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Limit Analysis provides the structural engineer with a 

realistic estimate of the load carrying capacities of 

structures that are made of ductile materials. Prom the 

mathematical point of view, the problem of limit analysis 

is one of linear programming. The basic concepts are 

presented and a practical method of solution is discussed. 

This is essentially the "simplex method with prices," but 

the various steps are given mechanical interpretations 

which enable the experienced analyst to capitalize on his 

intuitive understanding of structural behavior. ( ^ 
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"Llralt Analysis" provides the structural engineer with a 

realistic estimate of the load carrying capacities of 

structures that are made of ductile materials. Prom the 

mathematical point of view, the problem of limit analysis 

Is one of linear programming. The basic concepts are 

presented and a practical method of solution Is discussed. 

This Is essentially the "simplex method with prices," but 

the various steps are given mechanical Interpretations 

which enable the experienced analyst to capitalize on his 

intuitive understanding of structural behavior. 
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LINEAR PROORAWUNO AND STRUCTURAL DESIGN 

I. Liait Analysis* 

William Prager 

The title of this lecture is bound to attract a hetero¬ 

geneous audience, consisting of analysts working in linear 

programming and engineers interested in structural design, 

each group having little background in the other's field. 

Accordingly, the speaker's first task is to establish a 

common ground from which the expedition may start without 

risking to lose half of its members at the outset. In the 

present case, it seems appropriate to choose this ground in 

the field of structures. 

Figure 1 shows a simply supported, horizontal beam with 

loads P and Q that act in the vertical plane through the 

axis of the beam. The "fixed support" at A prevents any 

horizontal or vertical displacement but allows rotation of 

this end; the "movable support" at B prevents any vertical 

displacement but allows rotation and horizontal displacement. 

In the figure, the beam is represented by a line without 

width or depth; in reality, the beam has finite cross-sectional 

dimensions, which are, however, supposed to be small compared 

tr its length. Strictly speaking, the line AB in Pig. l is 

the axis of the beam, which is supposed to contain the 

centroids of all cross sections. 

-T“- 

Lecture delivered at RAND on July 1, 1957. 



P-1122 
6-26-57 

-2— 

Consider a generic cross section of the beam, for 

instance the section I In Fig. 1. The stresses transmitted 

across this section by the left-hand part of the beam onto 

the right-hand part are statically equivalent (,'equlpollent,, ) 

to a horizontal and a vertical force through the centroid of 

the cross section I and a couple acting In the vertical plaine 

through the axis of the beam. These "stress resultants'1 are 

respectively named "axial force," "shear force," and "bending 

moment." The strength of a beam can be Judged from the 

bending moments; axial and shear forces play secondary roles 

In this respect. (A structural element for which this state¬ 

ment does not hold true would not be called a beam.) 

The beam In Fig. 1 Is "statically determinate," l.e., 

the bending moment at any cross section can be determined 

from equilibrium considerations alone. For example, to find 

the bending moment at the section I, one may first determine 

the horizontal reaction at A and the vertical reactions at 

A and B from the three equations establishing the equilibrium 

between these unknown reactions and the given loads. The 

bending moment at I is then found by considering only the 

loads and reactions acting to the left of the section I and 

summing their moments with respect to its centroid. This 

static way of confuting the bending moment makes it obvious 

that, for any loadfree segment of the beam, the bending 

moment varies linearly with the distance measured along the 

beam. Accordingly, the bending moment cannot assume an 

» 
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extreae value at an interior point of a loadfree segment. 

Tor our purposes, the following kinematic way of finding 

the required bending moment is of interest. Inserting a 

hinge into the beam at I and treating as rigid the segments 

into which this hinge divides the beam, we consider an 

infinitesimal displacement of the system (indicated by dotted 

lines in Fig. 2). According to the principle of virtual 

work, equilibrium requires that the work of the given loads 

on the displacements of their points of application equal 

the work of the unknown bending moment on the relative 

rotation of the two segments Joined by the hinge. This 

kinematic procedure has the advantage of furnishing directly 

the desired bending moment without requiring the preliminary 

determination of the reactions at A. 

The "design" of our statically determinate beam is 

straightforward. According to the remark made above, the 

bending moment assumes its maximum value at one of the points 

of application of the loads P and Q. We therefore determine 

the bending moments at these two points and choose the cross 

section of the beam so that it can support the greater one 

of these bending moments with the desired margin of safety. 

