606464 AD DYNAMIC PROGRAMMING AND THE VARIATION OF GREEN'S FUNCTIONS Richard Bellman Howard Osborn P--1150 August 6, 1957

ADDROVED for OTS release

HARD COPY \$. 100 MICROFICHE \$. 0.50 No



-7he K-) Corporation TA MONICA + CALIFORNIA

.1

f

\*

1

#### SUMMARY

The functional equation technique of dynamic programming is applied to the study of quadratic functionals whose Euler variational equations are linear self-adjoint partial differential equations of the second order. A first consequence is the classical Hadamard variational formula for the Green's function of a region. Some extensions are indicated.

## DYNAMIC PROGRAMMING AND THE VARIATION OF GREEN'S FUNCTIONS

Richard Bellman and Howard Osborn

## 1. INTRODUCTION

In an earlier paper [1], the functional equation technique of dynamic programming was applied to obtain a variational equation for a Green's function corresponding to a second order ordinary differential equation. In the present paper, this method is extended to apply to elliptic partial differential operators, and a first consequence is the classical Hadamard variational formula. Further results require a more high powered argumentation which we shall present subsequently.

The technique presented here utilizes the principle of optimality (see [2]) in the following fashion. Given a oneparameter family of regions, monotone under inclusion, one takes the minimum value of a certain integral on any given region R, subject to certain restrictions, to be functional of those restrictions and the region R. Then if  $R^* \subset R$ the functional on R can be approximated by means of a related functional on  $R^*$  satisfying slightly different restrictions. This leads to a Gâteaux difference equation from which one easily derives the Hadamard relation.

The method is initially presented for the Laplace operator on R, and appropriate generalizations are indicated in 66and 97.

## 2. PRELIMINARIES

Let R be a bounded connected region of n-dimensional real euclidean space, whose boundary  $\partial R$  is of class  $C_2$ . For convenience we shall not explicitly write out the differentials of volume and surface area in integrals over R and  $\partial R$ . Given any twice-differentiable function u on R, let  $\Delta u$  and  $u_p$  represent the Laplacian of u and the restriction of u to its limiting values on  $\partial R$ , respectively. Then if v and w are suitable functions on R and  $\partial R$ , the boundary value problem

(1) 
$$\Delta u = v, u_0 = w$$

possesses the unique solution

(2) 
$$u(p) = \int_{q \in R} g(p,q)v(q) + \int_{q \in \partial R} g_n(p,q)w(q),$$

where g is the Green's function for R normalized by the condition that

(3) 
$$\int_{q\in S} \Delta g(p,q) = \int_{q\in \partial S} g_n(p,q) = 1.$$

Here S is any sphere with center p which lies inside R, and where  $g_n$  is the exterior normal derivative of g on  $\partial S$ . The two integrals in (2) represent the solutions  $u^{(1)}$  and  $u^{(2)}$  to the boundary value problems

$$(4) \qquad \Delta u = v, \ u_{\rho} = 0$$

and

$$(5) \qquad \Delta u = 0, \ u_0 = w$$

respectively, and they are orthogonal in the sense that

(6) 
$$\int_{R} \nabla u^{(1)} \cdot \nabla u^{(2)} = \int_{\partial R} u_{\rho}^{(1)} u_{n}^{(2)} - \int_{R} u^{(1)} \Delta u^{(2)} = 0,$$

where  $\nabla u^{(1)}$  is the gradient of  $u^{(1)}$ , i = 1, 2.

