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SUMMARY 

"Limit Design" guides the structural engineer towards an 

economic design of structures that are made of ductile materials 

and have to carry specified loads. Prom the mathematical point 

of view, the problem can be reduced to one In linear programming, 

but even simple structures may lead to linear prograinmlng prob- 

lems of considerable size. A method of solution Is discussed 

that has been found efficient for structures of moderate com- 

plexity. A sketch of the historical development of limit analy— 

sis and design Is given. 
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LINEAR PROGRAMMING AND STRUCTURAL DESIGN 

II. Limit Design* 

William Prager 

In general terms, the problem discussed in the preceding 

lecture can be described as follows: given the geometry of a 

structure and the fully plastic moments of Its members, to find 

its carrying capacity for a given type of loading. This is 

known as the problem of "limit analysis." Today's lecture will 

be primarily concerned with the related but different problem 

of "limit design": given the geometry of a structure and the 

loads it has to carry, to choose the fully plastic moments of 

its members so aa to minimize the weight of the structure. 

Before entering on the discussion of limit design, let us 

review the method developed last time. Figure la shows a portal 

frame; the feet of the columns are build in, and the beam is 

rigidly Joined to the columns. The fully plastic moment of 

each column is MQ and that of the beam is 2MQ. For the type 

of loading indicated in the figure, we wish to determine the 

maximum load intensity that the frame can carry;. 
i 

The potentially dangerous cross sections of the frame are 

at the foot of each column, at the top of each column just below 

the Joint with the beam, and at the points of application of the 

loads. These cross sections are numbered 1 through 6 in Fig. la. 

Lecture delivered at RAND on July 11, 1957. 
Linear Programming and Structural Design, I. Limit Analysis, 

. The RAND Corporation, Paper P-1122, June 2b, 19^7.      ~~ 
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and the bending moments at these sections will be denoted by 

M, through M . These bending moments must satisfy three equa- 

tions of equilibrium, which may be established klnematlcally 

by considering the three "basic mechanisms" Indicated In Pigs, 

lb, 1c, and Id. The coefficients and right-hand sides of these 

equations are listed In rows (a) through (c) of Table 1,  bend- 

ing moments being considered positive when they tend to produce 

tensile stresses In the fibers bordering on the Interior of the 

frame. 

* 

TABLE I 

Ml t   M2 Mj «4 M5 Mb r.h.s. Pa/>10 

(b) -1 3 -2 0 0 0 2Pa 3.00 

(o) 0 0 -1 2 -1 0 2Pa 3.00 

(d) -1 0 1 0 -1 1 2Pa 2.00 

Vo -1 2.67 1 2 -1 1 — — 

(e) 0 3 -3 0 1 -1 0 — 

i*) -3 3 0 0 -2 2 oPa 1.67 

«i/Mo -1 1 '1 1.33 -1 1 — — 
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Table I contains all the information necessary for for— 

mulating the linear programming problem that furnishes the 

load carrying capacity of the fraune.    We may,  for instance, 

take the Equation  (b) as defining our objective function and 

obtain two subsidiary conditions for the unknown bending mo- 

ments by eliminating P from Equations  (b) and (d).     We thus 

obtain the following problem:    to maximize 

2Pa - -Mj + 3M2 - 2M5, (l). 

subject to the equations 

M1 - JMg + M5 + 2M4 -It - 0, (2) 

and the inequalities stipulating that M^ must not exceed 2MQ 

in absolute value while the other five bending moments must 

not exceed M0 in absolute value. 

If we have a computer code for linear programming with 

bounded variables, we can at this stage put the problem on 

the computer and have it compute the load carrying capacity of 

i the frame. In the present case, this would hardly be worth 
i • 

while because the problem is readily solved by the method 

developed in the last lecture. Considering in turn each of 

the mechanisms of Figs, lb through Id as a tentative collapse 

mechanism, we give the appropriate values to the bending mo- 

ments at the plastic hinges and compute Pa/M0 by applying the 

principle of virtual work; the results are indicated in the 

y 
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last column of Table I. The mechanism of Pig. Id Is found to 