We next consider the "statically indeterminate" beam 

obtained from that in Pig. 2 by "building in" the end A, 

i.e., by preventing any rotation there as well as any 

horizontal or vertical displacement (Pig. 3). This implies 

that the reactions at A comprise a "clamping couple" in 
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addition to horizontal and vertical forces. Since the 

vertical reaction at B must be added to these three reactions 

a1; A, the three equations of equilibrium do no longer suffice 

for the determination of the four reactions. The best that 

purely statical considerations allow us to do, is to express 

the bending moment at a generic cross section, say I, In 

terms of the loads and the unknown clamping couple at A. 

This expression can be obtained kinematically by Inserting 

hinges at A and I and using the principle of virtual work. 

To resolve this indeterminacy, the deflections of the 

beam (shown out of scale in Pig. 3) must be considered, and 

the condition must be used that the deformed center line of 

the beam has a horizontal tangent at the clamped end A. The 

usual "elastic" analysis of beam deflections is based on the 

assumption that the curvature K of the deformed center line 

at a generic cross section Is proportional to the bending 

moment M there. Por a typical structural beam of mild steel, 

however, the diagram of bending moment versus curvature has 

more nearly the shape indicated in Pig. 4a, the essential 

feature being the existence of a critical value Mq of |N|; 

when this value Is reached, a large Increase in |k| requires 

but an Insignificant Increase in |M|. 

An analysis based on the diagram in Pig. 4a would be 

extremely cumbersome; we therefore Idealize this diagram 

as shown in Pig. 4b. Described In terms of the behavior of 

a beam element, this diagram stipulates rigidity for 
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|M¡ < Mq and unrestricted bending for jM| - Mq, while it 

rules out bending moments that exceed Mq in absolute value. 

As a rule, the critical absolute value of the bending moment 

is only reached at discrete cross sections. A typical 

deformation of the beam is therefore due to localized bending 

at these sections, which are called "plastic hinges," and 

the beam segments between adjacent plastic hinges remain 

straight. 

To illustrate the simplification of analysis that is 

made possible by this idealization of the actual beam 

behavior, let us consider the beam shown in Pig. 5a. The 

bending moment at the support B vanishes, and the bending 

moments M^, Mq, and Mq at the sections A, C, and D satisfy 

- 4 Pa d) -2 MA + 3 Mç 

2 Ma - 7 Mc + 8 Mj, = 0. (2) 

Equation (l) is obtained by inserting hinges into the beam 

at A and C and applying the principle of virtual work to the 
< 

infinitesimal deformation indicated in Pig. 5b. Equation (2) 

is obtained in a similar manner, except that three hinges are 

now used, the displacements of C and D being chosen so that 

the combined work of the loads vanishes. Equations (1) and 

(2) are equations of equilibrium for the bending moments at 

A, C, and D. There cannot be any equation of equilibrium for 

these moments that is linearly Independent of (1) and (2), 
• 
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because three linearly Independent equations of equilibrium 

would furnish these bending moments In contradiction to the 

fact that the beam Is statically Indeterminate. 

Assuming the beam to have a uniform cross section of the 

given "fully plastic moment" Mq, we now propose to determine ' 

Ita "load carrying capacity" for the considered type of 

loading. In mathematical terras, we propose to determine MA, 

Mc, and so as to maximize P as given by (l) subject to the 

condition (2) and the Inequalities 

(3) 

(“t) 

(5) 

This Is a problem In linear programming. To discuss Its 

solution geometrically, we use MA/MQ and Mc/fo0 as rectangular 

Cartesian coordinates in a "stress "lane" (Pig. 6). As (2) 

stress plane ("stress point") represents a set of values MA, 

beam. Por a fixed value of Pa/M^, Equation (1) specifies 

a straight line (e.g., the dashed ]ine in Fig. 6) containing 

all stress points that are compatible with this value of 

ps/Xq. As P Increases, this line undergoes a translation 

towaras the left. 

Each of the Inequalities (3) and (4) restricts the stress 
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polnt to a strip that la centered at the origin, and the same 

remark applies to the inequality obtained by substituting Mp 

from (2) into (5)* The hexagon common to these three strips 

is shown in Pig. 6. The vertex V of this hexagon obviously 

corresponds to the largest possible value of P. Since this 

vertex is the intersection of the sides corresponding to 

«A - -«o (6) 

and 

«D ” "O’ (7) 

the load carrying capacity of the beam is reached when plastic 

hinges form at A and D. To compute the loau carrying capacity, 

we substitute (6) and (7) into (l) and (2), and eliminate It,. 

