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SUMMARY

The well known chemical equilibrium problem 1s expressed
in the form of minimizing the free energy of a mixture 1in
order to compute the chemical composition at equilibrium.

By plece—wise linear approximations to the free energy
function, the problem becomes a linear program which can be
solved by a standard code on a computing machine. Successive

approximations give any degree of accuracy.
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A LINEAR PROGRAMMING APPROACH TO THE
CHEMICAL EQUILIBRIUM PROBLEM

1. INTRODUCTION

The extension of linear programming methods into the non—
linear area is reccgnized as one of the outstandinz areas of
research today. One way to treat a general convex objective
function 1s'to locally linearize it by taklng partial deriva-
tives. However the authors belleve that researchers in the
linear programming fleld are interested in ideas that convert
a "near" separable convex function into a completely separable
case where more efficlent methods can then take over [1], [2].

Although the particular problem resolved has a non-manage—
ment application, it should also be of interest to a rather
large audience scheduling for the Petroleum Industry. These
are for the most part chemical engineers who are familiar
with the application to the Chemical Equllibrium Problem ana
who can take advantage of the solution for thelr respective
companies. They will find the companion paper [3] discusses
more of the chemical background to the problem and glives an
alternative procedure. The present paper stresses the
mathematical development of the linear programming approach

tc this problem.
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The determination of the chemical composition of a com—
plex mixture under chemical equilibrium conditions is a
classic pioblem. There have been many computing techniques
proposed and the constant appearance of new ones attests that
none are entirely satisfactory. In our second paper [3],
entitled "Chemical Equilibrium in Complex Mixtures", the
formulation of two methoas discovered in the course of our
researches were reviewed, one of which is a steepest descent
based on a quadratic fit to the free energy function to be
minimized, and the other which reduces it to a linear program—
ming problem. The purpose of this paper 18 to give a
complete account of the latter. Our purpose is to show that
there 1s an elegant way to transform the free energy function

into a convex separable function which permits convenient

plece—wise linear approximation and consequent solution by
linear programming. Any desired degree of accuracy can be

reached by successively improving the approximation.

2. THE PROBLEM

We consider an equilibrium mixture containing m diff-
erent atom types. While in theory these will comline intc
all chemically possible molecular species, in practice only

standard types are considered including the monotonic types
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which are known to occur in measurable amounts.

Let b, = the number of atomic weights of
species 1 present in the mixture.
x, = the number of moles of molecular specles
J present in the mixture where

(1) xy20, J=1,2, ...n.

ol
8

the total numter of moles of gas in
the mixture, i.e.
; = -
(2) L x,
aij' the number of atoms of species 1 In
a molecule of species J.

Then the mass balance equations are

n
(3) 'glainJ «b, foriel, 2, ...m

Trhe determination of the equilibrium composition of a
gaseous mixture is equivalent to the determination of tihe
values of the mole numbers X, that obey constraint (2) and

minimize the total free energy of the mixture given Ly
n n
F ssisal X, + x, 1l X
(x) n) = B oyry L%y e (xy/R)

n n
-Jgﬁc-’xj + ;&(xd/x) 1n (xJ/R).

whicth can be shown to be a convex function.* The values ¢

(%)

J

*(3] contains a direct proof; alternatively the fact
that the chemical equilibrium problem can be reduced to a
linear programming problem to any desired degree of accuracy
also proves convexity.
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are the modified Gibbs free energy function F°/RT of the atomic
species at a given temperature plus the natural logarithm of
the pressure in atmospheres.

Our problem is to minimize (4) subject to the linear
equality and inequality constraints (1), (2), (3).

In order to apply linear programming, we make a piece-
wise linear approximation to each of the terms (xJ/’i) ln (xJ,/i)
that appear in (4). If we set a = xJ/’i and 8 = a 1ln a then
we shall replace each such curve by a broken line function

B = B(a) such as the one below.

Fig. |

The k points where the two curves agree are denoted by (01,51)
where 1 =1, 2, ..., K.

Let us imagzine that the values of X and x, are fixed for
the moment and that the values of X;, 2 0, X5 2 0,...,x, 20

are chosen so to satisfy



(5) X B s ® Fa ¥ i B Ky
(6) Xy = GiXeq 4 GoXon + ool 4 O X)
and to minimize 24 where

(7) 21 - lell + 52112 +* .0 * kalk.
We shall ncw prove that B = B(a) 1s convex, that

(8) Min z, = x ﬂ(xl/ﬁ) & x, ln(xl/i).

