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SUMMARY

The purpose .of this paper is to discuss the asymptotic
behavior of the sequence {fN(i)} generated by :the nonlinear

recurrence relation -

. M 9

This problem arises in connection with an equipment replacement

problem, cf. S. Dreyfus, A Note on.an Industrial Replacement

Procéss, RAND, P—1045, 1957.
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A MARKOVIAN DECISION PROCESS
By
Richard Bellman

§1. Introduction.

The purpose of tnis paper is to discuss the asymptotic
behavior of the sequence {fN(i)} , 1=1,2,...,M, N=1,2,...,

generated by the non-linear recurrence relations
M
(1) . ry(1) = Max Lbi(Q) +Z ai‘,(q)fh I(J)J, N=1,2,...,

fo(i) = ¢y, 1 =1,2,...,M.

Although these equations are nonlinear, they possess certain
quasi-linear properties which permit a more thorough discussion
than might be imagined upon first glance.

As we shall discuss below, this question arises from the

consideration of a dynamic programming process. A related

process gave rise to an equation of the above form which was

discussed in {1], under a particular set of assumptions
concerning the functions {bi(Q)} and the matrices A(qg) = (aij(Q))‘
Here we shall impose restrictions of a quite different type.
Any complete discussion of relations of the foregoing type lis
at least as defalled as a corresponding discussion of the linear
case, and as in the linear case, the assumptions made to a
considerable extent determine the techniques employed.

We shall discuss elsewhere some interesting quadratically

nonlinear recurrence relations which arise from specializing the




T Gt it

P-1066
4..18-57
—o—

g'form of bi(q) and aiJ(Q)‘ These are related té the types of

i differential equations discussed in [)], being essentially a

g particular type of discrete version.

: It will be clear from what follows that similar techniques
:;can be utilized to treat the determination of the asymptotic

f behavior of the sequences defined by 7

b - 1

(2) fN(x) = klgx l'b(x,q) + [ K(x,y,q)rN_l(y)dﬂ, ‘N-l,e,...,
fo(x) = c(x), 0<x<1,

3§ and by the equation

- k R
3 u, = Max ‘ b + 2 a u ] N=k+1l,...
(3) N q L (Q) 1=l 1(Q) N~i ’ » »
ui = c1’ 130,1,03.,k,

égunder corresponding assumptions. ST

{

A

§2. Statement of Results.

3
1

]

We shall suppose that the functions bi(q) and aid(q) satisfy

v

ieither of the following sets of conditions:

A. The functions bi(q) and aij(q) are functions of finite
s dimensional vectors q whoee components assume only a
}g(l) finite set of values, which in general depend upon 1
and J.
B. The functions bi(Q) and aiJ(Q) are continuous functions
of finite dimensional vectors whose components assume

values in certain closed, bounded regions in q-space,

which, in general, depend upon i and J§.
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Either of these =zets of conditions ensures that the maximum
is assumed in the recurrence relations of (1.1).

Our principal result is

Theorem. Let us assume that either (1A) or (1Bj is satisfied,

and tlrat
(2) a. bi(Q) > 0, and bi(q) > 0 for some i for all q,
b- aij(q)?_d>0, 1,J =1,2,...,M, roré:]:_l_q,
M
c. I a,J(q) =1, 1 =1,2,...,M.
J=1 -

In other words, A(q) 1s for each q the transpose of a positive

Markoff matrix.

Under these conditions, we have the asymptotic result

(3) fy(1) ~ Br, N > @, 1 =1,2,....4,

where the scalar quentity r is obtained as foliows:

t—————

() e 2« Max 1m | bm+a(q)b(q)+...+A(q)“‘1b(q)],
q N>® N
Here
1 /bl(Q)
(5) : \ Flos@ o= [ %) a) - (ayGa)),
. i t.:’N(Q)l

and maximization over q means maximizatlion over all the vectors

q appearing in all the relations of (1.1).
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§3. Preliminaries on Markoff Matrices.

Before proceeding tc the proof of this result, ist us
note for future reference some known results concerning the
asymptotic behavior of the iterates of the transpcses of a
positive Markoff matrix.