give the lowest value, PS/MQ = 2,  the bending moments at the 

plastic hinges being M.» M,- » -M0 and M-, *« Mg = MQ. Inserting 

these values Into,Equations (b) and (c), we solve for M2 and 

Mh, the bending moments at the sections where the considered 

mechanism does not have plastic hinges. The row just below 

(d) in Table I lists the resulting dimensionless bending mo- 

ments M^MQ. AS Mp exceeds its upper bound MQ, we must super- 

impose, on the considered mechanism (Pig. Id), another mech- 

anism that has a positive hinge at 2 and no hinge at 4, and 

yields zero total work of the loads. This mechanism is, of 

course, a linear combination of the three basic mechanisms 

(Pigs, lb through Id). To within an irrelevant factor, the 

coefficients in this linear combination are determined by the 

following conditions: in the equation of equilibrium cor- 

responding to the desired mechanism, the coefficient of M2 

must be positive, while that of M^ and the right-hand side 

must vanish. A glance at Table I shows that the combination 

(b) — (d) satisfies these conditions. The resulting equation 

of equilibrium is given in row (e), and the corresponding 

mechanism is shown J.n Pig, le. Comparing the coefficients 

in the rows (d) and (e), we note that the smallest positive 

value X for which a coefficient in the combination (d) + X(e) 

vanishes is X » l/j. To avoid fractions, we consider the 

combination 3(d) + (e) which is given in row (f). The cor- 

responding value of Pa/M0 is 1.67 as indicated in the last 
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coluran of row (f). When the bending momenta are computed as 

before, the values In the last row of Table I are obtained. 

Since these are all within the bounds for the respective mo- 

ments, we have found the load carrying capacity of the frame 

to be P = 1.67 Mo/a. The corresponding collapse mechanism is 

shown in Pig. If. 

At this stage it seems appropriate to discuss several 

questions which, I am sure, have occurred to some of you. 

First of all, is this systematic approach really necessary, 

or would the collapse mechanism be obvious to an experienced 

analyst? For the simple problem considered here, one would 

certainly consider the mechanism of Pig. If as a likely collapse 

mechanism because it does not have plastic hinges in the rela- 

tively strong beam. Computing first the load intensity neces- 

sary to activate this mechanism, and then the bending moments 

at the sections 2 and 4 as before, one easily verifies that 

this is indeed a collapse mechanism of the frame. In more 

complex structures, however, the initial guess regarding the 

collapse mechanism is likely to prove erroneous; the systema- 

tic procedure described above will then lead to the correct 

mechanism. \ 

A question that forces Itself on anybody familiar with 

linear programming concerns "degeneracy." Described in struc- 

tural terms, degeneracy occurs when the mechanism obtained at 

a certain stage of our procedure has leas than the "regular" 
i - . 

number of plastic hinges. Por the frame of Pig. la, for 

instance, we have six possible locations of plastic hinges 
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and, after eliminating P between the three equilibrium con- 

ditions, two linear homogeneous equations for the bending mo- 

ments M- through Mü. These allow us to compute two bending 

moments, when the four others have been chosen in accordance 

with the relative rotations in the four plastic hinges of a 

tentative collapse mechanism. For the frame of Pig. la, the 

mechanisms in Figs. Id through If, which have four hinges, 

are therefore "regular," while those in Figs, lb and 1c, which 

have only three hinges, are "degenerate." 

In the theory of linear programming, degeneracy is es- 

sentially treated by slightly modifying the problem so as to 

avoid degeneracy in the modified problem. To show that a 

similar treatment of degeneracy may be possible in limit anal- 

ysis of structures, let us again consider the frame in Pig. la, 

assuming that the tentative collapse mechanism is chosen ac- 

cording to Pig. lb. The three hinges of this mechanism allow 

infinitesimal horizontal displacements of the cross sections 

of the left-hand column only because they lie on the same 

straight line. It is therefore natural to consider the frame 

of Pig. la as the limiting case of frames that have slight 

built-in kinks at 2 (Pig. 2). To avoid fractional values of 

linear or angular displacements, the depth of the kink is 

denoted by 4ea in Pig. 2. In Fig. lb, the segments 1, 2 and 

2, 3 of the left-hand column have rotated by the small amounts 

0 and 20 in the clockwise and counterclockwise senses, re- 

spectively. For the frame of Fig. 2, the' same rotations would 

produce a vertical downward displacement of point 3 equal to 
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12€ae, the horizontal displacement of this point being zero 

as In Pig. lb. To make this vertical displacement possible, 

we must insert an additional plastic hinge at either 4 or 5. 

