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SUUMMARY

The functional equation technique of dynamic programming
is applied to the study of quadratic functionals whose Euler
variational equations are linear self—adjoint partial diffe r~-
ential equations of the second order. A first consequence 1s
the classical Hadamard variationel formula for the Green's

function of a region. Some extensions are indicated.
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DYNAMIC PROGRAMMING AND THE
VARIATION OF GREEN'S FUNCTIONS

Richard Bellman and Howard Osborn

1. INTRODUCTION 5

In an earlier paper [ﬁ], the functional equation tech—
nique of dynamic programming was applied to obtain a
variational equation for a Green's function corresponding to a
second order ordinary differential equation. In the present
paper, this method i1s extended to apply to elliptic partial
differential operators, and a first consequence 18 the classical
Hadamard variational formula. Further results require a more
high powered argumentation which we shall present subsequently.

The technique presented here utilizes the principle of
optimality (see [2]) in the following fashion. Oiven a one—
parameter family of regions, monotone under inclusion, one
takes the minimum value of a certain integral on any given
region R, subject to certain restrictions, to be functional
of those restrictions and the region R. Then 1f R* ¢ R
the functional on R can be approximated by means of a related
functional on R* satisfying slightly different restrictions.
This leads to a Gateaux difference equation from which one
easily derives the Hadamard relation.

The method is initially presented fo:." the Laplace operator

on R, and appropriate generalizations are indicated in §6

and Q7.
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2. PRELIMINARIES

Let R be a bounded connected region of n—dimensional
real euclidean space, whose boundary oR 1s of class 02.
For convenience we shall not explicitly write out the
differentials of volume and surface area in integrals over R
and 9R. Uiven any twice—differentiable function u on R,
let Au and up represent the Laplacian of u and the
restriction of u to its limiting values on oJR, respectively.
Then if v and w are suitable functions on R and 3R, the

boundary value problem

(1) Ou = v, u, =W

possesses the unique solution

(2) u(p) -°<:R g(p,a)v(q) +&ésn g, (p,a)w(q),

where g is8 the Green's function for R normalized by the
condition that

(3) 43 8g(p,q) -(q/(’as g,(p,q) = 1.

Here S 18 any sphere with center p which lies inside R,
and where g, 18 the exterior nc-mal derivative of g on 3S.
The two integrals in (2) represent the solutions u(l) and

u(2) to the boundary value problems

(%) Qu = v, U= )
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and

(5) bdu = O, up -w

respectively, and they are orthogonal in the sense that

\ (1) . o,(2) . (1), (2) _ ,.(1)5.(2) _
(6) {vu Qu (/’ u u {u Au 0,

3R P
where Vu(i) is the gradient of u(i), 1«3, 2.

3. A MINIMUM PROBLEM

Among those functions u such that up = 0, the function

(1)

u maximizes the integral

ST slp,a)bu=v)(p)(au-v)(q).

pPER Q€R
Hence, since the maximum value 1s zero, and since

(7) /" e(p,q)au(q) = ulp)
Qe R

for any function u such that up = O, one obtains an

extremal condition

2
Sﬂp_o ‘{‘mv + |[Qu|€ = m'gp_o {(QV—M)U

(8)

-4R {:R g(p,q)v(p)v(q),

with the minimizing function u‘l). Define

(9) £(v,w) = ;‘ﬁ;p.,,  uv + (9l
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so that

(10) £(v,0) -‘43 °£n g(p,q)vip)v(a).

It should be noted that the first equality in (8) fails for

those u such that u_= w ¢ O.

(2

Suppose that u is given as the solution of (5).

Then (9) may be rewritten, by means of (6), as

t(v,w) = mp_o 4[2(u+u(2))v+ |9u +vu(2)|2]
(11) - 'ﬁsp_o cﬁ/’[?uv + hulzj +”<’[2u(2)v + IVu(2)|2]
= r(v,0) + 2LR/)u(2)v +‘4’|Vu(2)l2.

