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SUMMARY

In previous papers, it has been shown that the functional
equation technique of dynamic programming may be applled to
yield the numerical solutior of a wide class of variational
problems of the type occurring in mathematical physics,
engineering, and economics.

It was seen that the numerical solution of a prohlem
involving N state variables depended upon the computation
of sequences of functions of N variables. This fact made
tre method routine only for the case where N = 1 or 2, with
grave difficulties arising in the general case,.

In this paper, 1t 18 indicated how to overcome this
difficulty for a large class of problems in which the underlying
equations and the criterion function are linear, although the
restraints on the forcing functions may be nonlinear, corres—
ponding say to energy ~onsiderations.

The same methods are applicable to other classes of linear
equations, and, in particular, to differentlal-difference
equationg, arising from “ime-lag probtlems, and to various
classes of partlal differential equations. These problems
could not previously be treated by dynamic programming tech—
niques in any useable fashion.

Finally, 1t 1s briefly indicated lLiow the method of
succescive approximations may be combined with the foregoing

techniques to reduce general variational problems, in which the
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equations and criterion function are nonlinear, to sequences
of problems which can be solved numerically by means of
sequences of functions of one variable. There are a number of

interesting and difficult convergence questions associated

with cthis program which we do not discuss here.
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SOME NEW TECHNIQUELS IN THE
DYNAMIC PROQRAMMING SOLUTION OF VARIATIONAL PROBLZMS

Ricrhard Bellman

Q1. INTRODUCTION

A variational problein that ie encountered in many parts
of’ pure and applied mathematics 1is that of determining the

minimum or maximum of a functional of the form

T
(1) J(y) -‘60 F(xl,XQ,...,xN;yl,ye,...,yM)dt

over all functions Yyr Vos ceen Yy satisfying the relations

dx
(2) —3% - Gi(x;y), xi(O) =cy, 1=1,2, ..., N,

and constraints of the form

(a) x (T) «b,, 1=1,2, ..., 8,

(3)
(6) R,(x;y) <0, J=1,2, ..., k.

For a variety of reasons which one discovers almest
immediately, this problem, to the Jdegree of generallty stated
above, presents formidable difficulties. These difficulties
arise not only 1in connection with the analytic solution of the
problem, cf. [9], A0, but also 1n connectlon with the
appaently more modect denmand [or a numerical solution. We
have discusse.l elsewhere various applications of the theory of

dynamic programming to the numerical solution of classes of
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variational problems of the foregoing type, [1], (2], (3], [4].
In this paper we wish to indicate some recent developments
which greatly enlarge the scope of these methods presented in
the cited references. In addition, these new developments,
combined with the classical tool of successive approximations,
enable us to attack systematically classes of problems formerly
far beyond our powers.
We sh=21]1 begin our discussion witk a terminal control
problem for a linear system with constant coefficients. The

problem 1s that of maximizing a functional of the form

(4) J(y) = Hu(x(T), »,(T), ..., x,(T))

over all [ nctions Yio Yor +ces Yap where x and y are
linked by linear relations of the form
dxi

N N
(G) I 'JZI aiJXJ +le binJ’ xi(o) =y 1=1,2,

and the Y4 satisfy restraints of the tyve

f]

wWhereas tih.e tectnlquec of dynur.i: programuminc discussed
previoucly convert this varlatlion:al probler Into one requiring
the computation of a sequence of functions of N varialles,

the linearity of the cefinin~ ecquztion in () enables ur to
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transform the p oblerm into one involving a sequence of functions
of k variables, where k 18 as in (4).

Since current digital computers do not take kindly to
storage of functions of more than two variables, this is a very
important redusztion. Tnis 1s particularly so since a large
class of problems occurring in the filelds of englineering and
industrial economics may be formulated in the above terms with
large N and a k of one or two.

Ir H(xl’XQ""’xk) 18 1linear,

k
H = a.x
the problem may te still further reduced to the computation of
sequences of functions of one variable, regardless of the
value of k. The same remark lolds for the case where it is
desired to maximize a linear functional of the form

N

(%) o .({*T {JZﬁ 5Jx3(t)}dt.