Proof: It 1s clear that B = B(a) will be convex if B = alna

is convex and this follows by noting that

(9) ®=l+lna

is monotonically increasing. Next let us substitute

= A\ X = \ X

(10) X11 " MXe Xy = MK, eee, Xy o= N

then (5), (©), and (7) may be rewritten
(11) 1 - A+ AL+ ...+ A

1 2 K
(12) (xl/x) ISR Y P P Y
(13) (zl/i) = ByA 4 Boh, + L+ B

> 0

and the problem 18 equivalent to finding kl >0, A2 2 O,..,Ak >

satisfying (11), (12) for fixed x, and X minimizing (zl/f).
If we interpret 11 > 0 as the welghts assigned to the points

(01,51), then g@ixi and £p1*1 are coordinates of the center
of gravity of the points. Hence we are seeking welghts to
assign to the points such that the abscissa of the center of
gravity is (xl/f), see (12), and the ordinate (zl/f), see (13),
is as small as possible. Obviously this smallest value, for

any convex curve B = 8(a), is B(xl/i), and this value is ob—
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tained for a broken line function by assigning li = 0 to all
points except the two points on either side of (xl/f) and
weighting up these two points appropriately.
Ta solve the chemical equilibrium problem by linear
programming, consider the problem of finding xJ >0, xJ‘ 20

£1d minimum z satisfying

11 1n*n 1
e e Wil ORI PRI o G B
a X, + +a, X - b
x1+-oo+ xn-x .o
4
-—X +) x = 0
L %1y
s k
- X +‘;a Xng = 0
________________ tg;_......_
. - X + X = 0
" nt
-
- Xy +Aa‘xu =0
k
-12 +}:10‘x2‘ =0
———————————————————— E----;
- X 4 a =
n — $*ns

K K
CaXy + «ov + C X +‘§lp‘x1‘ +‘§lb‘x2‘ + ... +£1"x"‘ -2z
It will now be easy to see that the values xJ - xg, that
form part of the optimal solution to (14), give the optimal
solutian to (1), (2), (3) 4f (4) 1s replaced by the approxi-

mation
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g n
(15) F+F -ngcjx +J§1x a(x 2.

Proof': Consider an optimal solution to (14) and let the
o

values cf x, = x,.
ue 3 3
from the structure of (14) that the optimal choice of values

For these fixed values of xJ, it is clear

X1q0X900+ Xy for example must satisfy (5) and (6) and
minimize z, given by (7). Moreover by (&) the value of
%°B( x‘}/x° ) and

Min z -lec x° +lex°a(x3/i°) = F°

Conversely, consider an optimal solution to (1), (2), (3), (1%)

21-

with values x we can always find values xJ - xJ‘

k
-i;lxst
k
x3 -lz-:la‘xh
B(X3/'f') -‘ia‘xsz .

As we saw in the discussion following (13), these Xy» Xy

v J’
such that

jy are
a solution to (14) whose value z = z* 13 the same as the
value Min F obtained by substituting X, = x} in (15); hence
Min F = z*. Prom the relations Min F = z* ) Min z and
Min F < P° = Min z follows Min F = Min z and our proof is
complete.
This approach has several advantages over previous methods.
(1) It uses a standardized code of the simplex method

of linear programming.
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(2) Only one curve a log @ for 0 < a < 1, has to be
approximated and this can be done as accurately as desired
since the number of equations is not increased.

(3) There is no necessity of deciding in advance which
are the so called major components and which are the minor
ones as in the usual case for other methods.

The evaluation of a, log G, can be included in the coding
so that the successive apbroximations could be carried out
automatically to any degree of accuracy.

In order not to tax the'memory of the computing machine
and also to reduce the number of computations of
By = a, log a,, the following system of "screening" should be
added to the code.

First compute B = a, log a, at a, = 0, .5, 1 with
grid size .5. Then after the first linear program approxi-
mation has been solved, for each term (xJ/i) 1n (xJ/R),
halve the grid size and compute only those new values which
are adjacent to the current value of a = xJ/i. Thus on the

second plecewise approximation, if some x, = O, compute

J
ﬂ‘ =a, log a, at a, = .25, discarding the value at a, = 13
if xJ/Y = .5, compute @, log a, at .25 and .75 and discard the
values at O and 1. If xj/f is a weighted average of two grid
points O and .5, then include a grid value of a, at .25 and
discard the value at 1, etc. In this way for each new plece-

wise approximation we have at most three values of a‘ and

a, log a, for each J =1, 2, ..., n such that the range of aJ
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values 18 halved each time. It has been oiserved empirically
that successive values of xd/i have stayed within the ranges
set up for all previous cycles i.e. the accuracy has doubled
with each successive approximation.
After a sufficient number of cycles have been carried
out, any xJ which is still at zero level in the approximate
solution could be adjusted to a trace level by standard
methods used to get the order of magnitude of such components
when the non-trace level components have been determined very
closely.
When there are a large number of problems to be run, 1t
is recommended that the simpler code be modifled to gencrate
internally in the machige the columnc assoclated with the
variables xJ‘. If this 18 done it 1s probably best to deter—

mine the best cholce of Ay ﬂ‘ analytically for each J

rather than by the above grid technique. 'The present RAND
code 1s being modified along these lines.

There 18 also another improvement possible which takes
further advantage of the structure by partitioning the basis
into two parts—the first part associated with the first m
rows and the other associated with the remaining rows. This
results in an essential m x m subbasis whose inverse 18 needed—

the remainder of the computation is then carried out implicitly.
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