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INTERPRETATION AND COMPARISON OF OUTPUT SIGNALS 

FROM LINEAR-FM PULSE-COMPRESSION SYSTEMS 

ABSTRACT 

Several expressions for the output time function of a linear-FM pulse-compres- 
sion filter, which have recently been derived, (ESD-TDR-64-128) are compared 
and interpreted.    Comparisons are made analytically as well as graphically 
with respect to several pertinent parameters. 

It is shown that if the phase and envelope measurements of signals returned 
from an actual target were to be interpreted as though the signal had undergone 
a Doppler shift (instead of a time dilation), a considerable error would result 
for high target velocities. 

The feasibility of using an all-pulse-compression system for obtaining accurate 
estimates of radar target parameters is demonstrated.   Simple analytic expres- 
sions, which describe the phase and envelope quite well during the time of mea- 
surement, are presented, and a procedure for properly interpreting the data is 
indicated. 
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INTERPRETATION AND COMPARISON OF OUTPUT SIGNALS 

FROM LINEAR-FM PULSE-COMPRESSION SYSTEMS 

[1]* This document is an extension of a recent theoretical investigation      in 

which several expressions (with different degrees of accuracy) for the output of 

a linear-FM pulse-compression system were derived.    The purpose of this 

report is to compare and interpret these expressions.    For convenience, we 

shall first give a brief summary of Ref. [ 1 ] , using the same notation with only a 

few exceptions. 

The transmitted signal is assumed to have a flat band-limited amplitude 

spectrum and a linear group delay, as illustrated in Fig. 1.    For simplicity, 

only the positive half Of the spectrum is shown.    (Here, a> = 2irf, as usual.) 

For large values of the time-bandwidth product, TW/27T, this is approximately 

a linear FM signal.    The following two pulse-compression systems are of 

particular interest here: 

Pulse-Compression 
Systems B = W/2TT T f   = a) /2TT 

o      o 

No.  1 10   cps 
-3 

10     cps 1280 Mc 
(1000:1 system) 

No.  2 
6 

5 x 10 cps 
-3 

2 x 10    sec 1280 Mc 
(10,000:1 system) 

* Numbers in brackets designate references at end of text. 
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Fig.  1.    Transmitted Signal 

The pulse-compression system model in Fig.  2 is used in the analysis. 

Transmitter 

s(t) 

S(w) 

x(t) 

h(t)=S(T-t) 

y(t) 

Target Receiver  fr~ 

X(u>) Y(u>) 
-jwT 

H(co)=S* (aj)e 

Fig. 2.   Model of Pulse-Compression System 

The receiver is seen to be matched to the transmitted signal. The target 

is assumed to be a point target. For a target moving with uniform radial velo- 

city,  V, the relationship between the transmitted spectrum, S(o)), and the re- 

ceived spectrum, X(w), is 

X(co) c-V k..S2W.22. 
c-V 

-JCO 
2R 

(1) 



k        is a constant which depends on the target's cross section, 

R        is the target's range when the pulse strikes it, 

V        is the target's radial velocity when the pulse strikes it, and 

c is the velocity of light in free space. 

If the change in range and radial velocity due to the target's radial acceleration 

(and higher order terms) during the illumination time is small,  Eq. (1) is a 

good approximation.   This is assumed to be so for cases of interest to us. 

Thus, the original spectrum, S(co), has become attenuated, delayed, and 

distorted.   We may think of each frequency component, w. , as having been 

shifted to a new value, u>.    I —- I =   u>.   11 -    —rr-].    The amount of shift 
i   \c+V/        1  V c+V / 

depends both on the velocity of the target and on the particular frequency of 

each component.   In the time domain this corresponds to a "time dilation." 

For a narrow-band signal, all frequency components are close to the 

center frequency wn and are, therefore, shifted approximately by the same 

2V /       2V \ 
amount,   ——   un   ( «        w„ for V < < c    .    Under this assumption, the 

c+V      0   \ c        0 I 

whole spectrum is merely shifted and no distortion has taken place.    Since 

c+V 
——   «   1, Eq. (1) then simplifies to 

2R 
/ 2V \    ~]0)    T~ 

X(w)   •••• kS [ w +   —    w   j e . (2) 



We concern ourselves here with radial velocities up to 10, 000 meters/second. 

The output time function (refer to Fig. 2) is expressed in the form 

y(t)   =  Ecose   . 

Assuming that a simple Doppler shift is an adequate representation [ i. e. , as- 

suming that (2) is valid]   , one obtains 

2k/w\   Smt      1 
E = Ed= T(T) —— ' <3a> 

*   T 

9 = ed = wo '*' + 6 ' (3b) 

where the subscript d denotes the Doppler case.   Here 

w*       w       V /      v\ 
2 2 c0'0 0  \ c J ' 

tt    • t       —       T+   ifc        \ j- for FM up 
c W \ c     W0/ |+ for FM down    ' 

T /2V 
o   =    — I —    Ct) 

W \c       0 
w + u' -   — 

-   0 2 
j + for FM up 
j - for FM down 

where the 4^ and T notations imply that the first sign is for FM up, and the sec- 

ond sign is for FM down.   Note that t' = 0 corresponds to the maximum value 

of E.   The above expressions were derived primarily as a check and as an 

interesting comparison with the expressions that follow. 

