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SUMMARY

The purpose of tnis paper is to present an expository account
of the fundamental ideas of the thecry of games, toyzether with a

diccusslior. of some cf trne urnresolved aspects of the theory.
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THE THEOKY OF GAMES

By

Richard Bellman

§1. Introduction.

In recent years, a new branch of mathematical analysis has
been developeC and intensively studied. It possesses a great
deal of intrinsic interest and a number of close ties with other
parts of mathematics and various cognate flielcs such as mathema-
tical economics and mathematical statistics. 1In this article we
propose to give a brief sketch of some of the basic ideas of
what 18 now called the Theory of Games.

Although a systematic foundatior of the theory was begun by
Borel, (b,, independently von Neumann [ presented hie own formu—
lation, and derived the basic result which {8 the cornerstone of
the theory. This result, whoese proof had eluded Borel, is called
the Min—-Max theorem, and will be discussed extensively below.

One of the attractive features of the thecry of games, shared
by some other flelds of mathematics csuch as numter theory and
topology, 18 tnat it is not poerible to gauge the dertn of problems
wiich can be formulated in terme Of quite simple ideae, and 1in
very fews words. The result 1e that rome fairly simply stated
questions lead in some cares to quite recondite analysis, and 1in
other cases to the very boundary of tne unknown.

In the course of the chapter w~e chall refer to 3 number of
tooks and researcn papers which explore in detail a number of the

subjectas ~e mention quitebriefly, and which contain & great deal
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more beeides.
The most intere:tting and entertaining account of the funda-

mental concepts, valuable for amateur and professional allke, is

that ccntained in the book by williams, (B).

§2. Matcning Coine.

In order to i{llustrate the type of problems encountered in
the theory of games and the concepts used to analyze thege
problems, let us begin our discussion with the perennial diver-
sion of matching coins.

As we know, the game proceeds in the following fashion. At
each stage of the game, each plaver ciposce to show a head or a
tail, with his choice unknown to the oiher plajyer. It s agreed
upon in advance that ore player ~ins {f the coine matc!., and tnat
the other jlayer wins {f they do not.

Supposre that one player i& suddenl, 1inspired to analyze the
game mathematically in the hore of yaining ar advantage in this
way.

How does one analjce a process of thie type mathiematically?
This question 1s asked deliterately, and not rnetorically, to
emphasize firat of sll tne fact tnat before a satisfar*ory methon
of analysis is discovered, it 1s often not at all clear hows to
proceed, and further to emphasize the related fact that even after
one good metnod hae been found, 1t may ctill be true that arnother
Btill better method is rejuired to treat questionc of a nigner
level of difficulty. No theory tne:. shLould be regarded a:s either

inevitable in i1ts formulatior, or final in its conclueions.
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Returning to coin-matching, it is clear that 1f we reject
extrasensory rerception and telekinesis as being at best unproved
and undependable, tnere is no way in shich either player can gain
an advantage playing the game once against an unknown opponent.
The way out of this cul—-de—sac, which would seem to bLlock any
mathematical study, is to focus our attention upon games which are
played a2 large number of times, and concentrate upon gaining an
advantage in the long run. In otner words, each rlayer is to
play in such a way as to maximize an average return.

This, of course, is one of the gulding principles of gaming,
either at the card tabtle, on the football fileld, or Jn a basebsll
diamond. It sustains a tridge master when he makes an unfortunate
fineece; 1t sustains the poker expert who callc a etraight with
aces over fours; {t sustains the taseball menager ~ho calls for
a hit—and-run whicnh ends !n a double rlay. The playere who d1s8-—
regard the averaging procecs, and rely inctead upon hunchee, make
a numter of spectacular gains, which are duly advertised ty the
players themselves, and sometimees the newspapers. In the long
run, they lose consietently, and consistently blame their misfor-—
tune upon bad luck, inferior partnerc, poor teamwork, etc., etc,
etc.

Let us agree tnen that the analytic player decideg to play
in such a way as to maximize thre average amount won at any parti-
cular play of the game, which 1s equivalent to the assertion
that he intends to play the game a large number of times and
maximize the average amount ~oOn in the course of tnis large number

of playe, or actes as If he intended to follow this pattern. We
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shall discuss below some of the complications connected with this
point of view.

