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SUMMARY 

In previous papers, It has been shovrr that the functional 

equation technique of dynamic prograimlng may be applied to 

yield the numerical solution of a wide class of varlatlonal 

problems of the type occurring In mathematical physics, 

engineering, and economics. 

It was seen that the numerical solution of a problem 

Involving N state variables depended upon the computation 

of sequences of functions of N variables. TMs fact made 

the method routine only for the case where N • 1 or 2, with 

grave difficulties arising In the general case. 

In this paper. It Is Indicated how to overcome this 

difficulty for a large class of problems In which the underlying 

equations and the criterion function are linear, although the 

restraints on the forcing functions may be nonlinear, corres- 

ponding say to energy considerations. 

The same methods are applicable to other classes of linear 

equations, and. In particular, to differential—difference 

equations, arising from Mine—lag problems, and to various 

classes of partial differential equations. These problems 

could not previously be treated by dynamic progranmlng tech- 

niques in any useable fashion. 

Finally, it is briefly indicated how the method of 

succescivc approximations may be combined with the foregoing 

techniques to reduce general varlatlonal problems, in which the 
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equAtlons and criterion function are nonlinear,   to sequences 

of problemo which can be  solved numerically by means of 

sequences of functions of one variable.     There are a number of 

Interesting and difficult  convergence questions associated 

with  this program which we do not discuss here. 
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SOME NEW TECHNIQUE IN THE 
DYNAMIC PROORAMMINO SOLUTION OF VARIATIONAL PROBLEMS 

Richard Bellman 

frl.     INTRODUCTION 

A varlatlonal problem that   Is encountered In many parts 

or pure and applied mathematics  Is that of determining the 

minimum or maximum o^ a functional of the form 

(l) J(y)  -t/
T ir(x1,y2,...,xrj;y1,y2,...,yM)dt 

over all  functions    y,,  Vp,   ..,,  y«    satisfying the  relations 

dx. 
(?) -^. - G1(x;y),     x1(0)   • c1,    1 - 1,   2,   ...,  N, 

and  constraints of the  form 

(a)     x^T)  - b1,     1 -  1,  2,   ...,  R, 

(3) 
(b)     RjUjy)  < 0,     J  -  1,   2,   ...,   k. 

For a variety of  reasons which  one  discovers  almost 

Immediately,   this problem,   to the  degree of generality stated 

above,   presents  formidable  difficulties.     These  difficulties 

arise not only In connection with  the analytic  solution of  the 

problem,   cf.   [9J,   &Ö],  hut  also   In connection with  the 

apparently more modect  demand for a numerical solution.    Wt- 

have  dlccussed  elsewhere  various  applications  of  the  theory of 

dynamic  programming to  the numerical solution of  classes of 
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varlatlonal problems of the foregoing t^npe, [l] , [2], [3],   [4]. 

In this  paper we wish to Indicate some recent developments 

which greatly enlarge the scope of these methods presented In 

the cited references.  In addition, these new developments, 

combined with the classical tool of successive approximations, 

enable ua to attack systematically classes of problems formerly 

far beyond our powers. 

We shüll begin our discussion with a terminal control 

problem for a linear system with constant coefficients. The 

problem Is that of maximizing a functional of the form 

(M      J(y) - HCx^T), X2(T), ..., xk(T)) 

over all  1 jictlons    y,,  y^,   ...,   yM,    where     x    and    y    are 

linked by  linear relations  of  the   form 

dx, N N 
(5) ^ "Ä ^^ +J?1 bl^' Xl(0) ' :i'  ' " ^ 2' ••" N 

and the y.  satisfy restraints of the type 

(a)  m1 < y1(t) < m^',  0 < t < T,  1 - 1, 2, ..., N, 

(6) 

(b) /'' KJ(y1,y2,...,yN)dt < cy      J - 1, r m • • • 1   1/ • 

Whereas  the  techniques  of dynarulc programming  discussed 

previously  convert  this  varlatloni.l problem  Into one   requiring 

the  computation  of a  sequence  of   functions  of     N    varlalles, 

the  linearity  of  the  aeflnln^"  '.'quution  In   (r)   enables  ur   to 
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transform the p oblerr. Into one Involving a «equence of functions 

of k variables, where k Is as In (4). 

Since current digital computers do not take kindly to 

storage of functions of more than two variables, this Is a very 

Important reduction. This Is particularly so since a large 

class of problems occurring In the fields of engineering and 

Industrial economics may be formulated In the above terms with 

large N and a k of one or two. 

