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SUMMARY

In this paper ve introduce a nev method of treating problems involving
randam walk processes, based upon the principle of invariant imbedding
vhich wve have introduced and applied in previous papers. Since scattering
processes can often be formulated in terms of random walk, we have a

nev method of treating scattering processes.
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NANDOM WALK, SCATTERING AND INVARIANT IMPEDDING—I:
ON“~DIMENSIONAL DISCRETE CASE

1. INTRODUZTION

It is well “nown tiat a large varlety of important
pt:ysical processes can te foimulated in terms of random walk,
cf. ClandrasckkarF. In particula:», multiple scatterine may te
discussed in these terms, cf. Wigner9.

In a sequence of papers, 1, 2.5, 4

we r.ave introduced
and presented applications of a general principle of invariance
wrich we have called the "principle of invarlant imteddin=".
Tnis 1s a simultaneous distillation and extension of tie
various invariance principles used Ly Crandrasekhar 1in his
book6, where references to earlier uses ty Amtarzumian are
given., In tiis paper we wish to present some further appli-
cations of ttis {undamental approach, turning ou: attention
now to the fields of random walk processes and scatterinn.

In order to 1llustrate the underlying ideas as clearly
as possible, unhampered !ty purely technical detail, we stall
conside: two one—dirnensional discrete processes. In su!sequent
papers, we siall apply tre same metrodology to :orresponding
prot:lems for multi-—dimensional reslons and Lo ~ontinuocus
versions. Since continuous versions of 'andomr walk pro-rsses
lead to the *eat equation and tte potential equation, we are
led via t!1s route o a new analyti:- treatment of these

classical equations.

Finally, let us note that as 1In Cland:raselti.ar's work on
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radiative transfer , these principles of invariance give rise

to new metiods of computational solution.

2. INHOMOGENEOUS RANDOM WALK WITH TWO ARSOXRING RARRIERS

Consider a stochastic process in whilch a moving particle

can occupy any one of the lattice points on the line sezment
fa,v],

b o -
! g

|
i
b

k=a+l1,2+2, ..., ' -1, If tie particle is at k at
any time t, with probability p(k) 1t will te at k =1
at time t + 1, and with probability q(k) 1t will be at
k+1 at time ¢t + 1.

We wish to determine the protability that a particle
starting at a point x at t = O will land at tre point a
before landing at U, This is an inhomogeneous version of the
"gambler's ruin" protlem.

The classical treatment of p:rol lems of this nature, cf.
Chandrasekhars, Uspensky7, regards a and b as fixed
quantities and x a8 a varia‘le quantity. The problems are
then resolved Yy means of recurrence relations involving a
function u(k). Anothrer approach to Questions of this type,
also keeping a and b fixed, 18 due to Halde, using his
"fundamental lemma." Protlems of this nature arise frequently
in the theory of sequent!al analysis.

Here we wish to present an alternative treatment which
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regards x and b as fixed and a as variatle. It will be

based upon the invariance principles mentioned in the fore—

going sectlon,

3. INVARIANT IMBEDDING

It 18 clear that the p:o:ability wc wish to dete:rmine
depends upon a, v, and x. Keepinz ! fixed, we introduce
the function f(a;x), defined forr a < x < b, as the required
probability that a particle starting at x 1lands at a before
landing at b,

In order to obtain the functional Jdependence upon a. we
make tre observation that tie only way in which tle particle
can ar:ive at a tefore arrivine at ¢ 1s for it to land at
a + 1 tefore landing at !, and tuen, starting from a + 1,
to proceed to a before ever landing at t,

The mathematical translation of this logi-al decomposition

is the fun-tional equation
f(a;x) = fa+l;x)r(a;a+l). (3.1)

", ANALYTIC SOLUTION

From (3.1) we oltala the equation
f(a;a+2) = r(a+l;a+2)f(aza+l) (+.1)
Zorbining tris wit: tre relation
"(a;a+l) = pla+l) + qla+l)r(a;2+2), (v.2)

we ottaln ti¢ re:uirence relation



u(a) = pla+l)/(1—q(a+1i)u(a+1)), («.3)

wtere u(a) = r(a;a+l), valld o a =1t — 3, | — L, ...,
It 18 easily seen vhat u(vb=2) = p(t=1). T™us the sequen.e
{u(a& 13 aetermined.
Returnine to (5.1), we sce tiat
x—1

fla;x) = T 7 u(k). (%.8)
¥=a

~, INHOMOGZNWCUS “ANDOM WALK,;SEMI-INFINITE INTLSVAL

As our se:ond exumple, conslder tle prorcess desc: ibed
above in the c-ace where t = 00. We now wlgl. to deterndne the
exnected value of' the tlire spent Ly a pa:tiecle startin- a*+ «x
at tire ze¢ro in reaching the point a.

Let f(a;x) denote tre expected time. Then, as in § 3,

we oltaln tie fun-tional relation
ta;x) = f(3a+1;x) + (a;a+1) (v..1)

To ot tain an analyti: expression fo: ((a;a+l), w~ comtine t.e

two expressions

fa;a+l) = o(a+l) + aq(a+1) “(a;a+2) + il

(a;242) = £(241;a+42) + (a;2+41),

and Jdeorive tie :olation

f(2;a41) = ;TgiTT + %%%;%% r(a+l;a+2). (-.3)
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Iteration of this relation yields the infinite seriles
. - 1 a+l
f(a;a+l) €S20 + ETgé?TE%EITT +
(5.4)

gla+l a+2 + ...
p!a‘%!p!ag§}p!a¥2$ ’

In order for this expression to converge, there must be a
"drift" to the left. The condition p(k) —q(k}) >d > 0 1s
clearly sufficient for the convergence of (5.4), but clearly

much weaker conditions will suffice.

., CHARACTERISTIC FUNCTIONS

Following the operational principle that characteristic
functions can be determined by the same techniques wi.ich

furnish expected values, let us introduce the function
gla;x) = E(eisz). (5.1)

where 2z = z(a;x) 1s the random variable equal to the time
spent by the particle in going from x to a.
Since z(a;x) = z(a+l;x) + z(a;a+l), we have the

functional equation
gla;x) = g(a+1;x)e(a;a+l). (6.2)

Furtl.ermore, as ahove, the two equations

gla;asl) = p(a+1)e18 + q(a+1)eisq(a;a+2) ( )
t),}

z(a;a+2) = g{a+l;a+2)g(a;a+1)

yleld the rezurrence relation
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ir(a;a+l) = p(a+l)c1s 11— q(a+1)r:is c(a+t1;a+2)].( .¢)

7. DISCUSSION

The foregolng tectniques cun t'e extended to treat thle case
where there 18 a general distribtution of fumns at eaclh stage,
and the rase where we introduce time dependence bty requiring
the onrobarility trat tte particle emers2 at a on o !efore
a given time T. ‘These matters, as well as those mentlioned

in § 1, will be discussed in su! sequent papsrs.
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