C neider the situation of thie player, taken to be the one
who wins If the coins match. He can argue as follows:

"The principle of insufficient rearon assures me t'eat the
other player will be displaying a head or a tail with equal
probability, since there teems to he no reaeor why he chould rnow
one or the other. Consequerntly, no matter what I do, 1 rave
equal probability of winning or losing. 1 mignt Juct ars well
show heads all the time."

Thenthe following disturting thought occure:

"Suppore that the other player i3 irrational, or supjorce
that I meet a string of coln—matcrers who on the basis of philoro-
phical principles, or as a recsult of election bets, nave pledged
tnemselves to stow tallrc all tue time. I will tr.ern loce on
every play. How can I guard agetnst this contingency?"”

A small amount of reflect'orn rhows tlat the ;layer can guard
against situations of this type Dy srnowiny heades or talls with
equal probability in a random fashion. 1In this way. no matter
what group of opponente ne encounterc, on the average hile galn
or loes will be zero.

This 12 nct a ver; encouraging result as far as indicating
the utility of mathematical unal,sls, Lut let u2 persevere.
Something may come of 1t.

The analys!is above wae nighly plausitle and completely intul-
tive. duw can we obtain tr.ese resulte in a systematic fashlon

which pute leess strain upon our intelligence and more upon our
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mathematics? The advantage in developing a systematic approach
lies in the poseibility that this same aprroach may poesibly
be useful in connection with other processes of less trivial
nature.

Let us nos suppocse that we have two players guided by the
same principle, that of maximizing average return. Let the first
player play heade with probatility a and teils with prodbability
l-a, and let the second player slow heads with probahility b,
and talls with probability 1l-b.

The probability th.t the firet player wins is then

(1) ab + (1-a)(1-b),

the total probability that the two coins match, '‘hile the pro-—

babillity that the other player wins 1s given by

(2) a(l-b) + b(l1—a).
Let us agree to credit the firct player with +1 for a win
and -1 for a loss, so trat the average gain per play to the first

player will be
(3) E(a,b) = ab + (1-8)(1-b) — [a(1-b) + b{l-a),

and the average gain per play to the esecond player will be the

regative of this.

The firest player ~i11ll1 then chootse a 8o as to maximize E(a,b),

and the second player chooses b 80 as to minimize. The least he

can recelive {s then

(&) E= Min Max E(a,b).
0<bgl  0gagl
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Let us now perform some elementary calculations. We have

(5) E(a,b) = (2a-1) {2b-))
go that
(6) Max E(a,b) = Max ("t-1,1-2b).
0<agl
Hence the minimum over b oOf this exjrecsion occure where t = 1/7.
Thus
(7) Min Max E(a,b) = O.

0gbgl  0ge(l
Now consider %“ne situation of the second player. He proceeds
to choose b 80 as to minimize E(a,b), yvielding the first player
an average return of
(&) Min E(a,t) = Min (Pa-1,1-la).

e
It follows that the first piayer to maximize hiu return musat choo
a = 1/2.

Prom theere csalculaticns, ~e see that each player, {f re does
not know what tne otner rerson {s doing 13 forced to protect
himself against loss by using the equal—protauvility pollcy. Thie
guarantees that oi, the averace ne will win ac often as he lores.

Observe something fascinating about this fituation. Sujpoee
that the first plaver announcee orenly that he Je using thles equal-
probabtility policy. Then the other clayer cunnot imjrove hic

average return even «it! tries additional Information at his dispo-

sal, and vice versea.
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If one player can induce the other player tc depart from a
gsafe policy by using over a number of plays a policy waich appears
to be of one type, but which is actually of another, then he can
gain. Thile 1&, however, a risky maneuver.. The mathematical
theory of these more complicated rrocesres 1s part of the study
of "learning processes”, of walch one aspect !s the theory of
sequential analysis develojed by wald, ?ﬂ. For otrier aspects
of the theory of learning processes, see Johnson and Karlin, ﬁé],

Bellman, Herris and Snapiro, _7, Bellman, :1], and the book

by Lush and Mosteller, ().

§3. Unsymmetric Coin-Matching.

Suppose we now concider a coin matching game of the following
type. If tao heads occur, the first jlayer recelves 3 unite; {f
two talls, he receives 1 unit; I head-talles, or tail-heads, he
gives the other player 2 units.

