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T e well known c emical qu1lib ium pro lem is exp eased 

in the form of inimlzing tLe free ne rgy of a mix ur in 

orde r to ompute t e c 1emi cal composition at equili r 1 

y piece-wise linear a p o~ima ions to tl f e energy 

fun c ion, t h pro lem e comea a lin a program w 1 can e 

solved by a standard code on a omputlng ma c lne . Su cesslve 

pp ox1mat1ons lv any de~ree of a cu a c . 
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The extensi n of linear r g ranuning methods into the n n-

linear area is recognize as one of the outstan in3 ar as of 

r e search today. One way t treat a re neral conv ex ob ective 

function is t o 1 cally linearize it by taktng partial eriva­

tivea. However the authors bell~ ve that r s ear ch rs in th 

linear programming fi l ar inte r sted in i eas that conv rt 

a "near" separabl onve x unction into a completely Se?ar ble 

ase where mo re efficient m tho s an then take ov r [lj, J. 
Although t h partie lar pr bl 1 r e s olve has a non-mana e­

ment application, it s h ul also be o inte r est t o a a the r 

large au ien e ache ul in f r the Petr l eum In ustry. These 

are f or the most part chemical ngin e ra wh a r e f amiliar 

with the a plication t the Chemica l E uilibrium Probl em an 

who can take advanta of t e s olution for their r e spe cti ve 

companies. They will fin the c npanion pape r (3 d iscuss s 

more of the chemical backgr un t o th pr bl H1 an g i v s an 

alternative procedu r • The present paper stresses the 

mathematical dev 1 ment of the lin r programming approach 

t c this probl m. 
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The etermination of the ch~m1cal composition of a com­

plex mixture under chemical equilibrium conditions is a 

classic problem. The re have been many computin · techniques 

proposed and the constant appearance of new ones attests that 

none are entirely satisfactory. In our second paper(}), 

entitled "Chemical Equilibriwn in Complex Mixtures", the 

formulati n of two metho s di~cov~red in the course of our 

researches we re reviewed, one f which is a steepest descent 

based on a ua ratic fit t o the free energy function to be 

minimized , an the oth r which reduces it to a linear program­

ming pr bl~m . The purp s e of this pape r is to give a 

comple t ac ount f the l a tte r. Our u1~ose is to show that 

ther~ is a e l e ant way t o transform the free energy function 

into a x separab l functi n wh1 h permits convenient 

piec -wise linear approxima tion and consequent s olution by 

linear r o ramm1n • Any esired egree of accuracy can be 

reached by s uc ce ssively 1mpr vin the approximation. 

2 • THE PROBLEM 

We cons1 er an e uil1br1um mixtur conta1n1n m diff-

e rent atom types. While in theory these will com~1ne 1nt 

all chemically p asible mo lecular spe cies, in practice only 

standard types ar cons! ere 1ncludin the monotonic types 



Which are known to occur in measurable amounts. 

Let 
1 -

t he num er of a to i c weight s of 

spe cies i pre sen in t he mixture . 

xj • the num er of moles ()f mole cular sp 

j present in he mi xture wher-e 

(1) xj ~ 0, - 1, 2, . . . n . 

-X • t e total num e r of moles of gas in 

the ix re i. e . 

(2) X • L X j • 

ai J• e num e r of a oms spec ies 1 

a molecul or spe .1es j . 

then the maaa balance e uationa are 

(3) • i ro 1 - 1, 2, ... 

c i s 

n 
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Tt;e detennination of th equilibr i um composition of a 

gaseous ixture is equivalent o e de termination of h 

values or tle mole num e s t at o ey const r ain ( 3) an d 

( 4 ) 

wh1c~ can be s hown to be a convex function.• The values 

•[,] contains a direct proof; alternatively the fact 
that t~ cheaical eq~ilibrium problem can be reduced to a 
linear progra.a1ng problem to any dea1red degree or accuracy 
alao ~roves convexity. 



are the modified Oibba free energy function P0 /RT of the ata.1c 

species at a given temperature plus the natural logarithm or 

the pressure in atmospheres. 

