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SUMMARY 

A simplex computation for an arc-chain formulation of 

the maximal multl—commodity network flow problem is proposed. 

Since the number of variables In thlt> formulation Is too 

larp;e to be dealt with explicitly, the computation treats 

non-basic variables impllclfy by replacing; the usual method 

of determlnlno; a vector to enter the basis with several 

applications of a combinatorial algorithm for finding a 

shortest chain Joining a pair of points in a network. 
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A 3U00ESTED COMPUTATION FOR 
MAXIMAL MULTI-COMMODITY NETWORK PLOWS 

Introduction 

A problem of some Importance In applications of linear 

programming Is the determination of maximal multi-commodity 

flows In networks. For example, some of the linear programming 

proolems which have been proposed re cently by Juncosa and 

Kalaba In their studies of communication networks [s] can be 

cast In this form. Straightforward application of the simplex 

method to such problems Is usually not feasible, since even 

small networks may generate linear programs which are too large 

for present machine capacity. What Is needed are specialized 

computing schemes that take advantage of the structure of such 

problems. For the single commodity case, various easy compu- 

tations are known [1#3JCII but the nmltl-commodlty problem has 

remained relatively unexplored. 

Consideration of simple examples makes It appear that the 

multl-commodlty flow problem Is considerably more complex than 

the single commodity one. Certainly the nice combinatorial 

features of the single commodity case are lost In the generali- 

zation - simplex bases (for any formulation of the problem 

known to us) are not triangular, hence addition and subtraction 

do not suffice to solve such problems by the simplex method, 

the max flow mln cut theorem, true for single commodity net- 

works. Is false [$] ,  and no simple-minded modification of the 

labeling process [V| seems to work. 
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The purpose of this note Is to suggest a computation which 

makes some use of the structure of one formulation of the multi- 

commodity problem within the framework of a simplex computation. 

Por this particular formulation, the matrix of the linear pro- 

gram Is the Incidence matrix of arcs vs. all chains Joining 

sources and sinks for the various commodities, and thus the 

number of variables Is too large to be dealt with explicitly. 

The suggested computation treats non-basic variables Implicitly 

by replacing the "pricing"operation of the simplex method (i.e. 

the determination of a vector to enter the basis) with several 

applications of a combinatorial algorithm for finding a shortest 

chain Joining a pair of points In i network. 

1. Arc-chain Formulation 

Let A., •••»A  be a list of the arcs of the network, 

C., ..., C  a list of all chains that Join, for the various 

commodities, all the sources for a commodity with all sinks for 

the same commodity, and let A - (a  ) be the m x n Incidence 

matrix of arcs vs. commodity chains: 

1 If C  contains A , 

10 otherwise. 

Thus, for example. If the network Is that of Pig. 1, with sources 

?,, P«,  sink P  for one commodity, and source Pj.,  sink P, 

for a second commodity, the matrix A la as shown In Pig. 2. 
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Plg.  1 

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10    Cll  C12 C13 ClJ| C15 

l6  »- 

1 1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1    1 1 1 1 1 

1 1 1 1 1 1 

Commodity 1 Commodity 2 

ng, 2 

If we let x,, 8 ■ 1, ...» n, denote the amount of s 

commodity flow along C8, and br the flow capacity of A , 

then the multi-commodity maximal flow probiem Is represented 

by the linear program: 
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n 
(2)      maximize  J x«i 

sti s 

subject to the constraints 

n 
(3)      5a^x- ♦ x«^ - b^ 

8> 
A rs"s  "n+r  "r' 

xl' •••' xn+r ^ 0• 

The assumption In (2) that commodities are valued equally Is 

not essential to the method we propose, as will be clear from 

our discussion In the following section. Another thing we wish 

to point out Is that It is immaterial whether the problem 

Involves directed or undirected arcs. Thus, for example, if 

there are "one-way streets," or if, in a communication network, 

say, it is desired to place an upper bound on the number of 

messages that can be transmitted from P,  and P., and an 

upper bound on the messages that can be sent from P. to P^, 

one considers two arcs, one from P.  to P., the other from 

P. to P., and directed chains from sources to sinks. 

Since the number of chains is usually very large in 

practical applications, the arc-chain formulation of the 

problem might seem to be Impossible to deal with computationally 

Indeed, the enumeration of all chains from commodity sources to 

sinks in a network of moderate size would be a lengthy task, to 

say the least. Fortunately, there is no need to write down the 

entire matrix A, since the selection of a variable entering 

the basic set at any stage of the simplex computation (or the 
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recognltlon that a basis is optimal) can be accomplished 

without explicit knowledge of the non-basic column vectors of 

A. All we need Is the basis B ■ (brj) (or it8 Inverse), a 

square submatrlx whose order Is the number m of arcs In the 

network, to compute the simplex multipliers a (r ■ l,...,m) 

satisfying, for J ■ s,, 

(»)    X"^ ■ 
We can then find a vector to bring Into the basis (or prove 

that the current basis Is optimal) by the method of the next 

section. Once such a vector has been found, determination of 

the vector leaving the basis Is accomplished In the usual way. 

2. A Shortest Chain Algorithm 

Suppose we have computed the a  In (4) corresponding to 

a particular basis B. If some a  Is negative, then the 

variable x,.... may be Introduced Into the basic set with nxr 

possibly an Increase In the form (2), that Is, the unit vector 

having 1 In the r-th position, zeros elsewhere, can be brought 

Into the basis. (It may be that this vector also represents a 

one-arc chain for some commodity; In this case, a bigger Increase 

In (2) might result, of course, by taking the latter Interpre- 

tation.) 