The first choice would not alter the load intensity P ■ ^MQ/E 

needed to activate the mechanism, whereas the second choice 

lowers it to 3MC)/[(l-f-5€)a] . We therefore choose the additional 

hinge at 3, setting M. = M, « M,- = -MQ and fU « MQ. Proceeding 

as before, we are immediately led to the collapse mechanism 

of Pig. If. While it seems likely that degeneracy can always 

be treated in this fashion, no general proof of this seems to 

have been given so far. 

Finally, there is the question of whether it is realistic 

to restrict the  discussion to a single "type of loading." With 

reference to Pig. la, for instance, we might assume the vertical 

and horizontal loads to vary independently between given limits, 

and ask whether any of the resulting spates of loading over— 

taxes the frame. Denoting the horizontal load by P as before, 

and the vertical load by Q, we then have to consider all pos- 

sible collapse mechanisms and specify that for each of them 

the work dissipated in the plastic hinges should not be less 

than the work of the applied loads. Por the mechanism of 

Pig, Id, for instance, this condition provides the inequality 

2M0 > |Pa| , (4) 

where the absolute value has been used on the right-hand side 

because negative values of P, i.e., horizontal loads directed 
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towards the left In Pig.  1, may be admitted.    Using Pa/M0 and 

Qa/M0 as rectangular Cartesian coordinates of the "load point" 

in a "load plane," we see that  (*+)  restricts the load point 

to a strip that is centered at the origin.    Each potential 

collapse mechanism furnishes such a 8trip;  the polygon common 

to all strips   (Pig. 3) contains the load points corresponding 

to states of loading rfitnin the carrying capacity of the frame. 

On the other hand.,  the given ranges of variation of P and Q 

specify a rectangle in the load plane and are admissible only 

if this rectangle is contained within the polygon of Pig. 3. 

Let us now turn to the problem of limit design:    given 

the geometry of a structure and. the loads it has to carry, 

to determine'the fully plastic moments of its members so as 

to minimize its weight.    Por the treatment of this problem 

it is customary to assume that the weight per unit length of 

a structural member is proportional to its fully plastic mo- 

ment MQ.    This assumption greatly simplifies the analysis 

because it leads to a linear rather than a nonlinear programming 

problem.    Whether the assumption is reasonable in a particular 

case, depends on the range of cross-sectional shapes that are 

at the disposal of the designer.    If, for instance, all avail- 

able cross—sections are geometrically similar, the unit weight 
a/s 

is proportional to M0    , as a simple dimensional analysis will   • 

show.    Actually, the standard I sections are not strictly 

similar to each other, and the exponent 2/5 must be replaced 

by one closer to unity.    Por a more detailed discussion of 
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thla point, Heyman's [l]* book may be consulted. In the fol- 

lowing, the weight per unit length of a member will be taken 

äs proportional to its fully plastic moment. 

Figure 4a shows a beam on three supports subjected to 

specified vertical loads. The unknown fully plastic moments 

of the left— and right-hand spans will be denoted by M0 and 
* 

M0> respectively. Any plastic hinge at the central support 

will form just to the left or right of this support depending 
*    *   • 

on whether MQ < M0 or M0 < MQ. Since it is not known before- 

hand which of these inequalities applies, we must consider 
* 

the four potentially dangerous cross  sections marked 1 to 4 in 

Pig. 4a.    The equilibrium conditions for the bending moments 

M,  through M^ at these sections may be derived from the mechan- 

isms shown in Pigs. 4b through 4d.    The first two of these 

figures show the familiar "beam mechanisms," the last a "Joint 

mechanism:"    the infinitesimal length of beam between the 

sections 2 and 3 is tilted to produce finite rotations in the 

hinges 2 and 3 but only infinitesimal deflections.   The equi- 

librium conditions for the four bending moments are 

2M-  - M« - 30, (5) 
1 i 

- M5 + 3M4 - 20, (6) 

M2 - Mj - 0 (7) 

where the coefficients on the left-hand sides are dimension less, 

 1  
Numbers in square brackets refer to the Bibliography at 

the end of this report. 
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whlle the right-hand sides represent foot-tons. 

