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SUMMARY

"Limit Design" guides the structural engineer towards an
economic design of structures that are made of ductlle materials
and have to carry specified loads. From the mathematical point
of view, the problem can be reduced to one in linear programming,
but even simple structures may lead to linear programming prob—
lems of considerable size. A method of solution 1is dlscussed
that has been found efficient for structures of moderate com—
plexity. A sketch of the historical development of limit ahaly—

sis and design 1s glven.
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LINEAR PROGRAMMING AND STRUCTURAL DESIGN
II. Limit Design®

William Prager

In general terms, the problem discussed in the preceding
lectur;*éan be described as fcollows: glven the geometry of a
structure and the fully plastic moments of its members, to find
its carrying capacity for a given type of loading. This is
known as the problem of "limlt analysis." Today's lecture will -
be primarily concerned with the related but different problem
of "limit design": glven the geometry of a structure and the
loads it has §o carry, to choose the fully plastic moments of
its members sg as to minimize the weight of the structure.

Before entering on the discﬁssion of limit design, let us
review the method developed last time. FPFigure 1la shows a portal
frame; the feet of the columns are build in, and the beam is
riglidly Jjoined to the columns. The fully plastic moment of
each column is MO and that of the beam is 2Mo. For the type
of loading indicated in the figure, we wish to determine the
maximum load intensity that the frame can carry}

The potentially dangerous cross seétions Q%.the frame are
at the foot of each column, at the top of each column just below
the joilnt with the beam, and at the points of application of the

loads. These cross sections are numbered 1 through 6 in PFig. 1la,

-~ -
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and the bending moments at these sections will be denoted by
M1 through MO. These bending moments must satisfy three equa-—
tiéns of equillibrium, which may be establlished kinematically
by considering the three "basic mechanisms" indicated in Figs.
1b, 1lc, and 1d. The coefficients and right-hand sides of these
equations are listed in rows (a) through (c) of Table I, bend-
ing moments being considered positive when they tend to produce

tensile stresses in the fibers bordering on the interior of the

frame.
TABLE I
1 M | K M M, M M; | r.hes. Pa/M,
(b) -1 3 | =2 0 0 0| 2Pa 3.00
(c) 0 0 -1 2 -1 0 2Pa 3.00
(d) -1 0 1 0| =1 1 2Pa 2.00
== # = —— e
Mi/Mo -1 |2.07 1 2. (& 1 - -
=m — - ]
(e) 0 et =9 0 1| -1 0 -
(£) =3 3 0 0| =2 2 oPa 1.67
M, /M, -1 1 .33\ 1.33| =1 1 = -

[ 2



L 23

P-1123
=V1=5T
o
Table I contains all the information necessary for for—
mulating the linear programming problem that furnishes the
load carrying capacity of the frame. We may, for instance,
take the Equation (b) as defining our objective function and
obtain two subsidiary conditions for the ﬁnknown bending mo-—
ments by eliminating P from Equations (b) and (d). QWe thus
obtain the following problem: to maximize

2Pa = -M; + 3M; — 2M5, (1),

subject to the equationé
M, - 3M, + M) + 2M, — Mg = 0, (2)
i~ 3M, + 3M; —'Ms + Mg =0, (3)

and the inequalities stipulating that MA must not exceed 2M,
in absolute value while the other five bending moments must
not exceed MO in absolute value.

If we have a computer code for linear programming with
bounded variables, we can at this stage put the problem on
the computer and have 1t compute the load carrying capacity of
the frame. 1In the present case, th1§ would hardly be worth |
while because the problem is readily solved by the.method
developed in the last lecture. Considering in turn each of
the mechanisms of Figs. 1b through 1d as a tentatlve collapse
mechanism, we give the appropriate values to the bending mo-—
ments at the plastic hinges and compute Pa/Mo by applying thg\
principle of virtual work; the results a;e indicated in the
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last column of Table I. The mechanism of PFig. 1d is found to
give the lowest value, Pa/Mo = 2, the bending moments at the
plastic hinges belng Ml = M5 = —MO and M3 = M6 = MO. Inserting

