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SOMHARY 

An algorithm for solving the problem of finding a 

maximal dynamic flow through a network is described. No 

proofs are given. 

■ 



P-1079 
5-7-57 

-1- 

COMSTRUCTION OF MAXIMAL DYNAMIC FLOWS IN NETWORKS 

L. R. Ford, Jr.» and D. R. Fulkerson 

1. Introduction» In this note we describe briefly an 

easy and efficient algorithm for solving the following 

problem. Suppose given a network (linear graph) in which 

each link has associated with it two positive integers, one 

a comnodlty flow capacity, the other a traversal time. 

Assuming that some node of the network is a source for the 

conmodlty, another a sink, and the remaining may either 

transship the commodity immediately on receipt or hold for 

later shipment, what is the maximal amount that can be shipped 

from source to sink in any given number of time periods? 

For example, in the toy network of Figure A, PQ is the 

source, P^ the sink, and the capacities of the links in terms 

of flow per unit time are the first numbers of the pairs, the 

traversal times the second numbers. How many units of 

coamodity flow can reach P^ from P- in five time periods, 

say, and what is a flow pattern which achieves this? 

Figure A 



P-1079 
5-7-57 

A simpler problem related to the dynamic one just 

described is the maximal static flow problem« i.e.» assuming 

a steady state condition, find a maximal flow from source to 

sink in a capacitated network. The labeling process [?] 

provides a simple method of solution for this latter problem; 

a variation of this process is also used as a subroutine in 

the algorithm for the dynamic problem. 

The construction of an optimal dynamic flow for a given 

number T of time periods first produces a static flow in the 

network which has certain prescribed properties. The dynamic 

solution is then obtained from the static solution by 

decomposing the latter into "chain flows," starting each 

chain flow at time zero, and continuing each so long as there 

is enough time left in the T periods for the flow along the 

chain to arrive at the sink. Thus, for the network of 

Figure A, the static flow produced by the algorithm for T - 5 

is shown in Figure B below. This flow decomposes into a flow 

of two units along each of the chains PQ'IPO» ^0^2'V Since 

each of these chains has a total traversal time of four, each 

can be used twice In the five periods, hence eight units of 

the coramodity reach P^ from PQ in the total time interval in 

question. The fact that a maximal dynamic flow of this 

particularly simple kind exists for all T seems to us rather 

remarkable. 
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Plgure B 

No proofs will be given in this paper. These may be 

found in [9]. 

2. Definitiona and Heurietic Diacuaaion. Let 

'o' 'l* '**' pn ^ the node8 of a network N, and denote by 

P.Pj the link from P^ to P. (in that order). Associated with 

each link P.P. present in N are two poaitive integere, c.. 

and t.-, ita capacity and traversal tine, respectively. (In 

the network of Figure A the capacities and tines are assumed 

symmetric, c.. ■ c.. and t. . - t.^, but this is not necessary 

in the algorithm.) The notation is taken so that P0 is the 

source* PM the sink, n 

A static flow in N is a collection of numbers (x*<)« 

one for each link P^P. of N, such that 

(1)      Z (x^ - x..) - 0       (i - 1, ..., n-1) 
J-0 1J   J1 

0 ^ xiJ ^ ciJ ' 
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(It Is assumed in (1), and elsewhere, that a variable Xj. 

appears only if f^f*  Is a link of N.) The value of the 

static flow Ujj) Is the total aaount leaving PQ« 

£ (x01 - 
X4Q)*   Thu8 the static maximal flow problem may be 

expressed as 

n 
(2) maximize Z (XQ^ - x^) 

J 

subject to the equations and inequalities (1). In this form» 

the static problem can be solved by the algorithm given in 

[7j. 

An alternative formulation of the static problem appears 

if one focuses attention on chains in N which lead from FQ 

to P [6]. Thus, let C,, ...» Cm be a listing of chains from 

PQ to P . hy  . ..j L^ a listing of links of N, and suppose 

x-, ...» x represent the amounts of flow along the chains. 