If H(x1,x2,...,x. ) Is linear, 

k 
(7)      H - 2 ax, 

J-l  J J 

the problem may be still further reduced to the computation of 

sequences of functions of one variable, regardless of the 

value of k. The same remark holds for the case where it Is 

desired to maximize a linear functional of the form 

IJ 
(q)   j "-r u fvj(t)}dt- 

In exactly the same way we can handle discrete control 

problems where difference equations replace differential 

equations.  As a matter of fact, these techniques were developed 

In connection with a discrete problem, the "caterer" problem, 

[5]- 

The same methods may be applied to the treatment of 

problems Involving time lags and retarded control, cf. [7], 

In which, case the equations corresponding to (r) become 
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dx.   N N N 

x1(t) - c^t),  0 < t < 5,  1 - 1, 2, ..., N. 

More ccmpllcated types of hereditary processes may also be 

treated by means of the techniques we shall present beiow. 

Problems of this kind could not formerly be treated by dynamic 

programming techniques because of their dependence upon 

functlonals rather than functions. 

The results stated so briefly in the foregoing paragraphs 

depend In an essential manner upon the linearity of the 

equations defining the process and upon the linearity of the 

criterion function. To extend those techniques to cover more 

general situations, we turn to that general factotum,the 

method of successive approximations. Using this basic tech- 

nique of analysis, we show how a variety of apparently r.ultl— 

dimensional processes can be reduced to conputatlonal processes 

Involving sequences of functions of one variable.  Once this 

has been done we have a feasible approach to these problems. 

A large number of Interesting and significant problems 

Involving convergence of these methods, rapidity of convergence, 

stability, and so on, arise from these Investigations.  These 

will be discussed In detail at a subsequent uate. 

^2.  DYNAMIC PPOGRAWMINQ 

In order to appreciate the Improvement in technique 
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afforded by the methods we present here, let us sketch briefly 

the direct approach of dynamic programming which we have pre- 

sented In the works cited above. 

Considering the general problem posea In (l.l)—(l.jj) 

define the function of the N variables c^., c«, ..., c«, 

and T, 

'1)     f(n1,G2,...,cN;T) - Max J(y) 
y 

where the maximum lo taken ove all functions y1(t) satisfying 

(1.5). Under appropriate assumptions concerning the continuous 

dependence of maximizing y. upon the initial values c.  and 

T, we obtain for f a nonlinear partial differential equation 

(2) Max [F(cjv) 4- 7 O^c^)!^-.], t^o^^... ,^,0) -  0, 

where  the naximization  is  over quantities    v.     satisfying  the 

constraints 

(3) 

(a)    ^ < v^  < "''i' 

(b)     R^c.v)   < 0. 

Provided that P and C are suitably differentiable, 

and assuming that the maximum is always assumed inside the 

region of variation, this nonlinear partial differential 

equation leads via characteristics to the usual Euler equations, 

-r. Li], M. 
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yp,     COMPUTATIONAL ASPECTS 

Since the analytic Bolutlon of these problems, as mentioned 

above. Is only rarely attained, we turn to computational tech- 

niques. 

To determine f(c.f c«, ..., cN,T) we can either use 

(2.2) and any of a number of standard techniques for the 

numerical solution of partial differential equations of this 

type, or, as has turned out to be preferable, we can go over 

to a discrete version of the original continuous process. 

Analytically, this means that the original differential 

equations are replaced by difference equatlonf. TTius, (1.2) 

becomes 

(1)      x^t-J-6) - x1(t) + 5 01(x1(t),x2(t),...,xN(t); 

y1(t),...,yM(t)), x1(0) - c1, 

with t assuming only the values 0, 6, 25, ... . 

The nonlinear partial differential equation is then re- 

placed by the nonlinear recurrence relation 

f(c,T) - Max [6 P(c;v) + f (c^BQ^cv),.. .,cN 

(2) 

+ 50N(G,V}; T~5)]. 

In order to carry out the.  Indicated process, we must be 

able to tabulate functlonc of N variables.  Corsequently, 

at the present time this approach Ic only feasible If N • 1 
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or 2. For N > 2, the memory requirements become prohibitive. 

It 1P necessary then to develop some new techniques If we 

wish to utilize dynamic programming to solve large scale prob- 

lems of the type arising in the engineering and economic 

spheres. 

fr4.  PRELIMINARIES ON LINEAR SYSTEMS 

In this section we shall mention some well-4aiown results 

concerning the solution of vector-matrix systems of linear 

differential equations. These will be utilized in what 

follows. Proofs of the results cited here may be found in [6}. 