these values into Equations (b) and (c), we solve for M, and

2
M4, the bgnding moments at the sections where the considered
mechanism does not have plastic hinges. The row just below
(d) in Table I lists the resulting dimensionless bending mo—
ments Mi/MO' As M2 exceeds its upper bound MO, we must super-—
impose, on the considered mechanism (Fig. 1d), another mech-
anism that has a positive hinge at 2 and no hinge at 4, and
yields zero total work of the.loads. This mechanism 1is, of
course, a liqear combination of the three baslic mechanisms
(Figs. 1b thfbugh 1d). To within an irrelevant factor,'the
coefficients in this.linéar combination are determined by fhe
following conditlions: 1in the equation of equilibrium cor-
responding to the desired mechanism, the coefficient of M2
must be positive, while that bf Mu and the right-hand silde
must vanish. A glance at Table I shows that the combination
(b) — (d) satisfies these conditions. The resulting equation
of equilibrium is given in row (e), and the corresponding
mechanism 1s shown in Fig. le. Comparing the coefficients

in the rows (d) and (e), we note that the smallest positive
value A for which a coefficient in the combination (d) + A(e)
vanishes 1s A = 1/3. To avold fractions, we consider the
combination 3(d) + (e) which is given in row (f). The cor-— e
responding value of Pa/M0 is 1.67 as indicated in the last.
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column of row (f). When the bending moments are computed as
before, the values in the last row ot Table I are obtained.
éince these are all within the bounds for the respective mo-—
ments, we have found the load carryling capacity of the frame
to be P = 1.67 Mo/a. The corresponding collapse mechanism 1is
shown in PFig. 1f. .

At this stage it seems appropriate to discuss several
questions which, I am sure, have occurred to some of you.
First of all, is thls systematic approach really necessary,
or would the collapse mechanism be ebvious to an experienced

analyst? For the simple problem considered here, one would

certainly consider the mechanism of PFig. 1f as a likely collapse

mechanism beéause it does not have piastic hinges in the rela-
tively strong beam. Computing first the load intensity neces—
sary to activate this mechanism, and then the bending moments
at the sections 2 and 4 as before, one easily verifies that
this 1s indeed a collapse mechanism of the frame. In more
complex structures, however, the initial guess regarding the
collapse mechanism is likely to prove erroneous; the systema—
tic procedure described above will then lead to tpe correct
mechanlsm. i

A question that forces 1tself on anybody famﬁliar with
linear programming concerns "degeneracy." Described in struc-—
tural terms, degeneracy occurs when the mechanism obtained at
a certain stage of our procedure has less than the "regular";‘

nunber of plastic hinges. For the frame bf Fig. 1la, for

instance, we have six possible locations of plastic hinges
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and,-after eliminating P between the three equilibrium con—
ditions, two linear homogeneous equations for the bending mo-
ments M1 through Mb‘ These allow us to compute two bending
moments, when the four others have been chosen in accordance
with the relative rotations in the four plastic hinges of a
tentative collapse mechanism. For the frame of Flg. la, the
mechanisms in Figs. 1d through 1f, which have four'hinges,
are therefore '"regular," while those in Figs. 1b and 1lc, which
have only three hinges, are "degenerate."

In the theory of linear programming, degeneracy is es-
gsentially treated by slightly modifying the problem so as to
avoid degeneracy in the modified problem. To shcw that a
similar treatment of degeneracy may be possible in limit anél—
ysils of structures, let us again consider the frame in Flg. 1la,
assuming that the tentative collapse mechanism 1s chosen ac-—
cording to Fig. 1b. The three hinges of this mechanism allow
infinitesimal horilzontal displacements of the cross sections
of the left-hand column only because they lie on the same
straight line. It is therefore natural to consider the frame
of Fig. 1a as the limiting case of frames that have slight
bullt—in kinks at 2 (Pig. %). To avoid fractional values of
linear or angular dispiacé;ehfs; the depth of the kink 1is
denoted by 4ea in Fig. 2. In Pig. 1b, the segments 1, 2 and
2, 3 of the left-hand column have rotated by the small amounts
6 and 26 1in the clockwise and counterclockwise senses, re—
spectively. PFor the frame of fig. 2, the' same roﬁations would

