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SUMMARY

In this article we discuss some of the difficulties
arising in multi—dimensional maximization problems and some
of the special types of problems which can be treated by
dynamic programming techniques. A brief discussion of linear

programming is included.
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MULTI-DIMENSIONAL MAXIMIZATION AND DYNAMIC PROGRAMMING

By
Richard Bellman

81. INTRODUCTION

In the mathematical domain, the word "solution" does not
have a unique meaning. As Poincaré put {t, one generation's
solutions are 2nother generation's problems. In the first place,
a problem may be considered to be solved if the existence of a
solution can be demonstrated. In a number of fielde, thie step
represents either an outstanding achievement, or a continued
challenge. On the second level, a problem may be claimed to be
solved 1f an algorithm exists for cbtaining the solution. Most
of the questions of analysis fall within this category. Finally,
a problem may be considered solved if we posesess a feasible a.go-
ritha for obtaining the solution. The word "feasible" 1is used
here to describe a procedure which will yield the solution with
desired accuracy at a reasonable cost in time.

This last 1s, of course, the only fully satisfying concept
of a solution, and wes 80 considered by Gauss. In more recent
times, mathematicians have occasionally been a bit negligent in
distinguishing between the second and third levels, although a
great deal of energy has continually been directed towards the
problem of raising problems from the first to the recond level.

Fortunately, throughout the years, the incessant clamor of
physicists, engineers, economiates and others who have felt the

pressure of producing numbers, has had the happy effect of
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emphasizing to the mathematiclen the vast gap that exiits between
these last two levels of esolution. The resultant challenge to
the mathematicia:n has created a tremendous resurgence of interest
in a host of questions of theoretical and practical significance
that arise when we atteapt to proceed from the second to the
third level. With the advent of modern computing devices, the
scientists in all fields are afforded the opportunity to consider
and resolve problems which formerly appeared as far distant in
space and time as the star Sirius.

To 1llustrate the foregoing remarks, consider the familiar
problem of solving a system of linear ecuations »f the fom

N

(1) 2 A X

ja1 137 1=1,2,.-..X.

- ci’

It can readily be shown, on the basis of quite general and
abstract theories that a solution of this system exists and
is unique provided that the determinant of tne system, |a151, ie
non—-zero. In addition, a number of prcperties of the solution,
sucn as linear dependence upon tne ¢y, can be deduced. Thie is

a first level solutlon.
A second level solution {s based upon Cramer's rule which

exhibits the solution as ratios of determinants. Thus

C1 a12 alN 811 812 . e alN
(2) x, = |% fe2 o By 421 82 BoN
CN aN2 o0& BNN 8N1 8N2 S oho aNN

with similar expressiong for the other Xy
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This is an elegant representation of the solution which plays
an important role in many investigations. It ¢s an algorithm
since we know how to evaluate determinants. It 18, however,
certainly not a feasible algorithm for large N of the order of
100 or more. To see this, recall that a determinant of degree
N expanded according to the Lsual rules possessee N! terms.
This proiiferation of terms introduces two major difficulties.
To begin with, it consumes an appreciable amount of time
to add 100! numbers together. To give some crude :dea of what

& number like this meane in computing time, observe that Stirling &

formula states that

100 .
(3) 1001 ~ (100/e) v 20Cy
100 140

which means that 100! > (25) ~ 10 . Consequently, if we

had a super machine which could multiply 100 numbers together

10 seconds, the

and add the result to another number in 10
evaluation of a 100 x 100 determinant would consume 10130 seconds.
Convert this into minutes, hours, years, or millenia, and the
result 1is still awe=inspiring.

Assuming that some magic device has been developed which
permits 100! operations in a short span of time, we are still
faced by the ogre of "round—off error”". Every time we multiply
two numbers containing ten significant figures apiece together
and round—off the answer to ten significant figures, we commit
an error, and similarly every time we add two such numbers

together we may nave to round-off the answer. An error of order

-— [}
of magnitude 10 10 comeitted 100. times may eventually overwhelm
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the answer, leaving us absolutely nothing .o show for the time
and effort expended.

It fcollows that the foraula of Cramer, so valuable for
theoretical analysis, is totally useless for computational
purposes. We find ourselves then in the paradoxical situation
where an explicit reprecentation of the exact solution of a
problem must be discarded, to be replaced by techniques for
obtaining the ap-roximate solution. The reader who is interested
in finding out how the mocern mathematician escapes from this
dilemma will enjloy the excellent expository article by Forsythe,
[y

Having see: that the problem of the solution of linear
systems of equations can exist simultaneously in all three modes
of solution, let us now turn to another equally basic problem
whic.. 18 also tri-velent. We shall devote the remainder of this
article to a discussion of this problem.

Consider the problem of determining the maximum value of
a function of N variables F(xl,x2,...,xN), where the independent
variables x, are constrained to lie within some region R which

may be defined by means of a set of inequalities of the form

(&) Gy(x)0X5,000,Xy) <O, 1 = 1,2,...,M.

