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SUMMARY

In this paper we present a new method for obtaining the
characteristic values of the Sturm-Liouville problem
u” + aa(t)u = 0, u(0) = u(l) « 0. The method ylelds upper
and lower bounds and is particularly suitable for problems in

which the first and second characteristic values are desired

to a high degree of accuracy.
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ON THE DETERMINATION OF CHARACTERISTIC VALUES
FOR A CLASS OF STURM-LIOUVILLE PROBLEMS

Richard Bellman

1. INTRODUCTION

In this paper we are interested in the problem of deter-

mining the characteristic values of the Sturm-Liouville equation
(1) u" + \a(t)u « 0, u(0) = u(1) = 0.

It will be clear from what follows that the methods we discuss

can be applied to questions of this type involving quite

general boundary conditions, as long as the interval is finite.
There are, at present, a number of powerful techniques

availlable for treating problems of this genre, based upon

variational techniques, and upon matrix techniques applied to a

finite difference version of the foregoing differential equation.
The variational approach depends upon the fact that if

a(t) satisfies a reasonable condition such as

calt) cvPcm, 02t <1,

(2) 0 < al

then the characteristic values, kl < AQ < ..., are the

respective relative minima of the functional

(3) J(u) -L,/71 u'zdt/k/)l a(t)udt
0 0

as u ranzes over the space of functions for which the integrals
exist and for wh-ic u(0) = u(1) = 0,

In particuiar,
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¥ (4 A < /Y ulat/ /7Y alt)uat
¥ 1 —Lo Lo

for all functions u(t) satisfying the prescribed boundary
conditions. We thus have a means of obtaining upper bounds for

Ay which turn out to be remarkably accurate even for simple

1
choices of trial functions wu(t).

Another method is based upon using equations of the form
(s5) U —2u ., +u + A% 0
n+2 n+l n nYn 4

u(0) = u(N) = 0, and applying any of a number of methods used
to derive the characteristic roots and vectors of a symmetric
matrix. For a detailed discussion of these methods, and others,
we refer to the book by Collatz, [2].

There 18, however, a significant difference between a
problen of this type, and the Sturm-lLiouville problem described
above. This 18 due to the fact that it i1s quite easy to find
asymptotic solutions to (1) for large 1A, and thus, approximate
expressions for the higher characteristic values.

Let, for simplicity of notation a(t) = q2(t), then the
Liouville transformation, cf. [1], p. 109, s _(67t q(tl)dtl,

converts .
(6) u" + Aq°(t)u = O
into
d2u "tl du
(7) + — + \u = 0,

2t

qQS(t) ds
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The further transformation

3./ Sbtdas

(8) veu,qg(t) eue q°(t)

converts (7) into

2 \ oy 2
(9) §;§+[x-§%(§,%)-%,<:(:)>]v-o.

The new boundary conditions are

(10) v(0) = 0, v(té’l q(t)dt) = o.

Writing (9) in the form
(11) v'(s) + (Mb(s))v(s) = O,

we know that we can find asymptotic developments for v(s)
starting from the integral equation

v(s) = ¢, cos /N8 ¢+ c, 8in /A8

(12)

_‘é’ﬂ Lain/_s/;_(a—r)l b(r)v(r)dr

and {tereting, cf. [1], pp. 552 for analogous treatment over
the infinite interval. Approximate values of A are now
determined by means of the constraint v((/j1 q(t)dt) = 0.

0

Thus, the higher characteristic values have the principal term

(13) A F 0/ ale)ae)?,

To obtain more precise results, we can use further terms of
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4 the asymptotic series derived from (12), and we can combine

this with numerical integration of (1).

It follows from these considerations that the greatest
difficulty is experienced in obtaining accurate estimations of
the first characteristic value. In many investigations this 1s
all that 1s desired.

We wish to present a new method, suitable for hand or
digital computer calculation, which furnishes monotone conver-
gence, through sequences of upper and lower bounds, to the
smallest characteristic value. Similar sequences can be used

k_

to obtain monotone convergence to products of the form I lkl.
1=}
The method has the advantage of permitting kl to be deter—

mined to a high degree of accuracy.