producé a vertical downward displacement of point 3 equal to

.
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12eaf, the horizontal displacement of this point being zero
as in Fig. 1b. To make this vertical displacement possible,
Qe must insert an additional plastic hinge at either 4 or 5.
The first cholce would not alter the load intensity P = BMo/h
needed to activate the mechanlism, whereas thé second choice
lowers it to EMO/[(1+3e)a]. We therefore choocse ;Qe additional
hinge at 5, setting Ml = M3 = M5 = -MO and M2 = MO‘ Proceeding
as before, we are immediately led to the collapse mechanism
of Fig. 1f. Whille 1t seems likely that degeneracy can always
be treated in this fashion, no general proof of this seems to
have been given so far.

Finally, there is the question of whether it 1s realistic
to restrict éhe discussion to a single "type of loading." With
reference to Fig. 1la, for instance, we might assume the vertlcal
and horizontal loads to vary independently between given limits,
and ask whether any of the resulting svates of loading over-—
taxes the frame. Denoting the horizontal lcad by P as before,
and the vertical load By Q, we then have to consider all pos-
sible collapse mechanisms and specify that for each of them
the work dissipated in the plastic hinges should not be less
tﬂan thg wo:k of the applied loads. PFor the mechanism of
Fig. 1d, for instance, this condition provides the inequality

oMy > |Pa] , (%)

where the absolute value has been used on the right-hand side

because negative values of P, i.e., horizontal loads directed'
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towards the left in Fig. 1, may be admitted. Using Pa/MO and
Qa/MO as rectangular bartesian coordinates of the "load point"
in a "load plane," we see that (4) restricts the load point
to a strip that 1s centered at the origin. Each potential
collapse mechanism fﬁrnishes such a strip; the polygon commcn
to all strips (PFig. 3) contains the load points corresponding
to states of loading within the carrying capacity ;f the frame.
On the other hand, the gilven ranges of variation of P and Q
specify a rectangle 1n the load plane and are admissible only
if this rectangle 1s contained within the polygon of Fig. 3.
Let us now turn to the problem of limit design: given
the geometry of a structure and the loads 1t has to carry,
to determine:the fully plastic moments of its members so as
to minimize its welght. For the treatment of this problem
it is customary to assume that the weight per unit 1?ngth of
a structural member is proportional to 1ts fully plastic mo-—
ment Mo. This assumption greatly simplifles the analysis
because 1t leads to a linear rather than a nonlinear programming
problem. Whether the assumption is reasonable in a particular
case, depends on the range of cross—sectional shapes that are
at'the disposal of the designer. If, for instance, all avell-
able cross—sections ;;e geométrically similar, the unit weight
is proportional to M;/s, as a s;mple dimensional analysis will -
show. Actually, the standard I sections are not strictly
similar to each other, and the exponent 2/3 must be reﬁlaced

by one closer to unity. Por a more detalled discussion of
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this point, Heyman's [1]* book may be consulted. In the fol—
lowing, the welght per unit length of a member will be taken
as proportional to its fully plastic moment.
Figure 4a shows a beam on three supports subjected to
specified vertical loads. The unknown fully plastic moments
and

0
M;, respectively. Any plastic hinge at the central support

o;‘ the left— and right-hand spans will be denoted by M
will form just to the left or right of this support depending
on whether My < M; or M; < My. Since it 1s not known before—
hand which of these inequallties applles, we must consider

thé four potentially dangerous cross sections marked 1 to 4 in
Fig. 4a. The equilibrium conditions for the bending moments

Ml through Mli at these sections may be derived from the mechan-
isms shown in PFigs. 4b through 4d. The first two of these
figures show the familiar "beam mechanisms," the last a "Jjoint
mechanism:" the infinitesimal length of beam between the
sections 2 and 3 15 tilted to producg finite rotations 1n the
hinges 2 and 3 but only infinitesimal deflections. The equil-

librium conditions for the four bending moments are

2M, — M, - 30, ‘ (5)
- My + 34, = 20, | TN EY
My — My = 0 (7)

where the coefficients on the left-hand sides are dimensionless,

v

Numbers 1n square brackets refer to the Bibliography at
the end of this report.
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while the right-hand sides represent foot—tons.
Consldering a set of values M1 through M4 trhat satisfy
(5), (6), and (7), choose