If y i8 a non-negative non-trivial vector, we have

(1) Ay ~ nri,
where r is a scalar quantity dependent upon y, and ¥, as above,
denotes the vector defined in (2.5). Furthermore, the limit

(2) 1m  (A"y — nr¥) =x . .
n—> @

exists, arid yields a vector x which satisfies the system of linear

equations

(3) r++x =y + Ax.

These results are well—known from the theory of Markoff chains,
“i or else may be viewed as simple consequences of Perron's theorem
3"aassertzirxg the existence of a positive characteristic root of
41

argest absclute value of a positive matrix. The associated

: §4. Proof of Theorem I.

We begin the proof of the theorem with a discussion of the

% linear system of (3.4). Let q denote a value of q which maximizes
2 in (2.4). It is easy to show that the assumptions we have made

; concerning the range of values of q ensure the existence of a

? maximizing q. Let r = r(q) denote the maximum value of. r determined

SRRV TR
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by q, and let x = x{q) denote the vector determined by (3.2).
Then we have the system of equations

M
(1) T4 ox o= bi(H) + 351 alj(a)xj, 1=1,2,...,M.

Actually, each g above should be Ei, but we feel no confusion
will result if we omit this subscript and use a generic q.
Our first task is to show that this linear system 1s
equivalent to the non-linear system
~ M -
l

2 r+x, = Max ! b + 2 a,. (q)x J, 1=1,2,...,M,
(2) PoMax ) B ey

in the sense that the set of x, satisfying (1) also satisfies
(2)

It is clear to begin with that

- M
(3) r+x, < Max | b,(q) + £ a,.(q)x J,iﬁheﬂ.”u.

If the x, do not satisfy (2), there will be strict inequality

i
in at least one of the relations in (3). Without loss of
generality, let the strict inequality occur in the first relation.
Finally, let q' be a value of q ylelding the maximum on the right
side of (2). Again we drop the subscripts in q' and vse z
generic symbol, to simplify the notation.
We then have the inequalities

+) r+x; <by{qa') + : a;(a*)x,,

j=1 J J

M
r+xg < b(ar) 4 351 ay5(at)xy, 1=2,... M.

The first inequality can be strepgthened to read
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(5) (1‘*‘3)’7 + X1 < bl(q") + Jfl alj‘(q')xj’

%wﬁéfe a 1s a positive guantity.

Let us now iterate these inequalities. We obtain

N
2 oy P,

v

s N
5(6) r +x < byla’) +-Jf} as5(qt)o,(a’) +

- r - ar ail(q')’ im1,2,...,M,
‘ (2)
Lwnere (a, (a')) = A(g*)2.
Since, by hypothesis, all(q') > d > 0, we obtain upon

& reverting to matrix notation
g (7) x < b(q') + A(a")b{a') + A(a')°x - r(2+ad)s..
iLet us now iterate this inequality N times. The result 1is

t: 2N-1 2N
% (8) x < b(q') + A(q')b(g') + ... + A(q*)  bfq') + A(g') x

: — N(2+ad)¥,
) |
upon recalling that A(q')" + = 3.

The maximal property of r = r(q) asserts that the vector

: 2N-1
(9) b(q') + A(q')b(q') + ... + &(q") b{q') — N(2+ad)*

i

gébecomes an arbitrarily large negative vector as N increases.

:?This contradicts (8) for sufficiently large N.
Hence (2) 1s equivalent to (1).

¢ §5. Proof of Theorem II.

It is now easy to complese the proof of the theorem. Let
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r and Xy be the quantities defined above. We wish to show that
'fN(i) satisfies the inequality

(1) Nr + x, =k < (1) < Ne o+ xp + Kk,

for 1=1,2,...,M and N=1,2,..., with a suitable choice of k.

The proof is inductive. <Choose k s8o that the inequalities
hold for N=0. Suppose that they are valid for n=0,1,...,N.
Then (1.1) yields

- M e

(2) fN+l(i) < Max Lbi(q) + ,ji%l a“(q)[Nr+xj+k:} J
~ N M

. Nr 4+ k + ng{.bi(q) + Jil aiJ(Q)xJ ]

< Nr+k+r+x = (N+1)r + X, + k.