If (a ) is the p by m incidence matrix of links vs. chains, 

then the problem is to 

m 
(3) maximize 2 x^ 

k-1 K 

subject to the restrictions 

where c is the capacity of the r-th link. 
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The chain formulation of the static problem does not 

••em to be fruitful in a computational sense directly. 

However, looking at the problem in this form provides some 

insight into the dynamic problem. Suppose one knew a priori 

that there were a maximal dynamic flow of the kind described 

in the introduction. Let tk be the traversal time of the 

chain Cj. Then the problem would be simply: 

(5) 
ra 

maximize 2 x. (T -f 1 - t«.) 
k-1 K       K 

subject to the constraints (4)# since for t. ^ T + 1« the 

coefficient T + 1 - t. is the number of times Ck can be used 

in the T periods, and for t, > T + 1, a solution which 

maximizes assigns x^ =- 0. 

Now problem (4) — (3) can be put back in a form similar 

to that of (l)-(2), i.e.. 

(6) maximize (T-fl) X (xn<-x.n) - 2 t. .x 
Oj ÄJ0' 

1#J iru 

subject to (l). It is not difficult to see that this may be 

restated as a capacitated Hitchcock transportation problem, 

for which several simple computational methods have been 

proposed [l, 2, 8J. 

To recapitulate, if one could establish the existence of 

• maximal dynamic flow of the simple kind previously described, 

the dynamic problem would not be difficult computationally. 

We shall give no formal definition of a dynamic flow in 
If, eince the algorithm of the paper deals essentially only 
with static flows. 
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Encouraged by the fact that one of the authors (L. R. Ford, Jr.) 

had constructed the existence proof needed on the assumption 

that T was sufficiently large, we were led to an examination 

of the primal-dual method [3, 8] for solving the problem of 

finding a maximal static flow which minimizes total flow time 

Z t. .x. . over the class of all maximal static flows, l.ec« 
1,J 1J 1J 

of solving (1) and (6) for large T. Surprisingly, It turned 

out that the algorithm was grinding out, sequentially, maximal 

dynamic flows for T - 0, 1, 2, ..., and that the proof of 

this fact could be given directly from the algorithm itself. 

3. Dynamic Algorithm. Routine I of the algorithm Is 

an iterative process which constructs an integral static 

flow (^4 J» together with nonnegative Integers ij, one for 

each node P., having the properties 

(7) a. ir0 - 0,  Tn - T + 1 

b- "l + ^J > ^J -* X1J * 0 

C  ^ + t^ <TJ --►X1J - ClJ 

d-  "l + fciJ "^J -^0^X1J ^C1J- 

To state the routine, we suppose we have an Integral 

flow (x..) and node integers v.  satisfying (7) with ir «• t, 
.   i   . « 

and wish to construct  (x.J and in   satisfying (7) with 

¥    ■ t + !•    To start out,  one may take all x11 »0,  all 
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Links P.P. for which r.  + t.. « r. are called admlsalble 

below. Notice that at most one of P4P4« P4P4 will be 

admissible, and that Initially no links are admissible. 

Routine I. 

(a) Label P0 with (P*, 00); consider PQ as unscanned. 

(b) Take any labeled, unscanned node P. (initially PQ will 

be the only such node); suppose labeled (P^, h). To 

all nodes P. which are unlabeled and such that P.P. 

is admissible and x . < c..,  assign the label 

(pt, min (h, cii ~ ^J)* To a11 nodes P. which are 

now unlabeled and such that P.P. is admissible and 

xJi ^ 0' a88lSn the label (P^* "iln (h, x.1)). Consider 

P. as scanned and newly labeled P. (if any) as 

unscanned. Repeat until Pn is labeled or until no 

new labels are possible and P is unlabeled. In the 

former case go to (c) below; in the latter case» let 

(x..) denote the flow, and proceed to (d). 

