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SUMMARY 

In this article we dlscuee oome of the difficulties 

arising In multl—dimensional maximization problems and some 

of the special types of problems which can be treated by 

dynamic programming techniques.  A brief discussion of linear 

programming Is Included. 
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MULTI-DIMENSIONAL MAXIMIZATION  AND  DYNAMIC   PROGRAMMING 

By 

Richard    Bellman 

§1.     INTRODUCTION 

In the mathematical domain,   the word "eolutlon" does not 

have a unique meaning.    AB  foincar^ put  It, ore generation's 

■olutlont are another generation's problems.     In  the first place, 

a problem may be considered  to be  solved if the existence of a 

solution can be demonstrated.    In a number of fields,  thie step 

represents either an outstanding achievement,  or a  continued 

challenge.    On the second level,  a problem may be claimed  to be 

solved If an algorithm exists  for obtaining the  solution.    Most 

of the questions of analysis fall  within this category.     Finally, 

a problem may be considered  solved  if we possess a feasible algo- 

rithm for obtaining  the solution.     The word "feasible"   Is  used 

here to describe a procedure which will yield  the  solution with 

desired accuracy at  a reasonable cost   In time. 

This   last  Is,  of  course,   the  only  fully  satisfying  concept 

of a solution,  and wrs so considered  by Gauss.     In more  recent 

times, mathematicians have occasionally been a bit negligent  In 

distinguishing between the second and  third levels,  although a 

great deal of energy  has continually been directed  towards  the 

problem of raising problems    from  the  first to  the  second  level. 

Fortunately,   throughout  the years,   the incessant  clamor of 

physicists,  engineers, economists and others who have felt the 

pressure of producing numbers,  has  had  the happy effect  of 
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emphasizing  to  the matheicaticien  the vast gap that exists between 

these  last  two  levels of solution.     The resultant  challenge to 

the mathematician has created a tremendous resurgence of Interest 

In a host of questions of  theoretical and practical  significance 

that arise when  we attempt  to proceed from the second to the 

third  level.    With the advent  of modern computing devices,   the 

scientists  In all fields are afforded the opportunity to consider 

md resolve problems which formerly appeared as  far distant  in 

space and  time as the star Sirius. 

To Illustrate the  foregoing  remarks,   consider the familiar 

problem of solving a system of  linear equations of  the fom 

(1) 
N 
i*    a. 4^<  *    <'   ***#<-!• ••jW« 

J-l     1J   J 1 

It can readily be shown, on the basis of quite general and 

abstract theories that a solution of this system exists and 

Is unique provided that the determinant of tne system, la, ,1, Is 

non-zero.  In addition, a number of properties of the solution, 

sucn as linear dependence upon tne c., can be deduced. This Is 

a first level solution. 

A second level solution Is based upon Cramer's rule which 

exhibits the solution as ratios of determinants.  Thus 

(2) xl * 
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with similar expressions for the other x. . 
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This 1B an elegant repreaentatlon of the solution which plays 

an Important role In many Investigations.  It is an algorithm 

since MS know now to evaluate determinants.  It Is, however, 

certainly not a feasible algorithm for large N of the order of 

100 or more. To see this, recall that a detemlnant of degree 

N expanded according to the usual ruleb possessee N! terms. 

This proliferation of terms introduces two major difficulties. 

To begin with, it consumes an appreciable amount of time 

to add 100! numbers together.  To give some crude Idea of what 

a number like this means In computing time, observe that Stirling e 

formula states that 

100        
(3)     1001 ^ (100/e)     /~9ÖCJ 

100    UG 
which means that 1001 > (25)   ~ 10    Consequently, if we 

had a super machine which could multiply 100 numbers together 

and add the result to another number in 10"   seconds, the 

evaluation of a 100 x 100 determinant would consume 10 ?    seconds. 

Convert this Into minutes, hours, years, or millenia, and the 

result is still awe-lnaplrlng. 