M, = max (|M1l) |M2|) (8)

0
and

Mg = max (|Mg], [myl). (9)

[4

The beam with these fully plastic moments cannot fail under
loads that have the same ;atio as in Plg. 4a but lesser in-—
tensities. This beam therefore represents a feasible design,
but does not necessarily minimize the welght, which 1s pro-—

portional to

¢ * |
W o= 20M, + 30M, . (10)

Our problem is to minimize W as given by (10), where

*

Mo and Mo

moments that must satisfy (5) through (7). This can be for-

are defined by (8) and (9) in terms of four bending

mulated as a conventional problem in linear programming by

observing that (8) is equivalent to

Mot M >0, MyimM, >0, (11)

and that similar 1nequa11tiés may be used to replace (9). It
is worth noting, however, that even our extremely simple struc-
tural problem leads to a linear programming problem involving

6 unknowns subject to three equations and 8 inequalities.

As 18 to be expected, this static formulation of the
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problem of mimimum welght design has its kinematic ccunterpart.

*

The unknowns in this are the fully plastic moments M, and MO;

0
ﬁhe conditions which they must satisfy are derived from the
principle that for any tentative collapse mechanism the work
dissipated in the plastic hinges should not be.less than the
work done by the locads. -

For the beam in Fig. 4a all mechanisms can be considered
as linear combinations of the basic mechanisms shown in Figs.
4b through 4d. A tentative collapse mechanism must have two
of the four possible plastic hinges.inactive. Table II shows
the equations of equilibrium corresponding to the six potential
collapse mechanisms; the first three.rows correspond to the
mechanisms of Figs. 4b, 4c, and 4d, and the last thrée rows '

to combinations with two inactive hinges. : 4

TABLE II
M, M, My My ft.t.
(v) 2 a1 0 0 30
(c) 0 0 | =1 3 20
‘ (d) 0 1 221 0 0
: T o T B R e
- (e) = (b) + (a) 2 o1 0 30
(£) = (¢) — (d) 0 L 0 3 20
() = (b) - (c) + (a) | 2 0 0| =3 10
' B L
.fully plastic moment I Mo Mo 'JI l \\\N._
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The hinge rotations listed in columns Ml and M2 go with
the fully plastic moment MO and those in columns M5 and Mg
with MS as indicated at the bottom of Table II. Since the
sign of thz bending moment at a plastic hinge corresponds to
that of the hinge rotation, the work dissipated in the hinges
of, say, the left-hand span equals the product of MO by the

sum of the absolute values of the hinge rotations of this span.

The mechanisms of Table II therefore yleld the following in-—

equalities:
M, > 30 , (b)
M3 > 20 , (c)
Mg+ M5_>_ o, (a)
- 2My + MS~2 30 , (e)
My + 3M5 > 20, (£)
2My + 3MJ > 10 . (2)

The problem of minimizing W as given by (10) subject to
the inequalities (b) through (g) is again a problem in linear
programming. It is convenient to interpret these lnequalities

s as the rectangular Cartesian

geometrically by using Mo and M
coordinates of the "design point" in the "design plane" (Fig.

5). Each of the inequalities restricts the design point to a
half-plane; the "region of admissible designs" that is common

to these half-planes 1s shaded in Fig. 5. According to (10),

all design points that correspond to a given structural weight
lie on a straight line, e.g., the dotted line in Fig. 5. -Sifice

this line does not contain a point of the shaded region, no
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design of this structural weilght can support the given loads.
As the llnes corresponding to variocus fixed values of W are
barallel to each other, the desired design of minimum weight
is obviously represented by the vertex V of the region of
admlssible designs. Since each of the sides through this vertex
correspond to a collapse mechanism, the minimum welght design
admits two competing collapse mechanisms. We observe that the
number of competing collapse mechanisms equals the number of
dimensions of our "design space." When n fully plastic moments
are at the choice of the designer, the minimum weight design
must admit at least n competing collapse -mechanisms, but may
have more than n in special cases.