As a first level problem, the question is readily resolved.
If the function 18 continuous over the region R, and if R s
bounded, a fundamental cheorem of weierstrass tellsi.s that the

maximum is sctually assumed.

It each of the variables x, assumes only a finite set of



P—1086
5-14—57
-5
values, then the existence of a maximum is rudimentary. Let us
observe parenthetically that it i{s usually much more difficult
to determine the maximum when the maximization 1e over a discrete
set of points than it is when continuous variation i{s permitted;
see, for example, Tompkins, [1%].

Let us now add some further assumpticns. Let P be a
differentiable function of the variables involved, anc suppoee
that the maximum does not occur on the boundary of the region R.
Then the point at which the maxiaum occurs 18 to be found as

one of the solutions of the system of simultaneous equations
2
(5) 9F .0, 1.=1,2,...,N.

If P {8 a quadratic form, this system of equatiors {s linear,
which means that we possess feasible algorithms. If, as 1a
generally the case, the system of equations {8 nonlinear, we
are forced to use various {terative techniquee, such as the
gradient metnhod, which are only occasionally successful; see
the intere=.ing article by Rosenbloom, [14.

If some of the maximizing values lie on boundaries, or 1If
some Oof the variables assume only a discrete set of values, the
methods of calculus are only partially operative. At the
present time, most problems of these types appear tc be hedged
about with insurmountable obstacles.

In the remainder of the paper we shall discuss some parti-

cular multi—dimensional maximization problems which can te

resolved by means of a Judiclo.s combination of high—speed
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computers and the theory of dynamic programaing, [1], [2]. wWe
shall also briefly mention a quite important type of probtlem
that can be treated by means of the theory of linear programming
and the simplex technique of Dantzig, [9}. In conclusion, we

shall touch upon the "flooding” technique of Boldyreff, (5.

§2. ALLOCATION OF RESOURCES

Let us now consider the problem of maximizing the function
N

over all values of the X, satisfying the inequaiities

(2) SR PAR IR SR

Xy 2 0. .

The individual functions 81(x1) are assumed to be continuous
for X, in the interval {O,c]. This is the only condition we
shall impose, since we shall not employ any of the methods of
calculus.

This problem may be considered to arise i the following
fashion. We have a certain quantity of resources which we wish
to allocate among N activities, with a quantity Xy going to the
“4h activity. The return from this allocation 1is measured by the
runcciomgi(xi). The problem is to determine the X, 80 as to
maximize the total return.

Instead of the usual approach which views this as an isolated
problem, with ¢ a fixed quantity and N a fixed number, we consider

the entire set of problems of this type, allowing N to assume any
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integer value, and c any non—mnegative value. We then define

the function of two variables, ¢ and N, by the relation
(3) fy(e) = &:} P(X)0X50000Xy),

where the maximum is taken over the region defined by (2), ¢ > 0
and N = 1,2,...,.

The simplest member of this family of functions is rl(c),
determined by the relation
(%) rl(c) =O Max gl(xl).

<x18¢,

If we can find a relation connectirg rN(c) and rN_l(c)
~¢ can consider ourselves to have a second level solution, since
iteration of this relation will determine rN(c) as a function
of rl(c) which 18 known.

To obtain this recurrence relation, let us reason in the
following fashion. Assuming that we have allocated a certain
quantity of resources, Xy to the Nth activity, we will have a
quantity of resources X—X\ remaining which we wish to divide
among the remaining activities. It is clear that the remaining
allocations are to be made so as to maximize the return from the
remaining N—1 activities. Consequcntly, whatever the cholice of

xN we must have the relation

(5) fa(x) = gylxy) + £y 4 (x=xy)

Since XN is to be chosen 80 a8 to maximize the overall return,

we muast have the relation
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(6) fN(x) - Osrzzx [ gN(xN) + rN_l(x—xN) ]

the desired recurrence relation.

The argument we have used is a particular case of the
"principle of optimality", cf. [1], [2].

Since fl(x) 1s determined from (4), we may compute f2(x)
from the above relation. Having determined rz(x), we determine
r)(x), and so on. This determination 1s by means of a digital

computer.

We have thus replaced the original N—dimensional maximization
problems. Experience with a variety of problems has shown that
this is a feasible algorithm and that we do ind:ed have a third

level solution.

§3. SEARCH TECHNIQUES

If the functions gN(xN) have no special properties, no
better procedure for finding the maximum exists than the straight—
forward examination of a set of equally spaced points in the
x—range of interest. If, however, it 1s known that the function
gN(xN) + fN_l(x—xN) is concave then the problem of determining
an optimal search pattern becomes meaningful. This problem, itself
a dynamic programming problem, has been treated by S. Johnson
and J. Kiefer in independent publications, (2], (13. Interestingly
enough, the Fibonacci pumbers play a role in the solution. The
corresponding problem concerning the location of the zero of a

concave function has been treated by Gross and Johnson.
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4. A PACKING PROBLEM

A particularly interesting application of the method
outlined in §2 1s to the problem of determining the maximum of
the linear function

N
(1) b TP

subject to the constraints

(2) X, = 05l 2555 5, Lo B2, vmeh,

1

N

b W, X, < w.
1el 171 =
The problem is a good deal trickier than it appears due to the

condition that the x, assume only zero or integral values.