To 1.lustrate these tech.niques, we consider the equation
(1%) u" + AM1l+4t)u = 0, u(0) = u(1l) =« O,

which 18 connected with Airy's function, or Bessel functions
of order 1/3. The computations were performed with the

assistance of Marvin Shapiro and Oliver Gross of The RAND

Corporation.

2. THE EQUATION DETERMINING THE CHARACTERISTIC VALUES

Let us note in passing that the method we use is an
application of an approach we have used, in various lecture
courses on differential equations, to derive the fundamental
results of Sturm-Tiouville theory.

Consider the linear differential equation
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(1) u" + Aa(t)u= 0, ul0) =0, u'(C) = 1.

The solution of this initial value problem may be obtained over
0<t <1l as apower series in A 1in the form
@ n
(2) us=ts+ E&u (t)r",
n
ne
where the sequence of coefficient functions {un(t)},

ue=1, 2, ..., may be determined by means of the recurrence

relations

uo(t) - t,

(3)
ug(t) « = /% (t-e)u, (s)als)as, n =1, 2,

It 1s easy to see that u, as defined by (2), is an
analytic function of N for all finite A for O ¢t < 1.

The roots of the equation

e n
(%) £(2) = u(1l) = 1 + ngguh(l)x - 0

are the desired characteristic values.

3, DISCUSSION

Assuming that the sequence of coefficlents 13 determined by
mean3 of either a hand or machine computation, a matter we will
discuss again below, there 1s the problem of determining the
first few roots of the equation in (2.4).

This is a problem which can be trcated in several ways., It

would seem that an efficient procedure would be to use the
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sequences we shall describe presently to obtain reasonably
accurate estimates for the characteristic values, and then
use Newton's method, or a modification, to obtain very

accurate values,

&, ANALYTIC PRELIMINARIES

Referring to the equation in (2.1), 1t i1s easy to see
that

(1) lu(t)] ¢ ek VIA,

for 0 ¢t <l, where k 1s a constant. Consequently, the
Welerstrass factorization of f(\) takes the form
(2) f) = [ T(-2y).
As we know, A = O(ng) as n-—> o, 1in view of the
assumptions we have made con:erning a(t) in (1.2).

Our aim is now, following the technique used by Newton to
relate the sums of the powers of the roots and the elementary
symmetric functions, which are the coefficients, to obtain

relations for the sums

B |
151 2,

in terms of the coefficients un(l).

It 1s clear that
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for || < L3
It is important then to obtain the coefficients of the
expression of log f(A). Although this can be done directly,

PP W e o

4t 1s easier to proceed as follows. Write

® k
(5) log f(A) = gglckk .
Then
r D =1
(6) i - 3 kel
whence
(7) nZnun(l)xn_l - (;Zolkckxk’l)(1+n§un(1)x”),

whence we obtain the welldmown recurrence relations
n—1
(8) nu_ = nc_ + kgskck“n—k'

These permit us to calculate the ¢h in a very simple fashion

ﬂ
once the sequence tun(l)f has been determined, and thus the

b L
n

5. INEQUALITIES

Let us now show that the sequence {bk} can be used to



|

g i, o il ol i O,

&

pP-1082
Rev. 9-19-57
8-

obtain sequences which converge monotonically from above and
below to the first characteristic vailue kle
Theorem 1. We have the inequalities

b
(1) 5—-‘£—>>\1>q€-}7k-,k-1.2,

k+1

The sequence {bk/bk+1} is monotone decreasing; the sequence
{l/bkl/k} is monotone increasing, and

1/k
(2) A\, =1im Db - 1im 15 g
1% WA S k

Proof. The monotone character of the ratic bk/bk+1

follows directly from Schwarz's inequality, since

2 ® 3.2 @ | 2
b = (3 )¢ = (3 )
k K k+l]l k=1
= 5 A 2, °

1 {

(3)
(S LT —19) <b b
< - :
< 1§1 _mM 121 —T—T*i =T) < Pre1Pia)

1/%

The monotone behavior of bk is a consequence of the well-

known inequality
1 1
(&) (1zlx1) > (jlei )< > (izlxi E R

for any set of non-negative X,y

The proof of the limiting relation is clear.