Assuming that some magic device has been developed which 

permits 1001 operations in a short span of time, we are still 

faced by the ogre of "round—off error". Every tine we rnultlply 

two numbers containing ten significant figures apiece together 

and round—off the answer to ten significant figures, we commit 

an error, and similarly every time we add two such numbers 

together we may nave to round-off the answer.  An error of order 

—10 ' 
of magnitude 10   committed 100. times may eventually overwhelm 



the answer, Itavlng us absolutely nothing vO show for the tine 

and effort expended. 

It follows that the foraula of Craaer, so valuable for 

theoretical analysis. Is totally useless for computational 

purposes.  We find ourselves then In the paradoxical situation 

where an explicit representation of the exact solution of a 

problem raust be discarded, to be replaced by techniques for 

obtaining the approximate solution. The reader who Is Interested 

In finding out how the modern mathematician escapes from this 

dlleona «111 enjoy the excellent expository article by Porsythe, 

Having seer, that the problem of the solution of linear 

systems of equations can exist simultaneously In all three modes 

of solution, let us now turn to another equally basic problem 

whlc. le also trl-valent.  We shall devote the remainder of this 

article to a discussion of this problem. 

Consider the problem of determining the maximum value of 

a function of N variables F(x,,Xp,...,xN), where the Independent 

variables x. are constrained to lie Mithin some region R which 

may be defined by means of a set of inequalities of the form 

(M      G1(x1,x2,...,xN) ^ 0, i - 1,2,...,M. 

As a first level problem, the question Is readily resolved. 

If the function is continuous over the region R, and if R is 

bounded, a fundamental cheorem of Weierstrass tells is that the 

maximum is actually assumed. 

Ir each of the variables x. assumes only a finite set of 
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valuea,   th#n  the «xlatance of a maxlmutn  is  rudimentary.     Let us 

observe parenthetically that   It  la usually auch more difficult 

to determine the maxlmn when  the maximization  Is over a discrete 

set of points  than It  Is  when  continuous  variation  Is  permittee; 

see,  for exaaiple,  Tompklna,   [it] • 

Let us now add some  further assumptions.     Let P be a 

dlfferentlable function of  the variables  Involved,   and  suppose 

that  the fnaxlmuo does  not  occur on the boundary  of   the  region  P.. 

Then  the point at which the naxlaum occurs  Is   to  be  found as 

one of  the  solutions of the  system of simultaneous  equations 

(5) — - 0,   1  -  1.2,...,N. 

If P Is a quadratic form, this system of equatlors Is linear, 

which means that xe possess feasible algorithms.  If, as Is 

generally the case, the system of equations Is nonlinear, we 

are forced to uae various Iterative techniques, such as the 

gradient taethod, which are only occasionally successful;  see 

the Interesting article by Rosenbloom,  [l^j• 

If some of the maximizing values lie on boundaries, or If 

some of the variables assume only a discrete set of values, the 

methods of calculus are only partially operative.  At the 

present time, most problems of these types appear tc be hedged 

about with Insurmountable obstacles. 

In the remainder of the paper we shall discuss some parti- 

cular multl-dlmensional maximization problems which can be 

resolved by means of a Judlclo.s combination of high-speed 
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computtre and tht theory of dynaalc progra«alng, [l], [2].  We 

shall also brltfly «antlon a qultt inportant type of problaa 

that can be treated by means of the theory of linear prograanlng 

and the slnplex technique of Dantzlg, [9].  In conclusion, »e 

shall touch upon the "flooding" technique of Boldyreff, ^6j. 

§?.  ALLOCATION OP RESOURCES 

Let us now consider the problea of maxlalzing the function 

(i)    RN-J^SI^I) 

over all values of the x. satisfying the inequalities 

(2) x1 ♦ x^ ♦ ... ♦ xN £ c 

The individual functions g^(x ) are assumed to be continuous 
<•  ^ 

for x^ in the interval jO.cj .  This is the only condition we 

shall impose, since we shall not employ any of the methods of 

calculus. 

This problem may be considered to arise In the following 

fashion.  We have a certain quantity of resources which we wish 

to allocate among N activities, with a quantity x. going to the 

Mh activity. The return from this allocation is measured by the 

functions g^x. ). The problem is to determine the x.   so as to 

maximize the total return. 