In exactly the same way we can handle discrete control
problems where difference equationa replace differential
equations. As a matter of fact, these techniques were developed
in connection with a discrete problem, the "caterer" problem,
[5].

The same methods may be applied to the treatment of
problems involving tiwe lags und retarded control, cf. (7],

in which case the eQuations corresponding to (¢) become
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m-dxi 3 () + 3 (t0) + 3 (t)
- 5 a, x,(t)+ Y a, x,(t5) + b,,v,(t),
J-}-;l L .12‘1 157 ng 137

(9)
)’1(t)=c1(t), 0O<tgb, 1t=1,2, ..., N,

More ccmplicated types of hereditary processes may also be
treated by means of the techniques we shall present beiow.
Problems of this kind couid not formerly be treated bty dynamic
programming techniques hecause of thelr dependence upon
functionals rather than functions.

The results ztated 8o briefly in tre foregoing paragrapl:s
depend in an essential manner upon the linearity of the
equations defining the process and upon the linearity of the
criterion function. To extend these techniques to cover more
general situations, we turmn to that general factotum,the
method of successive approximations. Using thils basic tech—
nique of analysis, we show how a varlety of apparently multi-
dimensional processes can be reduced to computational processes
involving sequences of functions of one variable. Once this
has been done we have a feasible approach to these problems.

A large number of interesting and significant problems
involving convergence of these methods, rapildity of convergence,
stabllity, and so on, arise from thesc investigations. These

will be discussed in detall at a2 subsequent Jate.

>, DYNAMIC PROGRAMMING

In order to appreciate the improvement in technique



afforded by the methods we prescnt here, let us sketch briefly
the direct approach of dynamic programming which we have pre-
sented in the works cited abhove.

Considering the general problem posea in (1.1)-(1.3)
define the function of the N variables Cis Cps sevs Cpo
and T,
1) f(cl,c?,...,cN;T) = M;x J(y)
where the maximum ic taken ove' all functions yi(t) satisfying
(1.3). Under appropriate assumptions concerning the continuous
dependence of maximizing Y, upon the initial values cy and

T, we obtain for f a nonlinear partial differential equation

N
(2) ;% = Max [F(c;v) + Zi Gi(n,v)gg—], f(cl,ce,...,cN,O) -0,
vy 1= i

where the maximization is over quantitiles vy satisfying the

constraints

(a) m < vy

IA
3
[

(3)
(b) RJ(c,v) < 0.

Provided that F and C are suitably differentiable,
and assuming that the maximum i1s always assumed lnside the
region of variation, this nonlinear partial differential

equation leads via characteristics to the usual Euler equations,

cf. [1], ﬁz]
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32. COMPUTATIONAL ASPECTS

Since the analytic solution of these problems, as mentioned
above, 1s only rarely attained, we turn to computational tech-
niques,

To determine f(cl, Cop evs cN,T) we can either use
(2.2) and any of a number of standard techniques for the
numerical solution of partial differential equations of this
type, or, as has turned out to be preferable, we can go over
to a discrete version of the original continuous process.
Analytically, this means that the original differential
equations are replaced by difference equations. Thus, (1.2)

becomes
(1) xi(t+6) - xi(t) + 6 Gi(xl(t),xz(t),...,xN(t);
yl(t),...,yM(t)), xi(O) = c,,

with t assuming only the values O, 6, 26, ... .
The nonlinear partial differential equation 18 then re—

placed by the nonlinear recurrence relation

£(c,T) = Max 6 F(c;v) + f(c1+bGl(c,v),...,cN
v
(2)
+ 60y (c,v); T-£)].
In order to carry out the indicated process, we must be
able to tabulate functionc of ! variabvles. Corsequently,

at the present time this approach 1s only feasible if N = 1
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or 2. For N > 2, the memory requirements become prohibitive.
It 1= necessary then to develop some new techniques 1if we
wish to utilize dynamic programming to solve large scale prob—
lems of the type arising in the engineering and e<onomic

spheres.