6. RATE OF CONVERGENCE

Since
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A
1 1
. X [1"(7\-) + } Lk ke
Kk 1 3 1y (&) +---
) Bl A, “h ) ’
"‘é?T [1+(Xl) + J
A 2
1

we see that

k

b A
(2) _— A & A (D)

R )
for large k.

Similarly,
1 A K % A K
~ 1

()) bkE - %l(l‘f(r;-) +...) - W(l*l'(é) )

for large k.

It 13 to be expected that bk/“bp+1 will furnish a tetter

approximation to xl for large k.

7. DISCUSSION

For the case where a(t) & 1, kl/kg = 1/4, Consequently,
in general, the rate of convergence of these sequences will not
be too rapid. There are two things we can do to obtain more
accurate estimations of Al. In the first place, we can use tlie

root—squaring technique. Since

A
ff - -5
(1) (n) 1|_1l(1 1)

we see that
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fT < m" A

(2) £y(A) = (VA=) = ] T(1- —5).
; i=] A

Using the power series development for rl(x) we obtain a

sequence {p&} with

by 2
(3) 1im -\
YrO VPR B

and a rate of convergence depending upon (Al/kg)e.
Alternatively, once we have an estimate for Al with an
accuracy of 1 in 10_6, we can then turn to the power series for

r(A) and use the Newton approximation technique,

(1) (my fO4")
()4) Aln - kln —_— m.
1

This will yleld a further approximation with accuracy of
essentlally 1 in 10'28. Continued use of this technique is
limited only by the number of un(l) which are computed, and
the accuracy of this computation. There is no difficulty
involved in using this technique here, since we know from
theoretical considerations that the roots of f(\A) are simple.
8. INEQUALITIES FOR ?i%&i

i=]
Similar upper bounds can be obtalned for the products

R+l
TT
i=]

Ao Hi=15 2,

Consider the determdnant
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k4l IOSH
(1) b(R) o , R=1, 2, ... .

b

k4R Pk+Rel ' Pke2R

It 18 not difficult to show that

(2) e ({77
2 1lim = 1in (b} & A Aqee oA g
k 12 R+l

To show that

k kel k4R

bk+R bk+v+1 T hk+2R

is positive definite for all k and Y, and hence that
(B)((R))—1 1s positive definite.
(R) =1/«
The sequence (bp )~7'" does not seem to have any

simple monotonicity properties.

9. THE EQUATION u" + A (1+t)u = O

Let us now 1llustrate some of the {dcas discussed above ty

means of the equation

(1) u" + A(1+t)u = 0, u(0) = u(1) = O,
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The first problem we face 18 that of computing the sequence
{un(t)} by means of the recurrence relations of (2.3). Since
u(t) 1s an entire function of A for Ot <1, the
coefficients, un(t), become quite small as n 1increases. If
a(t) 8 1, the coefficient of A" 1s (-1)"/(2n+1)!. Hence,
if we are using a digital computer, even one with floating
point arithmetic, 1t 18 necessary to renormalize. A very

simple renormalization is one which sets

(2) v (t) = (=1)"(2n41)! u (t).

Then

. v (t) = rm%rmté’t (t—e)v__,(8)a(s)ds, n =1, 2,
b
vo(t) -1,

Since (3) 1c equivalent to the differential recurrence
relation

a(t)v_,(t)
(4) V" (t) = e y— v, (0) = v;(0) =0,

we can use a RPunge—Kutta integration procedure to obtain fairly

accurate values of vn(l). A tubie 1s appended.
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3

vn(l) e (=1)"(2n+1)! un(l)

1.000 000 000
1.499 999 92
2.238 094 A6
3.333 330 15
4.9€0 358 93
7.37E 146 87
10.971 2€1 &
16.310 824 ©
24,244 529 3
6
4

O @O N v & W D~ O

3,028 9€7
53,522 379

—
o

The decision as to how many elements of sequence {un(l)j
to compute depends upon an a priori estimate of the magnitude
of Al' the time involved in the computation, the accuracy of
the computation, and the accuracy with which kl is desired.

Since 1 + t 2 1, we see that xl < v2 < 10. Hence the

order of magnitude of the last term computed in the power

series would be

. 2 1410
u (I ¢ %3.:. 1010 ( 10 10.