The lower bound is established in the same manner.
The inequalities in (1) above yileld the desired asymptotic

behavior, and even a more precise result.

§6. Discussion.

£s 1n the theory of Markoff processes, the condition aij(q)zq>0
can be consliderably relaxed at the expense of more detailed
discussion. However, as the study of Markoff processes sho., it
cannot be rz2laxed to mere non—negativity. The essential
restriction is that the equationg describe one interlinked
system, rather than two independent systems arbitrarlly considered
as vne system. The condition aiJ(Q) >d > 0 is one way of
ensuring this, but clearly there are many others. The simplest,

perhaps, are those obtained from powers of the matrix, i.e.

P R ST Y
ST Y
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¢ (k) k
%aid(q) > d > 0,where A(q)¥ = (8§J%Q))°

i§§7. A Dynamic Programming Process.

Let us now briefly describe a dynamic progremming process,

;5[2], which gives rise to recurrence relations of the type con-

;ﬁsidered above.

; Conslider a machine which is used repeatedly to produce &

Yicertain type of item. At each stage, there is s probability

] that the machine produces a perfect item, a probability that 1

zproduces a defective item, and a probébility that the machine

,ébreaks down and requires repair These,probabilib;es depcnﬁ

QUpon the age of the machine.

. Examining the matter in more detail, let us euppoéé'thdt

‘éthere are k different scurces of failure within the ﬁachiéﬁy

éleading to either defective items or breakdown of the machine,

éor both. Let us deflne the i'ollowing probabilities

3 pi(n) = probability that a machine breaks down-diue to
failure at the i-th source afiter it has
successfully produced n items,

qi(n) = probability that a defective item will be
produced due to hidden fallufe at the i.th

source after n items have been,sucgéssﬁglxy

produced.

At any particular stage, we face the probvlam of deeiding

igthe sources of trouble, or to waift until a defective item is

% produced., In addition, il a defective item is PFOG“QGé: there
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1s the question of whether we should repair the machine insofar
as the immediate source of fallure is concerned, whether we
should in addition examine other potential sources of fallure,
or whether we should automatically provide new perts at various
sources of [lallure, without preliminary inspection.

The decisionsg, of course, will be dependent upon the costs
incurred in carrying out these operations, the costs due to
defective parts, and the costs due tc breakdownh of the machine.

The state of the system at any time can be characterized
by the set of numbers (nl, n2, ceoy nk) specifying the number of
items ny produced since the ith source of trouble was examined.

“he problem is then to determine the inspection and replace—
ment pelicy which minimizes the expected unit cost of production.

To treat this problem, we begin with the problem of determining
the policy which minimizes the expected cost of producing N 1tems.

Define the sequence of functions

fN{nl,ng,...,nk) = expected cost of producing N items using
an optimal inspection and replacement
policy starting in state (nl,ne,...,nk).
In view of the above discussion, it follows that the effect
of any decision, to produce without inspection or repair, to
inspect with possible replacement, or Yo reglace, 1a tc transform
the system from its present stste into anctner gtate. Assume that
only a finite number of statec are permissible, and enumerate

them in some order, 1=1,2,...,M. Any particular decisicn, desig-

nated by q, leads to a recurrence relation

LRGN S N o . ~ B S T Y e s
N M S e 7.}(:?:_ YR NG .t; «’}u
e NSRS it
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| (2) fy(1) = b,(a) + 331 ay 4(alry ().

f The principle of optimality, cf. [2], asserts that q 1s chosen

i 80 as to yield the equation
i (3) fy(1) = Min | vy (a) + RALPICUENNE |-

b The theorem proved above in §2 states that there is a steady--
%%state optimal policy to whicﬁ we converge as N — @, provided

| that the a;,(a) satisfy certain restrictions.

: As we have discussed above, the natural condition is the
;;system be interlinked, i.e. not separable into two distinct
iisystems.

Particular examplies of processes of the above general type

i . . 3 - >
S P R AN B T Y I I e L ]
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