,

for all X in that region, (X1 , Y•l)) leads to case VJ. In some

instances, the value of J is indicated; in others, the determina-

tion of j will be made in the discussions of cases 1 and 2

below.

I A VIn2 A III- A IlII
BIIIn-2 BIIIn-2 B2IIIn'
C IBIn-2 C IIIn-2 C IIIn-2

2q I

A VIn-2 A IIIn- 2  A IIIMn-

B II' B IIJ R III
C III n-2 C II•"-2 C IIIn--2

q

A VJ AIIJ AIli

B IJ B IJ B IJ

CII C IIJ C III

rig. 6

Case 11: 04 <- I "A

First, the values assumed by the superscripts J will be

determined. In the cose BIJ, Table 2 shows that pl/q, - p/q;

and since, by (6.16), 0-1 ý xn--2, it follows that J - n - 2.

AlBo, in the case BlIj, we have J • n - 2, because
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P1 Pl
q 2q_ _l- qq

Similarly, in AIIJ and CIIJ, we have J - n - 2, because the rela-

tion

q ql-xl ql

holds there. In the case AVJ, the value of j is determined by

the ratio

•j K 'R PI--'(II• .X j+l, -,.. n -- 2@

q ql--xl

The lines

1j, jx1 + u1 " qj - (PI--l)

form a finite pencil through the point x, - ql, Ul u -(nl-ql)"

It follows from the monotonicity of the X's that if a line uI M C

with c > -(pl-cl) is traversed from xI - q, in the direction of

decreasing xI, then the lines of the pencil are encountered in

order of decreasing J, with I n-2 being the firit line encountered.

Thus, the lines V divide the square 0 K x1 K ql, 0 K u, 1 ql

into subregions over each of which a different superscript J is

applicable. The number of subregions depends on the ratio pl/ql.

Por sufficiently large values of this ratio, the entire square

will have the superscript value n - 2 arsociated with it. The

important fact to be noted is that the region with superscript n - 2

always exists and contains the line segment x1 - ql, 0 ý u 1 < ql'

Clearly, ;',,(X 1 ) is continuous and is of the form
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S(x1 ) - F(p1, ql) + mx + Su 1

where F(p 1 , ql) is a step function on the (x1, u,) plane whose

values are expressions Involving the constants &J, bJ and the

initial conditions pl, ql. Its exact form is of no concern here.

The coefficients R and S are also step functions on the (xi, ul)

plane whose values involve the constants aj, bJ. The information

concerning R and 8 shown in Table 6 is easily obtained frtm

Fig. 6, the preceding discussion, Table 2, and the definitions

(7.21 of a1 and 11 .

TABLE 6

DETERMINATION OF VALUES OF THE COEFFICIENTS R AND S

Region of (xI, UI) plane Region
Number R S

2q ý I u 1 q, ( -1 -1

q i x, K 1ql u, q1  (2) 0 -1

o x 1, q u 1 q (:3) bn-2 - 2 -1

2q i xl ul q1  (4) -1 0

q . x. .2q, u' q, (5) 0 0

The superaoript j In the entries for region (6) varies as the

superscript in AVJ, and assumes the same values as the super-

script in AVJ.

For each of the regions (i) through (6) of this table, the
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set of points at which the maximum of /M(X,) in achieved on that

region is easily determined from the tabulated values of R and S

in the region. It then follows from the continuity of P?2(X 1 )

that the maximum of T4'(XI) is achieved at all points of the square

q, K X, K 2ql, 0 K u l K ql. In particular, it in achieved at

--n-2 -1-(x1  , . :._,.,,e by (7.3) this point is in the square. It

now follows from (8.1) that

L(xl) K 1 (X*) M- V(pl, ql)

Case 2: ' < p/ , , i - 1, 2, ... , n- 2.

Under these initial conditions, Fig. 6 In modified from

the outset as follows. Point C is eliminated since we have a +

- 1 for I K i K n - 2; and the region xl Ž 2q1 , ul > q1 need

not be considered since pl/q1 < 3. In determining the superscript

J and the modifications of Fig. 6, it will be convenient to

distinguish two cases, namely p,/q1 ý 2 and pl/ql K 2.

Suppose that pl/q1 ý 2. The superscript J in BIIE Is determined

by the ratio.

(10.2) k- 2 -

q 2q,-x,

where 2q,

q, K , min Pi -- Ul

Thus J is a nondecreasing step function of xI alone whose

value at xI - 2q, is n - 2, and whose Jumps occur at



I

(l0.3) Ii " 2qz --

where J is such that 2q, -- pl•A > ql. At the Jump points, j is

continuous from the right. Let Jo denote the lowest value of

the superscript J. This is clearly assumed at x, = ql, and the

defining relation for JO can be taken as

(10.4) NJO .K q: _K x"I

Since, by assumption and (6.18),

Pi~~ K i1 i+l

it follows that

It is also necessary to have some information concerning

the superscript at u, M ql, Xl p p, - q,. Substitution of this

value of x1 into (10.2) gives the quantity pl/(3ql - pl). It

can be shown that

3q -p,

and hence it follows that J • i at the point x, - p, -- ql,

ul M ql"

The superscript J in BIJ is determined by the ratio pl/l;
and, in view of (10.4), this makes 3 - JO. In AIIJ the super-

script is determined by
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2..-Ip 1

. Pl

q q3. -- x,

Thus 3 is an increasing step function of x1 alone, having value

JO at x, - 0, and n - 2 at x, - ql. The remarks made under case 1

concerning AVJ are applicable here, too. It is not difficult

to see that the lines JJ split up the square 0 K x, K ql,

0 K ul K q, as indicated in Fig. 7, which sumarizes the fore-

going discussion.