Q4. PRELIMINARIES ON LINEAR SYSTEMS

In this section we shall mention some well—mown results
concerning the solution of vector-matrix systems of linear
differential equations. These will be utilized in what
follows. Proofs of the results cited here may be found in [6].

The linear system of (1.5) may ba written, using an

obvious vector-matrix notation, in the form

(1) %% = Ax + By, x(0) = c.

Consider first the case in which A 18 constant. The solution

of (1) may then be written in the form

(2) x w efto +°é”t eA(t_e)By(s)ds.

If A e« A(t), a matrix dependent upon t, then x may be

written in the form

(3) x = X(t)e + /% x(t)xH(s)By(s)as,
0

/
where Y(t) 1s the matrix solution of

(4) g% - A(t)X, X(0) = I.
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We shall utilize these repre~entations in a crucial

manner below.

R5. TERMINAL CONTROL—I

Let us now turn to the problem of maximizing a given
function H(xl(T),xg(T),...,xk(T)) of the terminal state of
the system over all control functlons yi(t) which are re-—

lated to the x, by means of tie linear oquation in (4.1),

i
and which are subjJect to the constraints

(a) my _<_y1(t) <m', 0<t<T, t=1,2,..,N,
(1)

3 ,
(b) { G(yl:y?t-°':y“)dt < K.

We wish to show that the nuwrerical solution of a problem
of trhis type can be made to depend upon a seqQuence of
functions of k varlables, ratter than upon sequences of
functions of N varlables. We shall -onctider first the case
where A = (aij) 1s a constant mu-rix.

We begin with the llnear represcntation of (4.2), which

ylelds a set of equations

o

L
-] \ t r ; £ )
xglt)h =z (6) /7 [X xy lely (a)]as,

1 =1,2, ..., N,

where zi(t) 18 the 1—ti. < owmponent of c“tf, and  X(t) = (xij(t)).

“he problem we wish to concider may then be cast In the

form ot maximizing a fwictional of the type
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H(ul +4T [sz XIJ(T_e)yJ(e)]da, cory My

(3) N
+ /" [ng %, 4(T-8)y,(s)]as),

0
where Upy Upy eeey Uy are given quantities, over all
functions ¥y, ¥, -+, Yy fatislying the constraints (la)
and (1b).
Let us then consider the sequence of functlons
f(ul,u?,...,uk;T), implicitly dependent upon i, defined as

follows

T
f(ul,ug,...,uk;T) - N;x [H(u1 +°é? (...]ds,..., u

+_{;’7T [...]ds) - A{Tu(yl,yg,...,yu)ds],

whiere the functions yi(t) are nov constrained by (la).

A motivation and discuselion of the use of the Lagrange
multiplier may be found in [J, and a numerical example in [1.
The value of the method lies in ti.e fact that enables us to
reduce multi—dimensional problems to seqQuences of lower
dimensional problems.

To obtain a functional equation for f(ul,uQ,...uk;T),
we proceed as follows. Suppose that the values of
yl(t), yg(t), ce, yN(t) have becn cdeterminei over [0,8].

Then we may write
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H(u, +{T Fosal@By wony By +{’T [...]ads)
- x{"r G(Yy,¥p0e--,¥y)ds
= H(u, +‘{>n6 [...]as +{’T [...Jae, ..., u
+%’5 [...]ds +¢g’T [...Jas)
(5) - x%’f’ 0(yys¥ps---s¥y)ds — x(é’T ¥y ,¥ps -+ s¥y)ds
= H(u, +‘o)6 [...]as
+/0)T—5 [ng xiJ(T—-ﬁ-—e)yJ(sH'))]de,... )
- x‘é’f’ G(Yys¥ps - -+ ¥y )ds
- x(/’T'b G(y,(s45),...,yy(s+6))ads.