# 3. A MINIMUM PROBLEM

Among those functions u such that  $u_{\rho} = 0$ , the function  $u^{(1)}$  maximizes the integral

$$\int_{p \in R} g(p,q)(\Delta u - v)(p)(\Delta u - v)(q).$$

Hence, since the maximum value is zero, and since

(7) 
$$\int g(p,q)\Delta u(q) = u(p)$$
  
 $q \in \mathbb{R}$ 

for any function u such that  $u_{\rho} = 0$ , one obtains an extremal condition

(8)  

$$\begin{array}{l}
\underset{u|u_{p}=0}{\overset{min}{R}} 2uv + |\nabla u|^{2} = \underset{u|u_{p}=0}{\overset{min}{R}} \int_{R} (2v - \Delta u)u \\
= \int_{p \in R} \int_{q \in R} g(p,q)v(p)v(q),
\end{array}$$

with the minimizing function  $u^{(1)}$ . Define

(9) 
$$f(v,w) = \min_{u|u_p=w} \sqrt{\frac{2}{R}} [2uv + |\nabla u|^2]$$

so that

(10) 
$$f(v,0) = \int_{p \in R} \int_{q \in R} g(p,q)v(p)v(q).$$

It should be noted that the first equality in (8) fails for those u such that  $u = w \neq 0$ .

Suppose that  $u^{(2)}$  is given as the solution of (5). Then (9) may be rewritten, by means of (6), as

$$f(v,w) = \underset{u|u_{p}=0}{\text{min}} \int_{R} [2(u+u^{(2)})v + |\nabla u + \nabla u^{(2)}|^{2}]$$

$$= \underset{u|u_{p}=0}{\text{min}} \int_{R} [2uv + |\nabla u|^{2}] + \int_{R} [2u^{(2)}v + |\nabla u^{(2)}|^{2}]$$

$$= f(v,0) + 2 \int_{R} u^{(2)}v + \int_{R} |\nabla u^{(2)}|^{2}.$$

In particular, writing tw in place of w,

(12) 
$$f(v, \varepsilon w) = f(v, 0) + 2\varepsilon \int_{R} u^{(2)} v + \varepsilon^{2} \int_{R} |\nabla u^{(2)}|^{2}$$
.

Since  $u^{(2)}$  is known explicitly in terms of w, this enables us to compute the Gâteaux difference

(13) 
$$f(v, \varepsilon w) = f(v, 0) = 2\varepsilon \int g_n(p,q)v(p)w(q) + o(\varepsilon).$$
  
 $p \in \mathbb{R}$   
 $q \in \partial \mathbb{R}$ 

## 4. A FUNCTIONAL EQUATION

Let  $\mathscr{V}$  be a non-negative function of class  $C_2$  on  $\partial R$ , and let  $\partial R^*$  be the surface obtained from  $\partial R$  by a displacement on along the interior normal, where on =  $\mathcal{E}\mathcal{P}$ . If u is any differentiable function on R such that  $u_p = 0$ , then the restriction  $u_{p^+}$  of u to  $\partial R^+$  is  $-u_n \delta n + o(\varepsilon)$ . We extend the definition of f to the class of regions  $R^+$  with boundaries  $R^+$  by setting

(14) 
$$f(\varepsilon,v,w) = \min_{u|u_{p^*}=w} \int_{R^*} [2uv + |\nabla u|^2].$$

If  $u_{\rho} = 0$  then  $|\nabla u|^2 = u_n^2$  on  $\partial R$ , so that the n-dimensional analog of the principle of optimality implies

(15) 
$$f(0,v,0) = \frac{\min}{u_n} [f(t,v,-u_n^{\delta n}) + (\int_{\partial R} \delta n u_n^2 + o(t)].$$

Set  $\delta f(v,w) = f(\xi,v,w) - f(0,v,w)$  and note that

(16) 
$$\delta f(v,-u_n\delta n) = \delta f(v,0) + c(\varepsilon).$$

In this notation one may apply (13) and (15) to obtain

(17) 
$$\begin{array}{l} \min_{u_n} \left[ \delta f(v,0) - 2 \int_{p \in \mathbb{R}} \int_{q \in \partial \mathbb{R}} g_n(p,q) v(p) \delta n(q) u_n(q) \right. \\ \left. + \int_{\partial \mathbb{R}}^{\gamma} \left[ \delta n \left[ u_n^2 \right] \right] = o(z). \end{array}$$