Considering a set of values M. through Mh that satisfy 

(5), (6), and (7), choose 

M0 - max (JMj, |M2|) (8) 

and 

M* = max (JMjl, |M^}). ^    (9) 

The beam with these fully plastic moments cannot fail under 

loads that have the same ratio as in Pig. ^a but lesser in- 

tensities. This beam therefore represents a feasible design, 

but does not necessarily minimize the weight, which is pro- 

portional to 

' W • 20M0 + 30M* . (10) 

Our problem is to minimize W as given by (10), where 

M0 and M0 are defined by (8) and (9) in terms of four bending 

moments that must satisfy (5) through (7). This can be for- 

mulated as a conventional problem in linear procTaraming by 

observing that (8) is equivalent to 

M0 ± Ml ^ 0' ; M0 ± M2 ^ 0' (11) 

I 
and that similar Inequalities may be used to replace (9).    It 

is worth noting, however, that even our extremely simple struc- 

tural problem leads to a linear programming problem involving 

6 unknowns subject to three equations and 8 inequalities. 

As is to be expected, this static formulation of the 
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problem of mimimum weight design has Its kinematic counterpart. 

The unknowns  In this are the fully plastic moments M0 and M0; 

the conditions which they must satisfy are derived from the 

principle that for any tentative collapse mechanism the work 

dissipated in the plastic hinges should not be less than the 

work done by the loads. 

For the beam in Fig. 4a all mechanisms can be considered 

as linear combinations of the basic mechanisms shown in Figs, 

^b through 4d.    A tentative collapse mechanism must have two 

of the four possible plastic hinges.inactive.    Table II shows 

the equations of equilibrium corresponding to the six potential 

collapse mechanisms;  the first three rows correspond to the 

mechanisms of Figs. 4b, Kc, and hd,  and the last three rows 

to combinations with two inactive hinges. 

TABLE II 

Ml «a M5 M4 ft.t. 

(b) 2 -1 0 0 50 

(0 1  0 0 -1 3 20 

|              (d) o 1 -1 0 0 

•    (e) - (b) + (d) 2 0 -1 "0 50 

(f) - (c) - (d) 0 -1 0 5 20 

(g) - (b) - (c) * (d) 2 0 0 -5 10 

fully plastic moment I f0 ^ g    1 '- 
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The hinge rotations listed in columns M. and M2 go with 

the fully plastic moment M0 and those in columns M, and M., 

with MQ as indicated at the bottom of Table II. Since the 

sign of the bending moment at a plastic hinge corresponds to 

that of the hinge rotation, the work dissipated in the hinges 

of, say, the left-hand span equals the product of M0 by the 

sum of the absolute values of the hinge rotations of this span. 

The mechanisms of Table II therefore yield the following in- 

equalities: 

5M0     > 50 ,   • (b) 

4M5 > 20 , (c) 

M0 + Mj 2 O.i (*) 

2M0 + Mj 2 50 , (e) 

M0 + 5Mj > 20 ■, (f) 

2MQ + 5M; 2 1° • (S) 

The problem of minimizing W as given by (10) subject to 

the inequalities (b) through (g) is again a problem in linear 

programming. It is convenient to interpret these inequalities 

geometrically by using M0 and N* as the rectangular Cartesian 

coordinates of the "design point" in the "design plane" (Pig. 

5). Each of the inequalities restricts the design point to a 

half-planej the "region of admissible designs" that is common 

to these half-planes is shaded in Fig. 5. According to (10), 

all design points that correspond to a given structural weight 

lie on a straight line, e.g., the dotted line in Fig. 5. Since 

this line does not contain a point of the shaded region, no 
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design of this structural weight can support the given loads. 