Making é guess concerning the competing collapse mechan—
isms for the minimum weight design, one may compute bending
moments to ascertain whether thls guess corresponds toc a vertex
of the reglon of admissible designs. If, for instance, we
take (b) and (f) as competing mechanisms in our example, we
find (in ft.t.) My = 10 and Mg = 3.33. The bending moments
at the plastic hinges in either mechanism must then equal the
appropriate fully plastic moments in absolute value anq have
the same signs as the hinge rotations. We thus have (ﬂr fe.t.)
M, = -M2 = 10 and M, = 3.33; equilibrium finally requires that
M3 = -]0, and this exceed the fully plastic moment M; in
absolute value. Accordingly, the assumed combination of col—-

lapse mechanisms does not correspond to a vertex of the reg{gﬂ

of admissible designs. Applying the same technique to the
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combination of (c) and (e), we find (in ft.t.) My = 12.5 and
M; = 5.0, The bending moments with plastic hinges are M1 = ~-12.5
and M3 = 'Mk = 5.0, and equilibrium requires that M2 = -5.0,
which 18 less 1n absolute value than Mo. This shows that we
now have a vertex of the region of admissible designs, but
does not reveal whether we have attalned the minimum weight.
The computation of bending moments that are compatible
with both collapse mechanisms incidentally ylelds the following
result. If the competing mechanisms have a plastic hinge in
common, their rotations at this hinge must have the same sign.
Any possible linear combinatioﬁ of the inequalities (c)
and (e) restricts the design point to a half-plane that 1is
bounded by ag;ine through V and contains the region df admis—
sible designs. Since the line of min W 1s of this type, it
must be possible to combine the inequalities (c) and (e) with
positive factors in such a manner that the coefficlents of
My and Mj in the resulting inequality coincide with those in
the expression for W (Equation 10). As has Jjust been shown,
the corresponding combination of the mechanisms (c) and (e)
cannot bring about any partial.or complete cancellation of
rotations in the common hinge é. Accordingly, the 1lnequality
obtained as a positive linear éombination of the 1lnequalities
(¢) and (e) directly expressesjthe fact that in the correspond-
ing combination of the mechanisms (c¢) and (e) the work dis-
sipated in the plastic hinges must not be smaller than the work
done by the loads. The minimum weight design thers:fore adﬁita -

a collapse mechanism for which the sums of the absolute values
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of tﬁe hinge rotatlions associated with each fully plastic mo-—
ment have the same ratios as the coefficients of these moments
in the expression for the structural weight. In our example,
this mechanism is given by 5(c) + 10(e); it involves the hinge
rotations 20 at 1, —15 at 3, and 15 at 4. ‘

For the beam in Pig. 4 it %as an easy matter tp 1ist all
potential collapse mechanisms and the corresponding inequalilties.
For a more complex structure, however, this may be a formidable
task. Once this 1s accomplished, the problem 1s readily set
up as a problem in linear programming, which may be put on a
computer. Unfortunately, no systematic method has as yet been
discovered for reducing the labor of listing all potential col-
lapse mechanisms. The criteria developed'above, however; are
useful aldes in the search for the proper comblination of mecha-
nisms. To 1llustrate this, consider the two—storey frame of
Fig. 6a. The feet of the columns are bullt in, and all Jjoints
are rigid. There are 11 potentially dangerous cross sections,
labelled 1 through 11 in Pig. 6a. The bending moments at these
sections will be denoted by Ml through Mll‘ Three fully plastic
moments are at the choice of the designer: Mo for the columns
of the f%rst storey, Mé for the celling beam of this storey,
and MS f;fAfhe cdiumns and the celling beam of the second
storey. Accordingly, we must look for three competing collapse
mechanisms. Five basic mechanisms are shown—Figs. 6b through
6f; the corresponding eqﬁations of equilibrium are listed in