The Euler variational equation of (17) is

(18) 
$$u_n(q) = \int_{p \in \mathbb{R}}^{n} g_n(p,q)v(p),$$

and it follows that

「ないので、この一人の「「「「」」」

(19) 
$$\delta f(\mathbf{v}, \mathbf{0}) = \binom{n}{n} \binom{n}{n} \delta n(\mathbf{s}) g_n(\mathbf{p}, \mathbf{s}) g_n(\mathbf{q}, \mathbf{s}) \mathbf{v}(\mathbf{p}) \mathbf{v}(\mathbf{q}) + o(\mathcal{E}).$$

#### 5. THE HADAMARD VARIATION

Let  $g(\mathcal{E},p,q)$  represent the Green's function of the region R\*, and let  $\delta g(p,q) = g(\mathcal{E},p,q) - g(0,p,q)$ . We wish to derive the Hadamard relation between  $\delta g$  and  $\delta n$ . For the region R\* (10) becomes

(20) 
$$f(\xi,v,0) = {\binom{?}{/2}} g(\xi,p,q)v(p)v(q),$$
  
 $p \in \mathbb{R}^{+} q \in \mathbb{R}^{+}$ 

and since g vanishes and possesses a bounded normal derivative on  $\partial R$  it follows that

(21) 
$$\delta f(\mathbf{v},0) = \int_{p \in \mathbb{R}} \delta g(p,q) \mathbf{v}(p) \mathbf{v}(q) + o(c).$$

Since v is arbitrary, (19) and (21) together imply

(22) 
$$\delta g(p,q) = \bigwedge_{s \in \partial R} \delta n(s) g_n(p,s) g_n(q,s) + o(\varepsilon),$$

which is Hadamard's relation.

The preceding derivation is valid only when  $\mathbb{R}^* \subseteq \mathbb{R}$ . To prove (23) in general it suffices to consider  $\mathbb{R}$  and  $\mathbb{R}^*$ as regions both interior to a third region  $\mathbb{R}$ , and to consider the difference of the variation of  $\mathbb{R}$  to  $\mathbb{R}^*$  and the variation of  $\mathbb{R}$  to  $\mathbb{R}$ . This device is due to Hadamard and is also applied in the standard derivation of (22).

## 5. LAPLACE\_BELTRAMI OPERATOR

The Hadamard relation remains valid if  $\triangle$  is replaced by any other self-adjoint second order differential operator which possesses a Green's function, g. Thus, for example,  $\Delta$  may be replaced by an arbitrary Laplace-Beltrami operator merely by furnishing R with an appropriate Riemannian metric. In this case there is no change in the preceding derivation.

#### 7. INHOMOGENEOUS OPERATOR

(24)

Alternatively, we may add a multiplication to obtain the operation  $u \rightarrow \Delta u + \alpha(p)u$ . Assuming that  $\alpha(p)$  is sufficiently small, we may again consider the functional f defined by

(23) 
$$f(v,w) = \min_{u|u_p=w} \sqrt{\frac{2uv + |\nabla u|^2 - au^2}{R}}$$

The appropriate orthogonality relation is now

$$\int_{R}^{2} [\nabla u^{(1)} \cdot \nabla u^{(2)} - a u^{(1)} u^{(2)}] = \int_{\partial R}^{2} u_{\rho}^{(1)} u_{n}^{(2)} - \int_{R}^{2} u^{(1)} [\Delta u^{(2)} + a u^{(2)}]$$

- 0.

The remainder of the argument proceeds as before.

Since the variational formula is independent of a, one may conclude that it is valid whenever the Green's function exists.

#### BIBLIOGRAPHY

- R. Bellman, "Functional Equations in the Theory of Dynamic Programming—VIII: The Variation of Green's Function— One-dimensional Case," <u>Proceedings of the National</u> <u>Academy of Sciences</u>, (to appear).
- 2. R. Bellman, <u>Dynamic Programming</u>, Princeton University Press, 1957.

.