Instead of the usual approach which views this as an Isolated 

problem, with c a fixed quantity and N a fixed number, we consider 

the entire set of problems of this type, allowing N to assume any 
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Inttger value, and c any non-negatlvt value. We then define 

the function of two variables, c and N, by the relation 

(3)      *VC^ " f***!    P(XI»X2»*--'XN^ R 
«there the maximum is taken over the region defined by (2), c ^ 0 

and N ^ 1,2,...,. 

The eimplest member of this family of functions Is f^c), 

determined by the relation 

(4)      Mc) - Max g^xj . 

If we can find a relation connectlrg fN(c) and fN_i(c) 

we can consider ourselves to have a second level solution, since 

iteration of this relation will determine fN(c) as a function 

of f1(c) which Is known. 

To obtain this recurrence relation, let us reason In the 

following fashion.  Assuming that we have allocated a certain 

quantity of resources, xN, to the Nth activity, we will have a 

quantity of resources x-xN remaining which we wish to divide 

among the remaining activities.  It is clear that the remaining 

allocations are to be made so as to maximize the return from the 

remaining N—l activities.  Consequently, whatever the choice of 

Xj. we must have the relation 

(5)      fN(x) - gNUN) * fN_i(x-xN) 

Since xN is to be chosen so as to maximize the overall return, 

we must have the relation 
! 
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(6)      fN(x) - o<M«Xx  [ gN(xN) + r^M-Xj,)  ] 
"— ti- 

the  deelred recurrence relation. 

The argument we have used Is a particular case of the 

"principle of optlmallty'1, cf. [l], [2]. 

Since f^x) Is determined from (4), we may compute fpW 

from the above relation.  Having determined fp(x), we determine 

r,(x), and so on.  This determination Is by means of a digital 

computer. 

We have thus replaced the original N—dimensional maximization 

problems.  Experience with a variety of problems has shown that 

this Is a feasible algorithm anc? that we do Indaed have a third 

level solution. 

§5-  SEARCH TECHNIQUES 

If the functions gij(xN) have no special properties, no 

better procedure for finding the maximum exists than tVie straight- 

forward examination of a set of equally spaced points In the 

x-range of Interest.  If, however, It Is known that the function 

gN(xN) + ^M-I^-^N^ lB concave then the problem of determining 

an optimal search pattern becomes meaningful.  This problem, Itself 

a dynamic programming problem, has been treated by S. Johnson 

and J. Kiefer In Independent publications, [12] , [l^ .  Interestingly 

enough, the Fibonacci pumbers play a role In the solution.  The 

corresponding problem concerning the location of the zero of a 

concave function has been treated by Gross and Johnson. 
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§4.  A PACKING PROBLEM 

A particularly Interesting application of the method 

outlined In §2 la to the problem of determining the maximum of 

the linear function 

(1)      ^ '    z      v'x 
N 

1-1 

oubject to the conetralnta 

(2) x1 - 0,1,?,... , 1 - 1,2,...,N, 

N 
£   M.X. < w . 

1-1  1 1 ~ 

The problem la a good deal trickier than It appeara due to the 

condition that the x. assume only zero or Integral values. 

Although no analytic solution has yet been given, the computa- 

tional solution Is readily obtained using functional equations. 

The question arises In the determination of a meet valuable 

cargo subject to weight restrictions. 

§5.  A SMOOTHING PROBLEM 

As a further application of the method, consider the problem 

of determining the minimum of the function 

N N 
(1) „^ MWi) + ^ W 
over all values of the x..  This is a particular case of a "smoothing" 

problem where a sequence of levels of activity must be determined 

in such a way as to minimize the total cost of maintaining these 

levels plus the cost of transition from one level to the succeeding. 
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Introduclng the sequence of functions,  fij(c) » defined by 

the relations 

(2) fN(o) 

fk(c) 

Mln I gN(xN-c) + hN(xN) 

Mln 

\    L 
2k(xk^) + hk(xk) + fkn(xk) ]' 

we readily obtain the computational solution. 

§6.  AN EIGENVALUE PROBLEM 

The problem of determining values of A which permit non- 

trlvlal solutions of the boundary-value problem 

(1) u" -f Aa(t)u - 0, u(0) - u(i) - 0, 

can, under simple assumptions concerning a(t), be reduced to the 

problem of determining the relative minima of the functional 

(2) A .2 dt 
subject to the constraints 

(3) j< t)t» dt - 1,  u(0) - u(l) - 0. 