Using Eq. (1) as a description of the returned spectrum, one obtains, 

without any further approximations, 



Ee •   T   ^^y^'V-^2^^-^2' •   • 

9     =   + 
e      — 

t" + 
T      4Vc 

CO' 

(c-V)2    ~° 

2     1        4VC 

W 2 
(c-V) 

- tan 
-i s<v - S*V 

C(Ul) - C(u2) 
(4b) 

where the subscript e denotes the exact case.   The terms S(u) and C(u) are the 

Fresnel integrals, as defined by Eq. (40a) in Ref. [ l] .   Here we have 

c-V 
Ul   =      2 y; w 

TVc 
W 4Vc 

2    \W/ 2 
(c-V) 

+   t1 

u 

W" 
~2~ 

c-V V^ W 
TVc 

W"  /T\    4VC 

' (c-V,2 
+     t» 

W   / c 
2   lc+V/ " W0    c+V    * W0 %   lc+v) "     2   lc+V 

W / V 

t"   =   t-    ^   -T+     *L(1)   w   -    2 
c -   c-V \ W/     0        2 

2c 
    a;" 
c-V      0 

The point t" = 0 corresponds to the peak of the envelope.   Approximations to 

(4a) and (4b) were obtained using asymptotic expansions of the Fresnel integrals. 

Denoting these approximations by the subscript a, we have 

W" 

2k/c+V\w^     Slnt"    T 
a '      7T Vc-vj   2 ...    W" (5a) 

e   = w" t" + 
a 0        — 

2Vc 

(c-V) 
2 VW <«») 

W" 
2 

2 n 
(5b) 



The maximum value of E   also occurs when t" = 0.   A second method for 
a 

approximating the output function was used.   A simplification was made with the 

output spectrum, thus eliminating the Fresnel integrals.    This method yielded 

an expression for E identical to (5a) and an expression for 6 which was equal 

/wM\ /W"\ 2 
to (5b), except that the I —- 1      term was missing.   Although I -— I     < < (co'') , 

we shall see later that this term is necessary to properly interpret the expres- 

sions for 6  .    Equations (5a) and (5b) are expected to be good approximations 
e 

to the exact expressions for the values of time which satisfy 

ii Vc     /T\ V 
|t»|    >  100 W"     W    «100    -    T      . (6) 

(c-V)     \    / 

One comment should be made at this time.   In Ref. [ l]   we referred to 

the expressions denoted here by E  ,  E    and E    somewhat loosely as envelope. 
Q 6 3. 

Strictly speaking, this term applies only to E , since E   and E   take on nega- 

tive values.   The envelopes corresponding to Eqs. (3) and (5) are |E .1 and 
a 

] E  j, respectively.    The abrupt phase reversal which occurs as a result of 
a. 

the change in sign for the amplitude can be absorbed in the phase function by 

adding a term n7r, where n is even when the amplitude is positive, and odd 

when the amplitude is negative.   We shall later compare E   with | E  | and 9 
6 3. C 

with the appropriately adjusted function 6  . 
cL 



Instead of using the exact but unwieldly expressions in (4), we would like 

to use the approximate expressions in (3) or (5), perhaps in conjunction with a 

simple (we hope) error function. 

Let us first compare Eqs. (3a) and (5a).   They are both of the form sin x/x. 

One immediate observation is that the peaks occur at different times.   In the 

simple Doppler case (Eq.  3a), the peak occurs when t'  =0, i. e. , when 

2R       _,        T   /2V 
d c —   W   V c       0 (7) 

(We use t   to denote the time of the peak for the Doppler case.)   The peak of 

the approximate expression (5a) coincides with that of the exact expression. 

This occurs when t' * = 0, i. e., when 

2c 2R        m        T   / 2V 
t  =   t     =         +T+    wl—TT e c —   W Vc-V 

W 
CO"   I   I  - CO    +     — 

0   Vc-V/       0        2 
(8) 

Note that if the velocity is constant, true estimates of range and velocity 

can be obtained by alternately transmitting FM up and FM down and taking the 

sum and difference, respectively, of the time delays.   This is true for both (7) 

and (8). 

Letting At = t   - t   and substituting for co", we obtain 

T / 2V 
At  =±   W    c— 

_T./2V 
-    W \ c 

V 
con    —    + 

0    c 
2V W /c-V 
2     2 

c-V 
2  \c+V 

V W 
co      —    +    — 

0     c 2 
(9) 



4 
At the maximum velocity being considered here (V = 10   meters/second), we 

have 

At «   + 0. 0362 /usec. for system No. 1 

At » +  0. 0678 fxsec. for system No. 2 

This corresponds to a range difference of approximately 46 half-wavelengths 

for system No. 1 and 87 half-wavelengths for system No. 2. 