The linear system of (1.5) may ba written, using an 

obvious vector-matrix notation, in the form 

(1) ijl - Ax ♦ By, x(0) - c. 

Consider first  the  case in which    A    is  constant.    The solution 

of   (l) may then be written in the  forr 

(2) x - eAtc  + /7t eA(t-fl)By(ß)ds. 
0 

If    A • A(t),    a matrix dependent upon    t,     then    x    may be 

written in the form 

(3) x - X(t)c  •»-i/
t X(t))r1(s)By(8)ds, 

0 

t        .   x 
where X(t)  is the matrix solution of 

(4) ^- A(t)X,  X(0) - I. 
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We  shall utilize these  representations  in a  crucial 

manner below. 

^5«     TERMINAL CONTROL—I 

Let us now turn  to the  problem of maximizing a given 

function    H(x-(T),x0(T),....x. (T))    of the terminal state oi 

the  system over all  control  functions    yj(t)     which are  re- 

lated  to  the    x.     by means  of  the  linear oquatlon  In  (^.l), 

and which  are subject to the  oonctralnts 

(i) 

(a)    m1  < y^t)  < m^',    0 < t < T,     1 -  1,  ?,...,  N, 

/I T 
(b) j    o(y1#yo#-".yM)dt < k. 

0 i      u N - 

We wish to show that the numerical solution of a problem 

of this type can be made to depend upon a sequence of 

functions of k variables, rather than upon sequences of 

functlois of N variables.  We shall onslJer first the case 

where  A • (a..)  Is a constant matrix. 

We begin with the linear' representation of {k.2),  which 

yields a set of equations 

v 

x.U)   -  z.(t)   ^y^^   [V    x      (t>-c)y   (s)jds, 

(?) 

1   ■   1,   P,    •••»   '■, 

At where     z.(t)     Is  the   1—tl.   r-omponent of    e     :,     and    X(t)   -   (x. .(t)) 

The   problem we   wish   to   consider' may   t'ien  be   cast   In   the 

form of  maximizing a  functional  of  the   type 
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/iT    r   N 

H(u1 *fl   LX    x1J(T-s)yJ(8)]d8,   ...,  uk 

(3) N T 
V       TZ    xk1(T-8)y  (8)]d8), 

J 

where    u,, Up,   ...,  u      are given quontltleo,  over all 

functions    y,,  y?,   ...,  y.,    p^tlafylng the  constraints   (la) 

and  (lb). 

Let us  then  consider the  sequence  of functions 

f(u^.Up,...,u. jT),     Implicitly dependent upon    X,    defined as 

follows 

f(u1,u2,...,ukjT) - Niax  [HC^ ■f</'
T  [...]dB,...,  M^ 

+y1T [...]d«) - ^t/
To(y1»y2#.--»7,^)^8], 

where  the  functions     y..(t)    arc  no\.'  constrained by   (la). 

A motivation  and  dlscusElcn  of   the  use  of  the  Lagrange 

multiplier may be  found  In  [8j ,  and a numerical example  in   CLQ . 

The   value  of  the  method   lies  In  the   fact   that  enables  us   to 

reduce multl—dlmenBlonal problems  to  sequences of  lower 

dimensional problems. 

To obtain a  functional equation   for     f(u,,uol...u, ;T), 

we  proceed as  follows.     Suppose  that  the  values of 

yi(^)»  Ypit),   ...,   y^O     'lave  ^ecn  determine; over     [p#&] • 

Then we may write 
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The niaxlmum 1E now taken over all  functions    y^s)     defined 

over    0 < a  < B,     and satisfying the  constraints 

mj^'   < y1(B)   < m1     in     [0,ö] . 

For computational purposes,  we  may use  the  approximate 

relation 

f(u1,u2,...,uk;T)  - Max   [ - X5 Q(v1,v2#.•.,vN) + 

(7) 

N 

(U1  +  'j'^ X1J(T)VJ'   ""\* 

5 I \^^' 
or wo may start with a discrete version of the original process. 

We have thus reduced the numerical solution of the 

varlatlonal problem to the determination of a sequence of 

functions of k variables.  If k - 1 or ?,    we have a 

feasible method of solution. 

V.  TERMINAL CONTROL—VARIABLg COEFFICIENTS 

It Is Important In connection with our subsequent discussion 

of the use of successive approxlindtlons to conelder the same 

problem for the case where  A  Is a variable matrix.  Let us 

consider then the ^ase where the equation governing the process 

lias the form 

(1)      $r - A(t)x + E(t)y + ^(t),  x(0) - c. 