In particular, writing tw in place of w,

(12) f(v,ew) = f£(v,0) + 2&({u(2)v +c2(47l‘7u(2)|2.

Since u(2) is known explicitly in terms of w, this enables

us to compute the Gateaux difference

(13) £(v,Ew) — £(v,0) = ee/{ g (p,a)v(p)w(a) + ofe).
pe
Q¢dR

4., A FUNCTIONAL EQUATION

Let ¥ be a non-negative function of class C, on dR,
and let 9R* be the surface obtained from @8R by a displace-—

ment On along the interior normal, where 0On = &€F, If u 1s
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any differentiable function on R such that up e« 0, then
the restriction up, of u to OJR* is - unbn + o(t). We
extend the definition of f to the class of regions R* with

boundaries R* by setting

(14) f(E,v,w) = et - / [2uv + IVuI2].

u!up, R

If u, = O then :Vu|2 - un2 on JR, 8o that the n—iimen—

sional analog of the principle of optimality implies

(15) £(0,v,0) = ™" [r(e,v,~u on) +,/ on u ? + ofc)].
n agn

Set 6f(v,w) = £(<,v,w) — £(O,v,w) and note that

(16) bf(v,-unbn) = 0f(v,0) + ~(&).

In this notaticn one may apply (13) and (18) to obtain

(17) mt: [6r(v,0) - 2{;({:” 8, p,a)v(plon(q)u (q)

+./" tn unaj = ofc).
IR

The Euler variational equation of (17) is

(18) un(Q) -Q/ZR g“(pr)V(p)’
P

and it follows that

(19) er(v,0) =/ / / on(s)g, (p,8)e (q,8)v(p)v(q) + o(¢).
s8e JR peR qeR
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5. THE HADAMARD VARIATION

Let g(&,p,q) represent the Green's function of the
region R*®*, and let B0g(p,q) = g(¢,p,q) - g(0,p,q). We wish
to derive the Hadamard relation between ©dg and ©6n. For the
region R* (10) becomes
(20) f(f,V,O) '(/7 (/7 z(cpP.Q)V(P)V(Q).

pER® Qq&R*
ana since g vanishes and possesses a bounded normal deriva-
tive on JR 1t follows that

(21) or(v,0) =/ / ®a(p,q)vi(p)via) + o(c).
peR Q&R

Since v 1s arbitrary, (19) and (21) together imply

(22) 8g(p,q) =,/ on(s)e, (p,8)g (a,8) + o(t),
se R

which 1s Hadamard's relation.

The preceding derivation 1s valid only when R* <& R,
To prove (23) in general 1t suffices to consider R and R*
as regions both interior to a third region ﬁ, and to consider
the difference of the variation of X to R* and the varia—
tion of R to R. This device 1s due to Hadamard and is also

applied in the standard derivation of (22).

5. LAPLACE-RELTRAMI OPEFATOR

The Hadamard relation remains valid if 4 18 replaced by

any other self-adjoint second order differential operator
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vhich possesses a Ureen's function, g. Thus, for example,
4 may be replaced by an artitrary Laplace--Beltrami operator
merely by furnishing R with an appropriate Riemannian metric.

In this case there 18 no change in the preceding derivation.

7. INHOMOGENEOUS OPERATOR

Alternatively, we may add a multiplication to obtain the

operation u —»Au + a(p)u. Assuming that a(p) 1is

sufficiently small, we may again consider the functional f

defined by

(23) f(v,w) = ‘"ﬁa - c/' [2uv + |Vu|2 - aua_].
P R

The appropriate orthogonality relation is now

c{["“m cwul@) _ au(2)y(2h -/ u (1), (2) _

3R P D
(24) ({u(l)[‘m(e) + au(?h
- 0.

The remainder of the argument procceds as before.
Since the variationa. formula 1s independent of a, one
may conclude that it is valid whenever the Green's function

exists.
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