1

Although no analytic solution has yet been given, the ccmputa—

tional solution 18 readily obtained using functional equaticns.
The question arises in the determination of a moet valuable

cargo subject to welght restrictions.

§s. A SMOOTHING PROBLEM

As a further application of the method, consider the problem

of determining the minimum of the function

N N
(1) Z g (x — ) + Z h (x.)
wop SRR TR0 T 2 T
over all values of the x,. This is a particular case of a "smoothing"

1
problem where a sequence of ievels of activity must be determined

in such a way a8 to minimize the total cost of maintaining these

levels plus the cost of transition from one level to the succeeding.
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Introducing the sequence of functions, fN(c) , defined by

the relations

(2) fy(e) = min [ g ) + myGxy) |,
N
fk(c) - %é: [:gk(xk—c) + hk(xk) + fk+l(xk) },

we readily obtain the computational solution.

§6. AN EIGENVALUE PROBLEM

The problem of determining values of A which permit non-

trivial solutions of the boundary-value problem

(1) u" + Aa(t)u = 0, u(0) = u(i) = 0O,

can, under simple assumptions concerning a(t), be reduced to the
problem of determining the relative minima of the functional
(2) u/A ut? dt

(¢
sub ject to the constraints
(3) v/*a(t)uQGt « 1, u(0) «vul) = 0.

(o)

A discrete version of this problem is the problem of deter-

mlning the relative minimum of the quadratic form

N

(“) kfl (xk - xk—l)

2

sub ject to the constraint

N—1 -
(5) kfl ax =1, xg=0, x

N =0
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The problem of determining the absolute minimum, which 18 to
say the smallest character!stic value, 18 one which can be
approached by means of the technique exhibited above. Further

detalls may be found in [1], (3].

§7. THE CALCULUS OF VARIATIONS

Similarly, more general problems in the calculus of vartati{ons,
involving the minimization over gll functions y of a functional
of the form

(1) b/IF(x,y,s)da

o

subject to constraints of the form

dx

(2) e G(x,y,t), X(O) = C,
dt

and

(}) R(X)Y) S 0

can be treated by means of functional equation techniques. Since
any discussion of this would take us too far afield, we refer the
reader to (1], [4], (5], where further discussion and applications

may be found.

§8. ALICCATION OF TWO TYPES OF RESOURCES

letc us now consider the problem of maximizing the function
N
(1) Ry = 151 gy (xq4yy),

subject to the constraints

(2" Ix, <%, x 20,
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which arisee from allocation problems involving two types of

resources.

Introduce the sequence of functions of twer variables

(3) £ (x,y) = Max R,

k = 1,2,..., x’y;_>_0r

where the maximization ies over the above region.

Then
(4) r (x,y) = 05:‘2:( [gk(xk.yk) + fk-l("""k'y"yk)J
K>
0<y, LY
with
(5) ro(x,y) = Osz?gx g, (x,y;) .
Ogy, ¥

Problems involving tne computation of sequences of functions
of two Oor more variables are very much more complicated than those
involving the computational solution of sequences of functions
of one variable. For problems of the type described above, a
combination of the Lagrange multiplier technique and the functional

equation method of dynamic programming has proved quite successful,

see [6].

Q9. LINEAR PROGRAMMING

The problem of allocating a large number of resources leads

to the question of maximizing the linear function

N
(1) 151 b, X,
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subject to a series of constraints of the form
N

(2) Jﬁl aiij Sert =1,2,...,M,

under suitable assumpti ns of linearity concerning the coat and
return functions. In addition, a great variety of other problems
that arise in econumic and induetrial life involving the scheduling
of operations can be cast in this form.

Although the functionul equation approach ylelds a second
level solution, in the form of an algorithm based upon recurrence
relations, this approach is not at all feasible for large values
of M.

A method of an entirely different type ras been developed
by G. Dantzig, and considerably extended by D ntzig and others.
This method, called the "simplex method", iz based upon the

linearity of the functions involved, see [9].

§10. THE "PLOODING" TECHNIQUE

A number of scheduling problems arising in traneportation
theory, see [7],give rise to probleme of the type mentioned
above. Some of these, such as thé Hitchcock—Koopmans transpor-—
tation problem may be solved in very elegant and rapid fashion
by means of the simplex technique. Come, on the other hand,
require iterative techniques specifically adapted to the problem
at hand. A technique of this type, reminiscent of the relaxation
technique of Southwell, has recently been developecd by Boldyreff,
the "flooding technique". A discuseion of it may be found in [&].

Work on the sane problem which gave risge to thie technique,
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& transportation problem of Harris, has also resulted in the
development of modifications of the simplex technique which
are useful in treating a number of other problems as well. These

results, due to Ford and Fulkerson, may be found in (g .
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