Our problem is to minimize (4) subject to the linear 

equality and inequality constraints (1), (2), (3). 

In order to apply linear progr~ng, we make a piece-

wise linear approximation to each or the terms (x J 1 x) ln (xJ /x) 

that appear in (4). If we set a • xJ /X. and ~ • a ln a then 

we shal l r pl ace each such curve by a broken line !'unction 

~ - ~(a) ~ c a s t e on e low. 

( 0,0) ( I, 0) 
a 

r f3: (a ) 

{j : a Ina 

Fig . I 

T e k points where the two curves a ree are denoted by (a1 ,~i) 
where 1 • 1, 2, ... ' 

Let us ima 1ne that the values or i and x1 are fixed for 

the moment and that the va l ues or x11 L 0, x12 L O, ..• ,x1n l 0 

are chosen so to satisfy 



(5) 

( 6 ) 

-X • 

and to minimize z1 where 

(7) 

+ 

We shall now prove t hat ~ • ~(a) is convex, t hat 

(8) Min z1 • x ~(x1/X) • x1 ln(x1/ x). 
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P oor: It is clear that ~ • p(a) will be convex if p • alna 

1s convex and this follows by noting that 

(9) !- • 1 + ln a 

is monotonically increasing. Next let us substitute 

(10) xll • ~lx, xl2 - ~2-x, •.. , xlk • ~kx 

then ( 5), ( ), and (7 ) may be rewritten 

(11) 1 • ~1 ).2 + + ).k 

(12) (xl/ J ) • al ~l + a2).2 + + 0k~k 

(13) ( z1/x) • pl ).1 + ~2).2 + + ~k ).k 

and the pro l em is equivalent to fining ).1 ~ o, ).2 ~ o, .. ,).k L o 
satisfying (11), (12) fo fixed x1 and x minimizin (z1/x). 

If we inte rpre t ).i > 0 as e weights assigned to he points 
k - k 

(a1,,1 ), ten ~ai).i and ~i).i are coordinates of the center 

or gravity or t he points. Hence we are seeking weights to 

assign to t he poin s such that the abscissa of the center of 

gravity is (x1/ f), see (12), and the ordinate (z1/l), see (13), 

1s as small as possible. Obviously t his smallest value, for 

any convex curve~ • ~(a , is ~(x1ji), and this value is ob-
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tained for a broken line function by assigning ~1 • 0 to all 

points except t he two points on eit e r aide of (x1/x) and 

we1ght.tng up t hese two points appropriately. 

To solve t he cherni al equilibrium problem y linear 

programming, consider U·e problem of finding xJ ~ 0, xJJ ~ 0 

&~d minimum z satisfying 

----------------------------------
amlxl + . . . ·~~ - b m 

xl + • • • + xn -x - 0 

-x+k xlJ - 0 

k 
-x +Jh x~J - 0 

-------------~--K-----
-x 

- 0 
k x2 + ka,x2, • 0 

--------------------K---~-
- xn +~laJXnJ • 0 

It will now be easy to see that the valuea xJ • xj, that 

form part of th~ optimal solution to ( 14 ), g1ve the optlal , 

aolutiqr to (1), (2), (3) 1f (4) is replaced by the approxi­

mation 



_ n n 
( 15) P • F • Y C j X j + l; X ~ ( X j / f) . 

j~ J•l 
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Proof: Consider an optimal solution to (14) and let the 
0 values or xj • xj. For these fixed values of xj, it is clear 

from the structure of (14) that the optimal choice of values 

x11 ,x12 , .•. ,x1k for example must satisfy ( 5 ) and ( ) and 

minimize z
1 

given by (7). Mo reover by (8) the value of 

z1 • XO~(x~/~0 ) and 
n n 

Min z -~cjx~ +J~x0~(x~/i0 ) • ro 

Conversely, consider an optimal solution to (1), (2 , (3), (15) 

with values xJ • xj,we can always find values xJJ • xJJ > 0 

such t hat 

Aa we aaw 1n the discussion followin (13), these xJ, xJl are 

a solution to (14) whose va lue z = z• is the same as the 

value Min V obtained by sub t 1tuting x j = x• 1n (J 5 ); hence 

Min F = z•. From the relations Min F = z• 2 M1n z and 

Min P ~ pO = Min z fo llows Min f = M1n z and o r proof is 

complete. 