Thus, 

max P = 8 1^/(78). (8) 

The preceding geometrical solution of our problem relied 

heavily on the fact that the bending moment distribution could 

be specified by two independent bending moments ("a and 

Whenever this is the case, a two-dimensional "stress space" 

can be used. The stress point is then restricted to the 

region common tu several strips which all contain the origin 

and therefore have a convex polygon as their "intersection." 

For the maximum load intensity, the stress point falls into a 

vertex, l.e., lies on two .lides of the polygon. Accordingly, 

« 
In the exceptional case where the line corresponding to 

max P coincides with a side of the polygon, we may still take 
the stress point at one of the vertices on this side. 
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two plastic hinges form, when the load carrying capacity is 

reached. This qualitative discussion is readily generalized to 

n independent bending moments. An n-dimensional stress space 

is then appropriate. The stress point is restricted to a 

convex polyhedron; for the maximum load intensity, it falls 

into a vector which, in general, lies on n faces of this 

polyhedron, but may exceptionally be the intersection of more 

than n faces. Thus, n plastic hinges form when the load 

carrying capacity is reached, but more plastic hinges may form 

in exceptional circumstances. 

For n =* 2 the relevant vertex can be found by drawing the 

polygon and lines of constant P; for n > 2, however, this 

geometric procedure must be replaced by an algebraic one, for 

instance the "simplex method" of linear programming. Inter¬ 

preted in the geometric terms appropriate to Pig. 6, this 

purely algebraic method starts at the origin 0 and proceeds 

from there in a sequence of steps to the vertex V, each step 

resulting in an Increase of P. The first step follows a 

coordinate axis and leads to a point on a side of the polygon, 

say T. The next step follows this side in the direction of 

increasing values of P to the vertex U, etc. 

It will be instructive to show how this geometrical 

program is carried out algebraically, even though no such 

formal procedure it needed to solve our simple problem. The 

origin 0 corresponds to MA » Mc = 0, and hence 1¾ - 0 by (2). 

These values of the three bending moments satisfy the 
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Inequalltles (3) through (5) and furnish P ■ 0 by (1). Since 

we wish to maximize P, the signs In (l) Indicate that we should 

Increase and decrease Let us first Increase Mç, 

keeping MA » 0. Equation (2) shows that ^-7^/8 when Mc 

reaches its upper bound Mq. Note that this stage with * 0, 

Mc =* Mq corresponds to the point T In Pig. 6. We next decrease 

Ha, keeping Mc - MQ. Equation (2) shows that reaches its 

upper bound M0 when MA - (point U In Pig. 6). At this 

stage Mq and being at their upper bounds cannot be Increased 

any further. To see what effect a decrease of these moments 

has on P, we eliminate MA from (1) and (2), obtaining 

^ Mc + 8 1¾ = 4 Pa* (9) 

The signs In (9) show that an Increase ln P requires a decrease 

ln M«, which Is admissible, or an Increase In Mp, which Is not 

possible as Is already at Its upper bound. Equation (2) 

shows that MA reaches Its lower bound -Mq when Mc = 6 Mq / 7 

(point V In Pig. 6). In the next step, MA being at Its lower 

bound could only be Increased while could only be decreased. 

To ascertain the Influence of these changes on P, we eliminate 

H« from (1) and (2), obtaining 

-2 MA ♦ 6 Wd ” ? Pa- (1°) 

The signs In (10) Indicate that any admissible changes of 

and would decrease P We have therefore reached the 

maximum of P, which Is readily computed by substituting 
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ma "-«o and "d - "o into (10); the result agrees with (8). 

The preceding analysis may be simplified by the following 

mechanical argument. Whei. the point U is reached, Mç and 

are at their upper bounds Mq, suggesting plastic hinges at C 

and D. If hinges are inserted at these sections and the system 

is given an infinitesimal displacement in which the loads do 

positive work (Pig. 7a), the hinge rotations at C and D 

correspond to negative and positive bending moments, respectively. 

While the hinge rotation at D agrees with the sign of - Mq, 

that at C is in contradiction with the sign of Mc » Mq. This 

Indicates that Mc should be decreased, while 

at the value MQ. Tais means that the plastic hinge at D should 

be maintained, but that at C should be replaced by one at some 

other section, which in the present example can only be A. 