As the lines corresponding to various fixed values of W are 

parallel to each other, the desired design of minimum weight 

is obviously represented by the vertex V of the region of 

admissible designs. Since each of the sides through this vertex 

correspond to a collapse mechanism, the minimum weight design 

admits two competing collapse mechanisms. We observe that the 

number of competing collapse mechanisms equals the number of 

dimensions of our "design space." When n fully plastic moments 

are at the choice of the designer, the minimum weight design 

must admit at least n competing collapse mechanisms, but may 

have more than n in special cases. 
< 

Making ä  guess concerning the competing collapse mechan- 

isms for the minimum weight design, one may compute bending 

moments to ascertain whether this guess corresponds to a vertex 

of the region of admissible designs. If, for instance, we 

take (b) and (f) as competing mechanisms in our example, we 

find (in ft.t.) M0 ■ 10 and MQ « 5.55. The bending moments 

at the plastic hinges in either mechanism must then equal the 

appropriate fully plastic moments in absolute value and have 

the same signs as the hinge rotations. We thus have (ir ft.t.) 

Ml " ""2 " 10 and M4 " 3'Hi  equilibrium finally requires that 

M-x • -10, and this exceed the fully plastic moment MQ in 

absolute value. Accordingly, the assumed combination of col- 

lapse mechanisms does not correspond to a vertex of the region 

of admissible designs. Applying the same technique to the 
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combination of (c) and (e), we find (In ft.t.) M0 ■ 12.5 and 
« 

MQ » 5.0. The bending momenta with plastic hinges are M, ■ -12.5 

and M-x = -Viu  » 5*0, and equilibrium requires that M« » -5.0, 

which is less in absolute value than MQ. This shows that we 

now have a vertex of the region of admissible designs, but 

does not reveal whether we have attained the minimum weight. 

The computation of bending moments that are compatible 

with both collapse mechanisms incidentally yields the following 

result. If the competing mechanisms have a plastic hinge in 

common, their rotations at this hinge must have the same sign. 

Any possible linear combination of the Inequalities (c) 

and (e) restricts the design point to a half-plane that is 

bounded by ajline through V and contains the region of admis- 

sible designs. Since the line of min W is of this type, it 

must be possible to combine the inequalities (c) and (e) with 

positive factors in such a manner that the coefficients of 
* 

MQ and MQ in the resulting inequality coincide with those in 

the expression for W (Equation 10). As has Just been shown, 

the corresponding combination of the mechanisms (c) and (e) 

cannot bring about any partial or complete cancellation of 

rotations in the common hinge 3* Accordingly, the inequality 

obtained as a positive linear combination of the inequalities 

(c) and (e) directly expresses the fact that in the correspond- 

ing combination of the mechanisms (c) and (e) the work dis- 

sipated in the plastic hinges must not be smaller than the work 

done by the loads. The minimum weight design therefore admits . 

a collapse mechanism for which the sums of the absolute values 
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of the hinge rotations associated with each fully plastic mo- 

ment have the same ratios as the coefficients of these moments 

in the expression for the structural weight. In our example, 

this mechanism is given by 5(c) + 10(e)j it Involves the hinge 

rotations 20 at 1, —15 at },  and 15 at 4. 
k 

For the beam in Pig. 4 it was an easy matter to list all 

potential collapse mechanisms and the corresponding inequalities. 

For a more complex structure, however, this may be a formidable 

task. Once this is accomplished, the problem is readily set 

up as a problem in linear programming, which may be put on a 

computer. Unfortunately, no systematic method has as yet been 

discovered for reducing the labor of listing all potential col- 

lapse mechanisms. The criteria developed above, however, are 

useful aides in the search for the proper combination of mecha- 

nisms. To illustrate this, consider the two—storey frame of 

Fig, 6a. The feet of the columns are built in, and all Joints 

are rigid. There are 11 potentially dangerous cross sections, 

labelled 1 through 11 in Fig. 6a. The bending moments at these 

sections will be denoted by M1 through M^. Three fully plastic 

moments are at the choice of the designer: MQ for the columns 

of the first storey, MQ for the ceiling beam of this storey, 

and M^ for the columns and the ceiling beam of the second 

storey. Accordingly, we must look for three competing collapse 

mechanisms. Five basic mechanisms are shown—Figs, 6b through 

6f; the corresponding equations of equilibrium are listed in 

Table III. 
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The structural weight la proportional to 