A discrete version of this problem Is the problem of deter- 

mining the relative minimum of the quadratic form 

(*) 

N 
L     (xk " xk 1^ k-1  K   K~1 

subject to the constraint 

N-l 
(5) 

k-1 
Vk - 1» x0 -0, xN - 0 
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The problem of determining the absolute minimum, which Is to 

oay the smallest characteristic value, Is one which can be 

approached by means of the technique exhibited above.  Further 

details may be found In [l] , [)] . 

§7.  THE CALCULUS OF VABIATIONS 

Similarly, more general problems In the calculus of variations, 

Involving the minimization over all functions y of a functional 

of the form 

yW.y^s (1) /^(x^sjds 
o 

subject to constraints of the form 

(2) ^ - 0(x,y,t), x(0) - c, 
dt 

and 

(3) R(x,y) ^ 0 

oan be treated by means of functional equation techniques.  Since 

any discussion of this would take us too far afield, we refer the 

reader to [l], [4], [5], where further discussion and applications 

nay be found. 

§8.  ALLOCATION OF TWO TYPEg OF RESOURCES 

Let us now consider the problem of maximizing the function 

N 
(1)      RN - ^ g^x^y^, 

subject to the constraints 

(2N X x1 ^ x,  x1 2 0, 

z yi ^ y. yi > 0, 
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which arlBCB  from allocation  problems   Involving two  types  of 

reaourcee. 

Introduce  the  sequence  of  functions  of two  variables 

(3) fk(x,y)  -    Max    Rk, 

k  -   1,2,...,     x,y,   >  0, 

where the maximization le over the above region. 

Then 

CO fk(x,y) -    M.^ [Bk(»k,yk) * <•„.!("-",<.y-yk)j 

o^kiy 

with 

(5) f1(x»y)  -       Max    g^x   »yj   . 
O^x^x     1     1     1 

o^y i^y 

Problems Involving tne computation of eequencee of functions 

of two or more variable» are very much more complicated than those 

Involving the computational solution of sequences of functions 

of one variable.  For problems of the type described above, a 

combination of the Lagrange multiplier technique and the functional 

equation method of dynamic programming has proved quite succeaaful, 

see [6]. 

§9-  LINEAR PROGRAMMING 

The problem of allocating a large number of resources leads 

to the question of maximizing the linear function 

'^l 

N 
(1)      2   b^ 

1-1 
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subjtct to a strlCB of constraints of the form 

N 
(2)     i a1JxJ ^ c^ 1 - 1,?,.. . ,M, 

under suitable assumptl ns of linearity concerning the cost and 

return functions.  In addition, a great variety of other problems 

that arise in economic and industrial life Involving the scheduling 

of operations can be cast in this form. 

Although the functionul equation approach yields a second 

level solution, in the form of an algorithm based upon recurrence 

relations, this approach is not at all feasible for large values 

of M. 

A method of an entirely different type r.as been developed 

by 0. Dantzlg, and considerably extended by D^ntzig and othere. 

This method, called the "simplex method", is based upon the 

linearity of the functions Involved, see [9]. 

§10.  THE "FLOODINO" TECHNIQUE 

A number of scheduling problems arising in traneportation 

theory, see L7]#glve rise to problems of the type mentioned 

above.  Some of these, such as the Hitchcock—Koopmans transpor- 

tation problem may be solved in very elegant and rapid fashion 

by means of the simplex tecnnlque.  ^ome, on the other hand, 

require iterative techniques specifically adapted to the problem 

at hand.  A technique of this type, reminiscent of the relaxation 

technique of Southwell, has recently been developed by Boldyreff, 

the "flooding technique".  A discussion of It may be found In [b]. 

Work on the sane problem which gave rise to Chla technique. 
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a transportation problem of  Harris,   haa also  resulted  In the 

development  of modifications  of  the simplex  technique  which 

are useful  In  treating a number  of  other problems  as   well.     These 

results,  due  to Ford and Pulkerson,  may be  found   In   [Ic^ . 
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