Figure 7b indicates the corresponding displacements, which 

have again been chosen so as to make the work of the loads 

positive. The signs of the hinge rotations in Pig. 7b suggest 

Ma * -Mq and = Hq. Since Equation (2) then furnishes 

"c - 6 "o /7# we have found bending moments that satisfy the 

equation of equilibrium (2) do not exceed the bounds set by 

(3) through (5)» and cannot be changed within these limitations 

so as to increase P. Figure 7b obviously shows the type of 

deformation that occurs when the load carrying capacity of 

the beam is reached; this is often referred to as the "collapse 

mechanism" of the beam. 

Mp is maintained 
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While we have a unique collapse mechanism in the present 

example, there may be more than one collapse mechanism in 

special cases. If, for instance, the line for max P in Pig. 6 

had coincided with the side UV of the polygon, the collapse 

mechanisms represented by the vertices U and V would have been 

possible as well as any linear positive combination of these 

collapse mechanisms. Note, however, the load carrying capacity 

has a unique value even if there is a multiplicity of collapse 

mechanisms. 

The mechanical Interpretation of the simplex method 

suggests an alternative procedure. Assuming a collapse 

mechanism, we give to the bending moments at the plastic 

hinges the absolute value Mq and the signs indicated by the 

hinge rotations and apply the principle of virtual work. Por 

the mechanism in Pig. 5b, for Instance, we choose » -Mq» 

Mc « Mq and obtain 

P » 5 Mo/(4a). (ll) 

Prom the chosen values of MA and Mq, we now determine Mq by 

means of the equation of equilibrium (2); thus 

Mq - 9 Mq/8. (12) 

If this value of Kq had been within the bounds for this bending 

moment, the assumed collapse mechanism would have been correct 

and (11) would give the load carrying capacity of the beam. 

As the right-hand side of (12) exceeds the bounds for Mq, the 
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load specified by (11) exceeds the load carrying capacity of 

the beam, and a plastic hinge must be introduced at D. One 

way of doing this is to superimpose a suitable multiple of the 

deflections in Pig. 5c on those in Pig. 51• Letting the 

multiplier X applied to the deflections of Pig. 5c grow 

gradually starting from zero, we observe that the hinge at C 

will close up first, at X * 3/7, whereas the hinge at A would 

close up only at X * 1. Using X « 3/7, we obtr'.n the collapse 

mechanism indicated in Pig. 7c, and this yields the load 

carrying capacity as before. 

With the upper bound (11) there is easil}; associated a 

lower bound for the load carrying capacity. Indeed, multiplying 

the load (11) and the corresponding bending moments by the 

common factor 6/9, we obtain a reduced load and reduced bending 

moments that satisfy (l) through (5)- The reduced load 

P * (8/9) 
5 M0 

TiT 

10 Mq 

~9ã~ 
(13) 

therefore cannot exceed the load carrying capacity of the beam. 

This way of bounding the capacity from above and below is 

particularly useful because it allows the analyst to stop the 

procedure when the bounds are sufficiently close for practical 

purposes. 

Note that the preceding method mixes statical and 

kinematical arguments. It is possible, however, to follow 

purely kinematical lines because any load intensity obtained 

by such steps as led to (11) is necessarily an upper bound 
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for the load carrying capacity- Indeed, If all bending moments 

are within their bounds, the assumed mechanism Is a collapse 

mechanism and yields the load carrying capacity; If, on the 

other hand, some of the moments exceed their bounds, the 

mechanism furnishes a load Intensity In excess of the capacity 

of the beam. Thus, the load carrying capacity Is the smallest 

load Intensity that can be obtained by assuming a collapse 

mechanism (l.e., two plastic hinges) and applying the principle 

of virtual work. This klnematical minimum characterization of 

the load carrying capacity Is the "dual" to the static maximum 

characterization developed above. 

The example used throughout this lecture had to be 

extremely simple so that the basic Ideas would not be obscured 

by a mass of detail. On account of Its very simplicity, this 

example necessarily falls to bring out the power of the method 

discussed today. At the beginning of the next lecture, we 

shall consider a somewhat more complex example, as both a more 

realistic Illustration and a recapitulation of this method. 

A brief survey of the development of the concepts and methods 

of limit analysis and design will be given at the end of the 

second lecture. 

*Llnear Programming and Structural Design, II- Limit Design^ 

The RAND Corporation, Paper P-1123, July 11, 1957- 
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Fig 3 
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Fig. 5 



F-1122 
b—26-S7 

-lb- 

ma/m0 

Fig 7 
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