Thia approach has several advantages over previous methods. 

(1) It uses a standardized code of the simplex method 

of linear programmin . 
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(2) Only one curve a log a for 0 < a < l, has to be 

approximated and t his can e done as accurately as desired 

since the number of equations is not increased. 

(3) There is no necessity of deciding in advance w ich 

are t he so called major components and which are the minor 

ones as in the usual case fo r other methods. 

The evaluation of al log a 1 can be included in the coding. 

so t .at the successive approximations could be carried out 

automatically to any degree of a ccuracy. 

In order not to tax the memo y or the computing machine 

and also to reduce t e number of computations of 

~l • al log at, he following system of "screening" s hould e 

added to t e code . 

First compute ~ . • at log al at al • 0, . 5, 1 wit 

grid size . 5. Then after the first linear program approxi­

mation has been solved, fo r each term (xj/ x) ln (xJ/f), 

halve t e grid size and compute only those new values which 

are adjacent to the current value of a • x j /X. Thus on the 

se cond piecewise app r oximation, if P~me xj • 0, compute 

~t • aJ log a 1 at al • .25 , discarding t he value at al • 1; 

if xj/X • . 5, compute at log a 1 at .25 and .75 And discard the 

values at 0 and 1. If xj/X is a weighted average or two grid 

points 0 and . 5, then include a grid value of a 1 at .25 and 

discard the value at 1, etc . In this way for each new p1ec&­

wise approximation we have at most t hree values of aJ and 

aJ log aJ for eac j • 1, 2, ... , n such that the range of aJ 
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values is halved eac time . It has been o served emp1r 1cally 

that successive values of xj / i have stayed within the r anges 

set up for all previous cy lee i.e. t e ac uracy has dou led 

with each successive approximation. 

After a sufficient num er of ycles have een carried 

out, any xj w ic ia still at zero level in the approximate 

solution could be adjusted to a t r ace level by standard 

methods used to get the order or gnitude of sue components 

whe~ the non-trac level components have een determined very 

closely . 

en there a re a 1 rge num er or r oblems to J n, it 

is e commended at t e sinple . co e e mo ified o genera 
• 

1ntemall:z: 1n the mac ine e columno as so !a ted wi t .. t 

va r iables xj.t• If this is one i i s pro l y es t o de t I"-

mine t e est c .oice o a~,, ~l a.naly i al l y for eacr J 

rather th y the a ove gri ec nique . he pr esent RAND 

code is being mo ified along t hese lines. 

T ere is also another i mp ovement possible w 1c akes 

furt e r advantage of t .e struct r e y partitioning e basis 

into two parts-- e f i r st pa r asso lated with t e f i r st 

rows and t e ot e r associa ed wi he r emainln rows. T l a 

r esults in an s sen ti 1 u as! w ose inv r se is needed--

the remalnd r of the co pu ation is t en ca r r i ed ou i mplic i t ly. 



1. 

2. 

3 . 

BIBLIOGRAPHY 

P-1060 
4-15--57 

-lo-

Dantzig, Q.B., Recent Advancee in Linea r Proframming 
Management Science, January 195o, pp. 131-1 }. 

Charnee, A. and Lamke, C.E., "Min1m1zat1 n or Non-Linear 
Separable Convex Punctlone." Naval Ree a rch Logistics 
Quarterly VI, pp. }Ol-Jl2 (1954 ). 

White, w.a., Johns n, S.M., and Dantz1g, O.B., Chemical 
~u111br1wn 1n Coj~lix Mlxturea, The RAND Corporation 
aper P-1059, Apr 5, 1957 (To appear in the Journal 

of Chemical Physics). 