Assume, therefore, that a stage has been reached In the 

computation where all a  are non-negative.  In this case, the 

algorithm described below, which makes no use of the full 
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Incldence matrix A, can be used either to locate a column 

vector of A (i.e. a commodity chain in the network), that may 

be brought into the basis, or to prove that the current basis 

is optimal. 

Let us interpret the a  as lengths of the arcs. We wish 

to find a chain C . if one exists, whose length s 

m 

ti v  r8 

is less than one, the coefficient of x, in (2). Thus, it 

suffices to locate, for each commodity, a shortest chain from 

the commodity sources to its sinks.  If each of the chains thus 

selected has length at least one, the basis is optimal. Other- 

wise, a column vector of A corresponding to one of these 

chains may be introduced into the basis. 

The problem of locating a shortest chain from one set of 

nodes to another set of nodes in a network can be reduced to a 

standard transshipment problem [jo] , and may consequently be 

solved in various simple ways; see [2]  and [6], for example. 

The algorithm we describe is that of [2j .  (In [2], the problem 

is considered to be that of finding a shortest chain from one 

node to another; to reduce our problem to this one, simply Join 

each node of the first set to a new node by an arc of length 

zero, and similarly for the other Pet. We shall give a des- 

cription which does not Involve this device explicitly, howevei.) 

Let the set of sources for one commodity be S,  the sinks 

for the commodity T,  and suppose the noder> of the network are 
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P,, ..., P«. Let i-. denote the length of the arc joining 

P. and P., I.e. If the arc A  joining P. . and P. corres- 

ponds to the simplex multiplier a , set ^11 * ar- (^ arcs 

are directed, then we let i.. denote the multiplier corres- 

ponding to the arc from P. to P., hence In this case we may 

have i.. / i.., whereas In the undirected case, I.. ■ i«*») 

Initially assign to each node P. a number r. as follows: 

[0 for P. «s- S 
wim s 'oo otherwise. 

Now scan the network for an arc P.P. such that 

Replace T. by T4 + J«« lf auch ***  arc i8 found. Continue 

this process. Eventually no such arcs can be found; then the 

number ir. represents the length of a shortest chain from S 

to P., for all 1. In particular, the smallest ▼., for 

P. ^ T, Is the length of a shortest chain from S to T. Let 

T.  be the smallest such. To find a chain from S to T of 

length ir. , look for an arc P.P^ such that v.  •«• i.. ■ ir. , 

then search for an arc P.P. such that T. ♦ i.. ■ ir., and so 

on. Eventually a node of S Is reached, and the desired chain 

has been traced out (in reverse). 

If In the process of locating shortest chains from commodity 

sources to sinks, for the various commodities, one Is found of 

length less than one, we recommend that the corresponding column 
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vector of A be Introduced Into the basis Immediately, rather 

than repeating the shortest chain algorithm a number of times 

In order to use the usual criterion for selection of a vector 

to enter the basis. 

We point out that the reason for getting rid of negative 

multipliers a before using the shortest chain algorithm Is 

that the algorithm may not work If arcs have negative lengths. 

To start the simplex computation, one can of course begin 

with the basic variables 3c +1* •••! xn+r» corresponding to 

the zero  flow. 

3. Concluding Remarks 

Except for hand computation of a few small problems, we 

have no computational experience with the proposed method. 

Whether the method Is practicable for a problem Involving, say, 

30 nodes, 100 arcs, and 20 commodity source-elnk sets 

S^T.,..., ^20'^20'    ls a cluestion ^hlch can be settled only 

by experimentation. It would certainly be more practicable In 

this case tl an straightforward application of the simplex 

method to a node-arc formulation of the problem, since In the 

latter formulation there would be roughly HOC equations In 

2100 variables, and hence the basis matrices would be much too 

large, whereas In the suggested method, the basis matrices 

would be 100 x 100, and at most 20 applications of the shortest 

chain algorithm would be necessary on each simplex Iteration. How 

many simplex Iterations might be required Is another matter, 

though. The Incidence matrix A for such a problem could have 
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many thousands of columns. On the other hand, there would 

probably be many column vectors of A dominated by others. In 

the sense that, for a given commodity (or for different com- 

modities In the equal value case). If one chain C Is a subset 

of another chain C, then C can be Ignored. (For Instance, 

the chain C, of Pig. 2  dominates Co and Cg.) The shortest 

chain method takes care of such dominances automatically. 

A more serious consideration Is how to handle the case of 

limited supplies of commodities in such a problem. For example, 

suppose that in the two commodity maximal flow problem corres- 

ponding to the matrix of Fig. 2, there is an amount a, of 

commodity 1 at P,, an amount a*    of commodity 1 at P2, and 

an amount a. of commodity 2 at Pj.. We can reduce this to a 

problem of the same type as before by introducing three new 

directed arcs and nodes as follows: AJ from ?\    to P,  with 

capacity a,. A» from PI to P« with capacity a«, and 

AJ from P^ to P^ with capacity a^. We then take P^Pp 

as sources for commodity 1, and PJ as the source for commodity 

2, However, in the hypothesized large network with 20 commodities, 
20 

the mmber of such new arcs would be  5 "4» where n. is the 
1-1 1        1 

number of nodes in S., and since each new arc Increases the 

size of basis matrices by one, this might take the problem out 

of range of present computing machines. 
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