(5)
(1021010 107
270.10°0 %V

(using Sterling's approximation). This 13 more than sufficlent,
considering tte 1inaccuracy involved in numerical integration,
for the determination of Al' and is sufficlent for the
determination of A, < un?,
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The next step is to compute the sequence of coefficients

in log f(2), namely {bk}’ using (4.8). The results are
given below, together with the ratios bk/‘bk+1 and the roots

bk l/k:
| K by b/ P41 bk_l/k §§ii3§.5§§§)
| 1 25.000 0 9.921 26 4.00
| 2 251.984 6.958 90 €.30
} 3 3,621.03 €.632 47 6.51
| 4 54,595.5 6.567 79 6.54
| 5 831,261.0 6.553 06 6.55
j 6 12,685,100.0 6.549 54 —_
g 7 193,679 x 10°  6.548 66 —
z 8 29,575 x 10° e FE T

rapid, as 1s

sufficient for most purposes.

to be expected.

The convergence of the sequences for A

172
The results are

For the purposes of using the Newtonian scheme mentioned

good initial approximations with an error of about 1 in 600.
One or two applications of (7.4) would yield 11 to an accuracy

is much less

- §
K bﬁl) = 5D o Pps1 bil)/bﬁiz (bil)) e
1 27,030.0 418,85 o
2 645,330.0 219.85 12.45
3 29,353 x 10° 188.93 32.45
4 15,537 x 10° 179.34 89.5
5 86,634 x 10° e i

above, (7.4), we see that b,‘/'b5 and bn“l/m yield sufficiently

e b e A BT

o
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Using the value of kl obtained above, we obtain a first
approximation of X, & 27. PFrom the monotonicity of the ratios,
we know that x2 is8 actually less than this. An application of
Newton's approximation will yield a greatly improved result.

Note that A? is sufficiently large so that the .symptotic
techniques discussed in §1 can be used to provide an independent

check of the uccuracy of the first approximation to xg.

10. ALTERNATE COMPUTATIONAL SCHEME FOR POLYNOMIAL  COEFFICIENTS

In what has preceded, we have spoken in terms of numerical
evaluation of the sequence {un(t)}. Although this procedure
has the great advantage of straightforwardness and simplicity,
via hand computation or digital computation, it suffers from
the fact that errors of integration arise, and grow with each
new member of the sequence.

Consequently, 1t 18 worth noting a special, but important,
case in which we can avoid mechanical quadrature and carry out
the entire operation by hand.

Suppose that a(t) 1s a polynomial of the form

K
(1) a(t) = ay + ajt 4+ o0 4 oath,

It will be clear then that the elements of the sequence
%5Jt)} will alsc be polynomials. Furthermore, 1t is clear
that un(t) will have the form

t2n+1
(2) un(t) = a, e + .. + akn t $ o aa
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Using the recurrence relation of (2.3), we can then obtain
linear recurrence relations for the sequence {am},
kel, 2, ..., n=1,2, ... .

There are a number of renormalization Questions concerned
with the effective calculation of the sequence, and asymptotic
relations which can be used to speed the computation. A

discussion of these would take us too far afield.

11, EXTENSION TO HIGHER ORDER EQUATIONS

Let us now consider the equation
(1) ul#) 4 am(t)u = 0
with the boundary conditions
(2) u(0) = u'(0) = 0, u(l) « u'(1) = 0.

Proceeding as above, we consider the solution, u(t,A),

of the initial value problem

(3) u(0) = 0, u'(0) = 0, u"(0) = Cq» u'''(0) = Co»

which we can write in the fom

(4) u = clul(t'” + ceue(t,x),

where Uy and u, are determined by the initial conditions
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ul(o) -« 0 ua(O) -« 0
“i(o) e 0 ué(O) -« 0
(57
u;(o) ~ ) u;(o) - 0

ut1'(0) =0 uyrr(c) = 1.

As before, there is no difficulty in obtaining the power

series developments in tems of A for the functions u1 and

u2.
Applying the boundary conditions in (2), we obtain tre

simultaneous equations

clul(l,x) + cggl,x) =0,
(6)

eué(lpx) - 0,

1
clul(l,)\) + C
whence the determining equation for X {3

u(1,0) uy(1,)

ui(l,x) ué(],)\)i

(7) £f(2A) = - 0.

From here on, the argumentation is as hefore.
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