Faced witn an iInvitation to rlay thie game, the first player
must dec!de whether he wantes to play or not. Let us see the type
of analyesie Le might emplo.:. As above, we make the assumrtion
t.at average return is to pe the criterion for both playere. Let
a be the probabllity with wn! & tte first ;player dlsplayz heads,
and b the nrobablility wlitr wnich the second player dleplays heads.

Then the ex;ectel return to tre firct player 1=
(1) E(a,b) = 3ab + (1l=a)(l-») — a(1-b)-t(l-a).

Afain, as above, the first plaver w~ishes to max!zize this function
over ¢'1 salues of a tn [),1] and the aecorni player wishee to

minimize 1L over t irn the same !nterval. Depernding; upon which

*Rut cre « lcr nhac consictently bee:r. usec¢ !n warfare.
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point of view one takes, we 3ee that we have to letermine the

two quantities

(2) Min Max E(a,b),
Ogbgl  0gegl

and

(3) Max Min E(a,b).

0<agl  0<bgl
Carrying out the computation, as above, we see that the two

quantities are rather curprieingly equal, and furthernore trat

the common value ies attained for the followling protatilities:

(4) as=>5H, b=3/0,

It foll ws that each plaver can announce behavior without givirg

any advantage to the other.

4. Saddlepoints.

The substance of the atove recult is that tne functlon (a,t)
possesses a saddlepoint over tne zquare define: vy 0 ¢ s, b < 1.

This is to say that there 1is a point [a‘,b': witn tie jrojerty

that
(1) E(a',b') < Efa',b), 00 (1,

E(a',b') > E(a,b'), 0 ¢ac< .

In more complicated games, cptimal ctrategies neeit not be

unique, as they have teen In thece two cases conc! jerel atouve.
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5. A General Two—Choice Game.

Let us now~ consiler s general two-<no!ce game, where the

two cholices may bte thought of ar neadis or tallz. Let us Jef!ne

(1) ayy = the return, or pay-2ff, to the first player 1if
he makes the i-th ctoice and the reconi player

makes the ‘—th ctoice, 1,J, = 1,2.

The matrix

is called the pavoff{ matrix. The pay—off matrix for the second

player will ve the negati e of this. Thie type of game is

cailed zero-sum, and {c¢ the only type for wnich there ia a

setiefastory tneory at the present tinme.

At each plav of the game, let the firet rlayer make the first

crolce witn provab!lity X1 and the cecond cholce with frova~ility
X~. h ret of values (xl, xf) slth x; + x, = 1, X(» X, 20, 18
called a strategy. Jimtlarly, let the recon! rlajer maxe nlis
first cholce with ;rovatility " and ris vecorni crnolce »'th

protatility y,. T:.en tnhe exrected return to tte {irst |layer ir

J
‘

«

(3) cix,y) = 811%17) * B XY, b 2. Xy ¢ AaaX
we leave It ar 8 simple exercice In algeira, or analvtic

geometr,, for tne reader to prove tnat

(%) Max Mir E(x,y) = Min Max E(x,y),
X y h/ X



F-1062
4=15=51
-10—-
where the maximum is taken over the region X, +x., = 15
X1 X5 2 9, Yy *¥o = 1, Iy Yo 2 0. The com:0on value of these
two exprescions is called the value of the game, anc occacionally
denoted by v(A).

As above, it follows that the firrt player jocscessec a
strategy wnich guarantees him an expecte! return o1 it leart v,
while the second rlayer poscesser a strategy whicn guarantees
that he will not sustain a loss of more than v. If v is negative,

we can, if we wish, interchange t:e terms "return" and "lose

These strategies need not be urigue.

§6. The General Finite Game.

Hdaving introciced the above notatiorn, 1t {8 now eucy Lo
continue to a dlscussion of 2 more general situiatior «tic'. eact

player posseeses a finite number of c:o!cec.

Assume that the first ;layer may mave one ¢f M cholcer arn:
that the second pleyer may; make any of N cholcec. Let t e ,n,-o0ff

matrix be, as above

(1) A= (ayy),
where aU {8 trie returr to the fliret ;layer {f re maker tre ! -t
cholice ard tne reconi player makes tre . clolce. Tre regative
of this will ther be t'e return to th cond rlayer.