Suppose now that pl/qI K 2. Most of the remarks concerning

the superscript j in EIIJ in the case pl/ql ý 2 are also valid

here. Now, however, u1 cannot exceed q, when x, • ql, and so

there is no need to discuss the point ul - ql, x, " p1 - ql.

If J, denotes the maximum value of the superscript J, it no

longer need be true that J 3- n - 2. However, the relation

J1 Ž I

does hold. Por, the maximum value of pl/ql is pl/(2q, - pl),

and so the assertion Jl , i is equivalent to

q Pl •, i

This relation, however, is easily established.

As before, the superscript in BIJ takes on the value Jo.

In AllJ, it is readily seen that the superscript J is equal to

Jo at x, = 0 and increases to the maximum value of Jl. In AVJ,

the remarks made in the discussion of pI/ql ý 2 still hold,
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xi AVIn-2 applies whenever x ql 11  ql

Xl 3  i(3(n-2

2q, 1l

-IJ AII'<

AV3  41 ( 3(

BX Al 3  a(A< n-

0 2q0

Fig. 7-
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exoept that for x 1  P P -q I thhe region ar* trunoated by the

line xI + u1 - Purthermore, the smallest superscript in-

volved in a truncated region is clearly Ji, and so is geater

than i. This information is summsrised in Fig. 8, below.

BI

AVIrn2 applies wenever x, q,
Jo

BI applies whenever x1  q

2q1

B*j i j
-BI

BI

AVn

, --AII

lAVo ".-

0 jig

Fig. 8
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Regardless of whether p, j\ 2ql, or p, ý 2ql, we may write

M (X) - H(pl, ql) + T 1 + Uu•1 ,

where No T, and U are step functions having values that depend

on the ohoice of X1, but do not involve the variables x, or ul.

The funotional values of H, T, and U do involve the oonstraints

ai, b 1 aj, bj, and these of H involve p. and qi in addition.

The superscripts J, of course, are determined by X. The values

of T and U are shown in Table 7, and the regions of oonst.nry

are indicated. Clearly, the regivfnl of Oonltanoy of F coincide

with tbese of T and U.

TAMZ 7

DKERWIXATION OF VALUES OF THE COEFFICM-M3 T AND U

Region of 1 Region
I-.U ln nbrT U Remarks

2q nbi Only applies if p,
u -"(,+ ()- b; I +n" 2q 1

q, x l •2ql ( J Only applies If p1
q, b--1 ý 2q ; exponent J

ql U1 •ivari~s as SUPr-
, It in BIT%-

3 rib-' b• Exp-ponent J varieo'a1
r- i I1 + ~ supersorlpt in BI1.

u- - - - - --+-

O ~x 1  ~ Xponant varies L

"q,1 U superscript in A'IJ

X, q ,XPb ont j vare- as1b (V - superiscript in AV,1
q, -J-
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Suppose now that p1 ý 2q1 . Since nb > n + b4, the max-

Iu of M(xY) over rgion (1) et •f W 7 eT a st h m Sao, a• I

- 2q . Then the following four facts, (a) gb I > b) + n, (b) the

bj'O arm decreasing in J, (a) the point x 1- P'0 U= q- lies

in a set for which the superscript J in BEIJ does net exceed i,

and (d) the continuity of M(XI), have the follewing implications:

(a) the maximum of ,r(X1) over region (2) and that part of region

(3) lying below x1 - p, -q is attained aV x I Pi - ql' U1 - ql;

(b) the maximum --f ?'?(XI) over that part of region (2) lying

above xI - p1 -q, is att ained at all points of tl, line xI + la i Pl

that lie in the strip for which the superscript it, BIIj assumes

the value i. Denote this set of points by 6. Again appealing

to the continuity of T (X,), we see that the maximum of 7•'(X1)

over all admissible X for which xI z q, is achiev.J on .
I

It is now asserted that X1 lies in L In view of (10.3),

this is equivalent to showing that we have

p1  -1 ,2qi - '• ! 2q, - , ' -, ... ,. -2.

The right-hand inequality follows immediately from (/.`) and the

initial conditions. The left-hand Ineq-ality follovs ffrm the

detfinition (7 1) of' xj. (6.i5)p, on the Initial oonditionp.

Thus, It has been proved that

(10.6) (X (xf)

for all X such that X q1. ¶5 ince ý` (X&) = V1 (pi, qj). to

*omplete the proof of (4..3) in the ease X" p ql, ql X
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pl/q1 l 2, it is sufficient to show that (10.6) holds for all

X1 such that xI ý ql. From the form of S in region (5) of Table 7,

it is clear that M(Xl) attains its maximum along the line u q,

whenever x, < ql. Prom the form of R in this region,

it is clear that if bibn'2 ý b' + n, then the maximum of

ý(Xl) is attained at (xI, Ul) - (qlp q,). Hence, (10.6)

follows for all X1 in this event. On the other hand, if bIbn-2

< bi + n, then the maximum of 7ML(XY) will be attained at one of

the points

X, = q1 - -P1 -0. or x 1 - o

of the line uI - ql. In this event, it can be shown by lengthy

computation that (10.6) holds for such XI. Thus (4. 3 ) is estab-

lished for W' K P1 /q K x4+J' p1, 2q1 . By similar methods,

which will not be carried out here, (4.3) can be established for

P, • 2q,- Thus the validity (4.3), and hence that of the theorem,

ii established.
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