)

The principle of optimality cf. [1] then ylelds the

functional equation

&
£luysUg,eee,u;T) = Max - [- v/ G(Yys¥pse--ryy)ds +
YEoné..' 0

B N
(5) Play +./70 L2 xyy(medyy(e)]as, .y

N
+{5 [JZﬁ ka(T—e)yJ(s)]da)].
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The maximum ig now taken over all functions yi(s) defined

over 0 <8 b, and satisfying the constraints

my' < yi(s) <m 1n [0,8].

For computational purposcs, we may use the approximate

relation
t‘(ul,ug,...,uk;T) - Msx [ — 20 G(vy,Vopeopvy) +
N
(7) I‘(u1 + bjzh xiJ(T)vJ' cees 4

N
ngl >:kJ('I‘)vJ)] ,

or we may start with a discrete version of the original process.
We have thus reduced the numerical solution of the

variational problem to the determir.ation of a sequence of

functions of Kk variables. If k =1 or 2, we lave a

feasible method of solution.

Q . TERMINAL CONTROL—VARIADLZ COEFFICIENTS

It 1s important in connection with our subsequent discussion
of the use of successlve approxiinations to contgider the same
problem for the case where A 18 « varlable matrix. Let us
conslder then the ~ase where the cquation governing the process

l.as the form

(1) %% = A(t)x + B(t)y + g(t), =x(0) a« ¢,

A8 we now, the solution of t!is equation is given by the

expression
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x = X(t)e +{t X(£)X Y (s)B(s)y(s)ds +
(2)
%t X(£)X Y (s)g(s)as.

Hence the components of x(T) has the form

N
(3) x,(T) = u, +{T [, 714y (e)]as,

where the u, are independent of y.

In order to take account of the non—stationarity of the
process, we count time backwards. In place of noting the time
at which the process ends, we single out the time at which 1t
begins. Fixing T, we consider the function f(ul,ug,...,uk;r)
defined by the relation

£(u,,u,,...,u, ;r) = Max H(u, +
1?72 k y[r,'r 1

N
(u) [T {J& wiJ(ToB)YJ(s)]dBD seiey uk +

T - T
v/, [ses]d8) = k‘/ﬂ G(yl,ye,...,yN)ds].
r r
Arguing as in the preceding section, we see that f satisfies
the relation

r+b
f(u,,usy,...,u 3r) = Max [ = & G(Yy sYnsese,¥y)ds
17800 e oWy B et] .{ 12Yo0 s 0 0¥y

(5) + £y, *U/nr+6 [...]da,...,uk
r
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+/H° (...]as)].

For computational purposes, this reduces to

f(ul,ue,...,uk;r) = Max [ — AB G(vl,vg,...,vN) +
v
() ( 3wy (T,r)
& f + 5 w T,r)V,p coey +
o | JZLl 1) J b ™

N
GJZﬁ Wy (Tor)vy)],

with F(ul,ue,...,uk;T) = 0.

Q7. TERMINAL CONTROL—LINEAR CRITERION .

Let us now consider the case where H 1s a linear function.
More generally, let us consider the problem of maximizing the
inner product (x(T),a) where a 1s a given vector. To
simplify the notation, let us consider only the case where A
15 a constant matrix.

Using the representation for x(t) given in (4.2), we

see that

(1) (x(1),2) = (e*e,a) + (/7 M)y (5)ds,a).

Neglecting the term (eATc,a), which 1s independent of vy,

we have the problem of maximizing

(°) I(y) = (LO/)T M (™2)y(s)as,a)
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over all ¥q satisfying the constraints

(a) m <y, <my', 0OKELT, 1=1,2, ..., N,
(3) .

(b) (éf G(yysVps---s¥ylds < k.

Introduce the function
(%) f(k,T) = Max J(y),

y

where the maximum is over all functions vy, satisfying (%a)
and (3b).
It 1s easy to see that f(k,T satisfles the equation

£le,T) = Max (/" M) y45,a)

y[0,8]
(5) + £k -(6’5 G(y),¥,,+--»¥y)ds, T5)],
£(k,0) & 0.

For computational purposes, we can use the relation

(6) £(k,7) = Max [6(e*Tv,a) + £(kbd G(vy,v,,...,vy)T-B)].
v

We see then that in the case where the underlying equation
18 linear, the criterion function 1s linear, and there 1is only
one constraint of the form in (3b), we can compute the solution
using sequences of functions of one variable.