(c) If Pn is labeled (Pj^, h), replace ^ ^ ^ + h; 1** 

Pn is labeled (P^, h), replace x^ by x^ - h. In 

either case, next turn attention to F^. In general, 

if P^ is labeled (pt, m), replace x.^ by x.. + h, and 

if labeled (P"T, ra), replace x, . by x^. - h, in either 

2There are more efficient ways to start the routine, e.g., 
the procedure of [5] for finding a "shortest chain from P0 to 
Pn may be used. 
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case turning attention then to P.. Stop the replace- 

ment when P0 is reached.^ Starting with the new 

integral flow thus generated, discard the old labels 

and repeat (a) and (b) until the latter case of (b) 

obtains. 

(d) Define T^ by 

iri - 

T. if Pi is labeled. 

T + 1 if P. is unlabeled. 

Repeat routine I starting with (x* *) and T. (giving as 

new admissible links those P^P- for which i^ -»• t. - - Tj) until 

the value of r   has been boosted to T + 1. At this point a 

solution of the dynamic problem for T periods is at hand 

merely by decomposing the final flow obtained into chain 

flows. Routine II below uses a labeling procedure to effect 

this decomposition. 

Routine II. 

(a) Label PQ with (P , oo); consider PQ as unscanned. 

(b) Take any labeled, unscanned node P.; Suppose labeled 

(Pi.* h). To all nodes P. which are unlabeled and such 

that x. . > 0, assign the label (P., min (h, >.<)). 

Consider P. as scanned and newly labeled P* (if any) 

as unscarmed. Repeat until either P is labeled or 

^The static flow value has been increased by h at this 
point. 
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new labels are ImposBlble and Pn is unlabeled. In the 

former case, proceed to (c); in the latter case, stop. 

(c) If Pn is labeled (P^, h), replace x^ by x^ - h, next 

turning attention to P. . In general, If P^ is labeled 

(P., m), replace x.^ by x.^ - h, and proceed to P.. 

Stop the replacement when P0 is reached. 

Repeat routine II unti] the latter case of (b) obtains; 

the flow (x.J has then been decomposed into chain flows.^ 

The decomposition obtained in this way is of course not unique 

in general. However, any list of chain flows obtained from 

the final flow of routine I represents a solution to the 

dynamic problem for T periods. If the k-th chsin of the list 

has a flow of x. and a traversal time of t, . then the maximal 

dynamic flow value is given by 

Z xk(T + l - tk) . 

If one is interested only in this value and not the flow 

pattern, routine II of the algorithm may be ignored. Instead, 

let T, be the final node numbers produced (i-cr-T+l), 

and define 

(8)     y^  - max (0, T^ - i^ - t^) . 

a 
One sees that at the end of process (c) a chain carrying 

h units of flow has been traced out (in reverse). 

^Por an arbitrary flow, circulations and chain flows from 
P to P0 may remain. This cannot happen, however, for a flow 

produced by routine I. 
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Then it can be shown that the maximal dynamic flow value is 

given by 

The node numbers ir. and link numbers y. .  provide other 

significant information also. For example, links with 

positive y*.  are "bottlenecks" for the dynamic flow — more 

specifically, a link P.P. for which 7« < )* 0 bottlenecks the 

flow in time periods ir. + l, v.+ 2,   ..., 'i + Yii*  Thus the 

flow value for T periods can not be increased unless some one 

of these links is given a larger capacity. 

Notice that the dynamic algorithm has the feature alluded 

to in the introduction, namely, that in solving a problem for 

a given number of time periods TQ, optimal solutions for all 

fewer numbers of time periods T < TQ can be obtained as by- 

products. In addition, it can be shown that at some stage T 

in the computation, a general solution of the problem for all 

numbers of time periods T ^ T is obtained.  (The value T is 

never greater than the maximal traversal time from P0 to P , 

and is usually much less.) At the stage T, the static flow 

obtained is a maximal flow which minliaizes total flow time 

Z t. .x  over all maximal static flows, and the links which 
i,J 1J 1J 

lead from the final labeled set of nodes to its complement. 

See the definition of the minimal dynamic cut in [9]. 
7 
'Thus the solution of the problem for all T is a finite 

process. 
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the unlabeled set, are a minimal (static) cut [4, 6, 7] in 

the network. 
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