If the f1rut rlaver employs a strategy x = (xl,x:,...,xn)

and tre second ylayer employs tie strategy y = (yl,y ,...,yN),
the expecteu returr, to the {irst rlayer will be

~ M,N
1 (X,)') - 2 &1,X,_','J.

l
1, =l © ot

(%
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The fundamental result in tie tneor, of games {is

Theorem (Mir—-Max Theorem of von Neumann). The function El(x,y)

posscesser a saddle—point over the region deflined by

(&) 8. Xy, ¥, 20
M N
b. Z X = 1, z Y = 1.
fa1 1 ta] !
Hence
(5) Min Max E (x,5) = Max Min F,(x,y) = v.
y x x ¥

Conrequently, the first player possesses at least one cstrategy

wiilcr puaranteee him an expecte. return of at least v, regardless

of what the second glaygi doeg and the recond Q}aier poscesces

likewice at leact one strategy whicr guarantees that his ex ected

loss {8 not more tian v, regardlecg of what the firct player Jjoee.

There are no simple procfas of tile result altnough there
are elementar, onee. The shortect prcofs require fixed-point
t:.ecrems borros~ed from torology.

Tn's recult wern establisned ty Von Neumann in 1328, in the
fereral case, wi.ile thne rarticular caces h = 2,3,4 were contidered
by Borel. U:fort.uriatel,, Borel at first believed that the yeneral
ci.e8e a8 not true. For an {rteresting discunalon Of que=tions

of priority see t:.e article ty Freclet, aﬂ snd the retuttal by

Von Neumarn, ?3.

§7. Computatlonal Algoritrms.

—— e —— e

[re veterminction X tre value of a game oscoclated ~lith a

matrix of even molerate si{ze, sa;,; ten-by-ten, i3 not an eavy tasask.
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No explicit analytic representation of the value exists, nor
does there exist any analytic representation of tnhe set of optimal
strategies. Purthermore, even if these analytic representations
did exist there is no guarantee that they would actually tbe
useful for computational purposes. Consider, as an illuctration
of this, the simpler problem of solving a system of ten-by-ten
linear equations. The explicit solution by means of Cramer's
rule can be used effectively in only very rare circumstances to
determine the numerical solution.

Consequently, the problem of computing tne value of a game
resolves itself into a hunt for effective numerical zlgorithms.
Cne of the most important algorithn: exploits the connection
between a mult!-—-ctage game anc the original game, viewed ac the
steady state version of the dynam!c game. Thigs rrocedure war i{rn-
augurated by Brown and von Neumann, LQ:,and its validity «sas
established by J. Robinson (17,. A continuous version of th!s
process wae aleo consgldered by von Neumann, {9;,cr. aleo Zellman,
[2] for a gereralization. There are a numcter of otler techniques
based upon the connecticn between tre thecry of games and linear

- -

programming, cf. &) .

In any particular case, a great deal can usually ve done by
the use of dominance arguments, which greatly simplify tne cearch
for a golution by eliminating certain feasivle, but obviously

inefficient, strategies at the outset.
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§5. Continuous Gamee.

In the preceding rections, we have assumed that each player
had a finite number of choices. Let ue now consider a more
general situat’on w«here each player har a continuum of choicec.

Suppose that each player 1& to choose a number in the
interval [0,1]. If the first player chooses x and the cecond
player chooses y, the payoff to the firet player is determined
by the function K(x,y), w#ith tne negative of this the return to
the second player.

In order to mix choices, each player chooses a distribution
function, dG(x) for the first player and dH(y) for the second
player. The expected return for the firct player 12 then given
by

1

(1) ~/oh %}K;x,)')dclx)dﬂ(y)

The analogue of the fundamental result of von Neumann 1s the

result, due to Ville, [21], that

! ] |
(2) Max H;n {l‘/o K(x,y)dG(x)dH(y) Mxiin ng[b{%l((x.y)dc(x)dd(y)

C
provided that K(x,y) i¢ continuous over the square O < x,y < 1.

One of the rezaong for considering continuous games lies in
the fact that the solution may be considerably simpler to obtain
than in the discrete case. !l!liere, the conftinuous case 1s to be
considered as an approximetion to the discrete case.

An interesting study of games of timing, aricing from the
study of duels, is contained in Shirfman, (19]. A discussion
of continuoug poker games ie contained in the references cited
in §11.

§5. Non—Zero Sum Games.