Table III.
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The structural welght is proportional t¢
' "
W= 12M0 + 8Mo + 2OMo (12)

The competing mechanisms are likely to include (b) and (c),
the first because it determines the minimum fully plastic mo-
ment of the upper storey, and the second because it requires
a particularly large amount of work to be dissipated in the
plastic hinges. The inequalities corresponding to these mecha-— -

nisms are

4Mg > 60 (13)
and

. My + AM) + 2M7 > 320 . (14)

As (d) furnishes the .lnequality
My > 140, (15)

1t would not be possible to obtain the coefficients in (12) by

a positive linear combination of the coefficients in (13)
through (15). Thus, if the competing collapse mechanisms in-—
clude (b) and (c), they cannot also include (d). In fact, the
third compet;pg_collapse,mechaniam is likely to be a combination
of (c) and (f), because this allows us to increase the co— S|
efficient of M, at the expense of that of Mé and again requires

a large dissipation of work. We try (g) = (c) —2(f) (see Table

III), obtaining the inequality SR
4My + 2M) + UM = 320, _ (16)
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The éoefficients in (13), (14), and (10) can be combined with
the positive factors 2, 2/3, and 8/3 to yield the coefficients
in (12). The mechanisms (b), (c), and (g) thus are admissible
as competing collapse mechanisms. To investigate whether they
yileld the solution of our problem, we solve the equations ob-
tained by using the equality sign in (13), (14), and (19).
Thus,

My = 38.3, My = 53.3, MJ = 15.0 (17)

(in ft.t.). Using these values with the appropriate signs for
the bending moments at the plastic hinges of the three mecha-—
nisms, we compute the remaining bending moments from the equa-
tions of equflibrium obtaining the entries in row M of Téble iII.
Since none of these exceeds the relevant fully plastic moment
in absolute value, the design (17) has the minimum structural
weight.

We conclude this introduction to limit analysis and design
with a brief history of the field. A vague bellef that a
structure cannot fail as long as thére exists a distribution
of Stressgs that are in equi;ibrium with the applied loads
and do nowhere exceed the st%ength of the material underlies
the methods of structural aﬁglféis that were in use long before
the advent of the theory of elasticity. For an unusually
articulate applipation of this principle the reader is referred
to a paper by Fourier [2]*.

» '
The author is indebted. to Dr. George Dantzig of RAND
for this reference. '
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With the development of the mathematical theory of elas—
ticity, this principle became discredited, and it was only in
the second decade of this century that Kazinczy [3] in Hungary
and Kist [4] in Holland pointed out that the ductility of struc—
tural steel enabled a continuous beam to adapt ltself to loads
far in excess of those under which the yleld limit was flrst
reached locally. The early theoretical and experimental work
in the new field remained restricted to continuous beams (see,
for instance, the book by Van Den :Broek [Sj, who coined the
term "limit design" for what 1is more accurately called limit
analysis). Rigid frames were first investigated from this
point of view Py Baker [6] , whose full-scale experiments con—
tributed much \to the acceptance of the method by structural
engineers. The fundamental theorems, reflecting the static
and kinematic points of view, were first rigorously established
by Greenberg and Prager [7] for beams and frames and soon
generalized to other types of structures by Prager [8]. The
use of a complete set of linearly independent collapse mechan—
isms was introduced by Neal and Symonds [9]. For comprehen—
sive :;presentations of theory and practice of limit analysis
from-._%the point of view of the structural engineer the reader
18 referred to ‘the texts of Baker, Horne, and Heyman [10],
Neal [11], and Heyman [1], which contain numerous further
references. |
1'1'he methods of limit design are more ::ecent and less well -

developed than those of 1'mit analysis. Heyman [12] outlined
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the static approach, while Foulkes [13] developed the kine—
matic approach and recognized the relation to linear program—
ming. Livesley [14] proposed a method of steepest descent
towards the structure of minimum weight and coded it for the
EDSAC at Cambridge Uni§ersity. For a particular example,
Prager [15] investigated the influence of the linearization

of the expression for the structural weight.

-
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