As wr?  know,   the  solution  of  this equation  is  given  by   the 

expression 
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(7) f1 01(y1,y2....,yN)d8 < k^    1 - 1, 2, 

we Introduce a Lagrange multiplier and consider the problem of 

maximizing 

(8) (x(T),a) - \f'Y ai(y1,y2,...yN)ds. 

For eacli value of X we have a one—dimensional problem.  As 

the parajneter X Is varied, we range over a set of values of 

the constraint /  CL (y..y0,...#yw)d8. <'0 1      1      c N 

QM.     T2HKINAL CONTROL VS.   G^J^PAL CONTROL 

The  general  control  problem IG  that  of maximizing a 

functional  of the  form 

(1) J(y) - /T P(x,y)dt + H(x(T)), 
0 

subject   to relations and  constraints of   the  type described 

above. 

If we  introduce a new scalar variable    X
M.I.-I(^)    ^y roeans 

of  the   relation 

dxH+l (?) _-i.F(X,y),     Xl)+1(0)  .0, 

we see that we once again have a terminal control problem. 

In particular, the probler of maximizing a linear 

functional of the form 
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(3) //
T CX  CVj(t) + ajyj(t)] ]dt' f% 

is   reallly  treated by the  above methods. 

fr).     TIME LAG  PROBLEMS 

As we have Been in the foregoing sections, the success of 

our methods rested upon the superposition principle. Given an 

equation of  the form 

L(x) » y, 

(1) 
xt-0 ' c' 

we were able to write the solution In the form 

(?)      x - X(t)c + T(y), 

and  thus avoid Interaction  between the  initial conditions and. 

the  forcing  function. 

Put   In  these  terms,   it   Is   :lear that   the   same methods 

will handle   the  case  where   the  linear operator    L     is  represented 

by a differential—difference  operator of  V. e   type  given  in 

(1.9).     The  requisite  representation theorems nay be  found  in 

[7]. 

^10.      PAP'.IAL DIFF.^K'^IAL   EQUATIONS 

Similarly, a variety of control problems associated with 

the heat equation 
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(1) u(x,0)  - c(x),     0 ^ x ^ 1 

u(0,t)  - u(l,t)   - 0,     t > 0, 

may be  treated. 

We shall reserve  a detailed exposition of problems of 

this  type for a future date. 

t^ll.     SUCCESSIVE  APPROXIMATIONS 

Let us now briefly,  without entering Into any rigorous 

discussion, which  Is  non—trivial,   indicate how the method of 

successive approximations may be  combined with the  foregoing 

techniques so as to reduce general control problems  involving 

nonlinear differential equations and nonlinear criteria to 

sequences of computational problems  involving functions  of one 

variable. 

Consider the problem of maximizing 

(1) J(y)   - H(x1(T),   x2(T).   ...,   xk(T)) 

over all    y    subject   to 

dx. 
(a)    ^ ' 01(x,y),     x^O)  - c^     1 -  1,  2,   ...,  N, 

(?)     (b)    rr^  < y1  < n^',     1  » 1,   P,   ...,   N, 

0(ylty2,...,yN)dt < i-. 
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Let    y^0)  -  {y^K  y2
(0\   ...,  yN

(0))     be an Initial 

gueJie  In policy spaoe,  and  let    x^       -  (x^       ,  x0      ,   ...,  x^       ) 

be  the  resultant x—values,  determined by  (2a). 

Consider the new criterion function 

J0(y) - HU^'cD.x^'cr) xk
(0)(T)) + 

X ^i^ - *i0)W  ^ (^'(T) Xk
(0'(T)). 

and the new ayßtem of differential equations 

C.)    ^1 . 0l(x
0.y) +j| ^r^

0))^U{0),y). 

x1(0) - c1,  1 - 1, 2,   ...,   N. 

The new varlatlonal pixjblem Is that of maxir.lzlng JQ^'^ 

over all y satisfying (^) and the constraints (2b) and (2c). 

Since the criterion function and the system of differ- 

ential equation:- are linear, the Methods outlined In the fore- 

going pages peiT.lt us to solve this probler. by means of a 

sequence of one—dimensional functions. 

Let the maximizing y(t)  he called  y*  (t).  Proceeding 

as above, we determine an :«; ^ ^(t),  and fomulate a new 

varlatlonal problem as In {})  and (';).  Proceeding in this 

way we form a sequon.-e of one—dim*mlonal problems which we 

hope converges to the   solution of the original problem. 