The analysis of the foregcing sections applied to games



F-1062
4—=15=57
N .
in which the players were in direct opposition, in the sense that
a gain for one player meant a loess for the other. In a large
number of applications of game theory, say to economic situations
or to military situations, this 18 not the case.
Let us consider two simple ways in which we can be forced
to study non-zero sum games. Returning to a discussion of the
two—choice game, assume that the payoff matrix for the first

player is as before

1 -2
(1) A= (
e

but that the payoff matrix for the second player 1s not the

negative of this, but rather the matrix

-2 1
B (
1 =2/

Thie means tret the players measure the outcomes of decieslions
in different ways. Tnis 1s the usual situation.

The firset player as before wishes to play fo as to maximize
the quantity ab + (l-a)(l1-b) - (a(l=b)) — bv(l—a), but the second
player wishes to play so as to maximize the quantity —lab — 2(l1-a)(l-b)
+ a(d-b) + b(l=a). In the case w~here E = —A, the=e two aims were
in direct opposition, so that w~e could combine these two types
of play into one min-max situation. This we can no longer do.

What then do we do? The anctwer 1s that nobody knowe for eure.
There are a number of tentative proposale, cf. von Neumann-Morgen—
stern, [é, Nash, flj, which yleld interesting and informative
results in some cases, but there i# no uniform satisfying theory

corresponding to the zero—sum case. An interesting discussion 1is
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contained in McKinsey, {i3].

§10 Different Criteria.

We encountered difficulties in the previous section because
we allowed different pay—off matrices for the players. Suppose
we insist that B = —A, but now assume that the two players have
different theories as to how one ghould proceed in processes of
this type.

For example, one player may be perfectly willing to maximize
his expected return, while the other player may wish to maximize
the probability that ne wins a certain amount, or being a conser-
vative type, may wish tc minimize the probability that he loses
more than a certain quantity.

Using these different criteria, we are once again faced with
a situation in whicn the two players are not in direct opposition,
and there ig the same lack of a definitive theory noted in the

preceding sectior.

§1.. N-Person GCames — N > 3.

In applications, particularly of an economic nature, we
encounter processee 1., which there are more than two players.
Examples of this are furnished by bidding on industrial contracte,
and by a number of games of social nature such as bridge and poker.

Analyzing the probtlem in a purely rational manner, it turne
out that tne obvioue thing to do in some caeses is for two of the
players to form a coalition against the third, or in other cases
for all three of the players to form a.coalition against the

consumer. However, the rules of the game may forbid this simple
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solution. How then to play?

Again, there are a numter of tentative thecries, cf. von
Neumann-Morgenstern, [2@. Nash, [153, and S.apiey, [kg, but all
have a number of drawbacks. At the present time 1t appears as
if there uiil never be any unitary theory of N—person games,
but only a number of theories, each satisfactory within its
domain, but incapable of being stretched to cover the entire

region of interest.

§12. Poker.

As soon as one hears the term "theory of games", one 1=
intrigued by the possibility of applying this theory to the treat—
ment of such pastimes as poker. From what we have sa!d above,
it 1s not to be expected that much can be done in connection
with actual poker, where there are six, seven or eight players,
each with quite different utility functions. However, it Iz
interesting to analyze some gimple two—percon games in the hopes
of being able to understand some aspects of such characteristic
features as bluffing, and, generally, as a matter of intellectual
curiosity.

A considerable amount of material on poker may be found in
the book by von Neumann—Morgenstern, [24. It turne out, however,
that it is considerably simpler tc consider some continuous
versions of poker, cf. Bellman-Blackwell, [6], and bellman, [)].

An analysis of a three—person poker game uging the equilibrium
point theory of Nash may be found in Nash-Shapley, 561, where

. d

other references may be found.
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As far as applying these reculte to actual play is concerned,
let us state the general rule that the only way to play poker is
to play according to the opponente and not according to some

rigid preconceived theory.

§13. Games of Survival.

Another very interesting clacss of games are those which have
been given the name "games of survival". These correspond to
the classic "gambler's ruin" in which two players sit down and
play until one or the other of the players has all the money 1n
the game. What distinguishes this type of game from those con-
sidered &sbove, 18 not so much the multi-stage aspect, but the fact
that there is a correlation between stages due to the fact that
the choices available to each player at each stage depends upon
the amount of money he has at this stage.

For a discussion of multi—stage games and games of survival,
we refer the reader to Bellman, (4], Milnor and Shapley, (14).
The functional equation technique of dynamic programming, CE].

is useful in the discussion of these processes.
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