W = 12M0 + 3MQ + 20MQ (12) 

The competing mechanisms are likely to include (b) and (c), 

the first because It determines the minimum fully plastic mo- 

ment of the upper storey, and the second because ltfrequlres 

a particularly large amount of work to be dissipated in the 

plastic hinges. The inequalities corresponding to these mecha- 

nisms are 

^MQ > 00 , (13) 

and 

t  2M0 + 4MQ + 2MQ > 320 . (14) 

As (d) furnishes the inequality 

4M^     > 140, (15) 

it would not be possible to obtain the coefficients in (12) by 

a positive linear combination of the coefficients in (13) 

through (15). Thus, if the competing collapse mechanisms in- 

clude (b) and (c), they cannot also Include (d). In fact, the 

third competing collapse mechanism is likely to be a combination 

of (c) and (f), because this allows us to increase the co- 

efficient of M0 at the expense of that of Ml and again requires 

a large dissipation of work. We try (g) « (c) -2(f) (see Table 

III), obtaining the Inequality ^ 

4M0 + 2MQ + 4MQ - 320. (16) 
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The coefficients in (13), (1^), and (16) can be comblned with 

the positive factors 2,  2/},  and 8/3 to yield the coefficients 

in (12). The mechanisms (b), (c), and (g) thus are admissible 

as competing collapse mechanisms. To investigate whether they 

yield the solution of our problem, we solve the equations ob- 

tained by using the equality sign in (13), (l^), and (lo). 
t 

Thus, 

M0 - 38.3, MQ - 53.3, MQ = 15.0 (17) 

(in ft.t.). Using these values with the appropriate signs for 

the bending moments at the plastic hinges of the three mecha- 

nisms, we compute the remaining bending moments from the equa— 

tions of equilibrium obtaining the entries in row M of Table III 

Since none of these exceeds the relevant fully plastic moment 

in absolute value, the design (17) has the minimum structural 

weight. 

We conclude this introduction to limit analysis and design 

with a brief history of the field. A vague belief that a 

structure cannot fail as long as there exists a distribution 

of stresses that are In equilibrium with the applied loads 

and do nowhere exceed the strength of the material underlies 

the methods of structural analysis that were in use long before 

the advent of the theory of elasticity. For an unusually 

articulate application of this principle the reader is referred 

to a paper by Fourier [2]*. ; 
* 
The author is Indebted to Dr. George Dantzlg of RAND 

for this reference. 
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Wlth the development of the mathematical theory of elas- 

ticity, this principle became discredited, and it was only in 

the second decade of this century that Kazinczy [5] in Hungary 

and Kist [4] in Holland pointed out that the ductility of struc- 

tural steel enabled a continuous beam to adapt itself to loads 

far in excess of those under which the yield limit was first 

reached locally.  The early theoretical and experimental work 

in the new field remained restricted to continuous beams (see, 

for instance, the book by Van Den Broek [5],  who coined the 

term "limit design" for what is more 'accurately called limit 

analysis). Rigid frames were first investigated from this 

point of view by Baker [6], whose full—scale experiments con- 
v 

tributed much to the acceptance of the method by structural 

engineers. The fundamental theorems, reflecting the static 

and kinematic points of vlev^ were first rigorously established 

by Oreenberg and Prager [7] for beams and frames and soon 

generalized to other types of structures by Prager [8] . The 

use of a complete set of linearly Independent collapse mechan- 

isms was introduced by Neal and Symonds [9] . For comprehen- 

sive presentations of theory and practice of limit analysis 
i 

fron 'the point of view of the structural engineer the reader 

Is referred to the texts of Baker, Home, and Heyman [lO], 

Neal [ll], and Heyman [l], which contain numerous further 

references. 

The methods of limit design are more recent and less weir- 

developed than those of limit analysis. Heyman [12] outlined 
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the static approach, while Foulkes [iJJ developed the kine- 

matic approach and recognized the relation to linear program- 

ming. Livesley [l^] proposed a method of steepest descent 

towards the structure of minimum weight and coded it for the 

EDSAC at Cambridge University. For a particular example. 

Prager [l5] investigated the influence of the linearization 
< 

of the expression for the structural weight. 

i 
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