If there are two constraints of the type



T
(7) {’ 0, (¥ys¥psee sV lds S kg, 1=1, 2,

we introduce a Lagrange multiplier and consider the problem of

maximizing

(8) (x(T),a) - x{T 0, (y11¥ps -+ -¥y)ds.

For each value of A we have a one—limensional problen. As
the parameter A 18 varied, we range over a set of values of

W
the constraint (é Gl(yl,y?,...,yN)ds.

Q. TERMINAL CONTROL VS. GTENZPAL CONTROL

The general control problem 1s that of maximizing a

functional of the form

(1) J(y) -L,O”T F(x,y)at + H(x(T)),

subject to relationa and constraints of the type described
alove.
If we introduce & new 8calar varieble XN+1(t) by means

of the relation

Rt

(?) —a'f'_ = F(X,y), xh+l(0) = O,

we see that we once again have a terminal control problem.
In particular, the problem of maximizing a linear

functional of tle form
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T N
(3) g LE Tepgle) (e Jat,

is readily treated by the above methods.

0. TIME LAG PROBLEMS

A8 we have seen in the foregolng sections, the success of

our methods rested upon the superposition principle. Given an

equation of the form

L(x) =y,
(1)

xt-O - C,

we were able to write the solution in the form
(2) x = X(t)e + T(y),

and thus avoid interaction between the 1nitlal conditions and,

the forcing function.

Put in these terms, 1t 15 ‘:lear that the gsame methods

will handle the case where tle linear operator I 1s represented
by a differential—difference cperator of t'e type gilven 1n

(1.9). The requisite representation theorems may bte founua 1in

.

Q10. PAP.IAL DIFF.V_NTIAL “QUATIONS

Similarly, a variety of control probhlems acsociated with

the heat equation
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ut b uxx + V(X,t),

(1) u(x,0) = c(x), 0<¢x<1
u(0,t) = u(1,t) =0, t > 0,

may be treated.
We 8hall reserve a detalled exposition of problems of

this type for a future date.

Qll. SUCCESSIVE APPROYXIMATIONS

Let us now briefly, without entering 1into any rigorous
discussion, which 18 non—trivial, indicate how the method of
success8ive approximations may bte comtined with the foregoing
techniques 80 as to reduce general control problems involving
nonlinear differential equations and nonlinear criteria to
sequences of computational protlems involving functions of one
variable.,

Consider tre problem of maximizing

(1) Iy) = Hx (T), xo(T), ..o) x, (7))

over all y sgsubject to

dx
(a) a‘t—i' = Gi(X,Y), Xi(o) = “11 1=-1,2, ..., N,
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Let y(o) - (yl(o), yg(o), ceey yN(O)) be an initial

guest in policy spacc, and let x(o) - (xl(o), xz(o)

(0),

’ ...' XN
be the resultant x—values, determined by (2a).

Consider the new criterion function

Io(y) = H(x OV (1),x, 00 (m), ., SOV (m)) 4

c k

(3)

and the new system of differential equations

dx N or
(4) a—;i - Oi(xo.y) +J§1 (xJ—xJ(O)) ;')‘('j" (x{%),y),

xi(O) =cy, 1=1,2, ..., N

The new variational nroblem is that of maxirizing Jo(y)
over all y satisfying (L) and the constraints (2bt) and (2c).

Since the criterion function ani the system of differ—
entlial equationc are linear, tihe nietlods outlined in the fore-—
going pages permit us to solve ti.ls protler Ly means of a
sequence of one—dimensional function:a.

Let the maximizing y(t) be rcalled ;:(l)(t). Proceeding

(1))

as above, we determine an , and formulate a new
variational protlem as in (5) ani (). Pro-ecding in this
way we form a s8equence of one—limensional problers which we

hope converges to tle solution of tie orizinal problen.

]
12(:1 Ty (1) = 2,49 (m)] o (x9N, ..., O m)),
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