With the width of the compressed pulse being approximately 1 and 0. 2 

jusec., respectively, the difference in delay above corresponds to about 4 per- 

cent of the pulse width for system No. 1 and 34 percent of the pulse width for 

system No. 2. 

Except for this difference, expressions (3a) and (5a) are virtually the 

c+V 4 
same since   ——   « 1 and W" « W for V < 10   meters/second. 

c-V — 

For a sin x/x function, the distance between the points where x = +_ ?r/2 

is commonly referred to as the pulse width.    Denoting the pulse width thus 

defined by  T   and r   (with reference to (3a) and (5a), respectively), and letting 
Q 11 

B = W/27T and f   = co/27r, we have 

(10a) 

(10b) 

1 1 c 
Td 

B - SL f c       0 
Be -2f()V    ' 

T 
a 

1 
B77 

1 c+V 

(^v) - fo ( 
I 2V\ Be - 2 f n V    " 

B rv 0 



Expression (10b) is correct for a receding target.   For an approaching 

target, the bandwidth of the returned signal would be widened and we would get 

a narrower pulse with a pulse width 

Ta   =    Bc-~2Vf  V    • <10C> 

Expression (10a) is valid in either case.    Thus,  T   > T. for a receding target, 
a      d 

but T   < T, for an approaching target, the difference being equal to 
a      d 

1 ' v 
T    - T 
a       d1 Bc-2f  V    ' 

This is only about 0. 003 percent of the pulse width in the worst case. 

Zeros of the two sin x/x functions occur at t' =    —   and t" =    -=^7   , 

respectively.    (Here n = 1, 2, 3, .  .  .    .)   It is seen that the two envelopes are 

about the same.   In both cases the pulse gets wider as V increases, while the 

peak amplitude decreases in the same proportion. 

The two approximate expressions for the phases, 6   and 9   are easily 

compared.    Both are linear functions of time with approximately the same 

slope (co' and cd'\ respectively).    The value of 6   at the peak of the envelope 

(i.e., at t' = 0) is 

V °°>- ^(f "o)(i"o- !)• (11» 
Similarly, at t" = 0 we have, form (5b) 



/ T \   2Vc 
6    (t"   =   0)   =   + ' 

-W'(o-V)2L 

2      /W"\ 
(12) 

These values are substantially different from each other, as one would expect 

from the difference in the time delays. 

Let us next consider the exact equations (4a) and (4b).   It can be shown 

that the envelope E   has even symmetry with respect to the line t" = 0.   We 

established in Ref. [ l]   that   —   E   = 0 at t" = 0, from which we concluded 
dt      e 

that the peak occurs at t" = 0.   It can also be shown that    —   E   = 0 whenever 
dt      e 

t" =    —   , where n = 1,  2,  3,   .  .  . and B" = W"/2ir.    Thus, not only does 

the peak of E   occur at the same time as the peak of E , but all the minimum 
6 d 

values of E   occur exactly at the same times as the zero values of E .    This 
e J a 

implies that the approximation might be better than we had expected, and that 

it might even apply near the peak of the envelope. 

With the hope that this is the case both for the envelope and the phase 

approximations, a computer program was written to compute A9 = 9   -6 

(modified 6 ) and AE = E   - | E  |.   Since these differences are expected to be 
a e a 

largest for high radial velocities, numerical answers were obtained for 

3 4 
V = 10   and V = 10   meters/second for both the No.  1 and No. 2 systems. 

Power series expansions were used for the Fresnel integrals.    These 

expansions converged for some values of the arguments and diverged for others. 

10 



Where divergence occurred, the desired answers were obtained by hand calcula- 

tions with the aid of tables. 

The difference in the envelopes was normalized with respect to the peak 

value of E   at each particular velocity, i. e., we obtained 
8. 

AE Ee lEal AE = (sr = <sr-(sr = E'°-E'> •   (13) x
     max x   7max v    7max 

Using (4a) and (5a), and letting B = W/27T, f   = u/2TT , we have 

AE' = E'  - E' =    ^- 
e       a        B * VJT¥ V[ S<V - S<U2>1 2 + [ C(V - C(U2)] 

sin 7rt" B' 
TTt" B' 

(14) 

The values of AE',  E ' and E ' thus obtained were plotted as a function of 

t".   We refer to E ' as the exact envelope (normalized and to E ' as the | sinx/xj 

envelope. 

3 
Curves of E' and AE' versus t" are shown in Fig. 3 for V = 10   and V = 

a 
4 

10   meters/second.   In the figure, AE' is plotted on a lOx magnified scale.   It 

can be seen that the difference between the exact and approximate expressions 

is quite small.    The largest difference occurs when E' = 0 on either side of 

the main lobe. 

It is interesting to see the effect of radial velocity on the pulse width. 

( The pulse width, as defined by (10), is half of the width of the main lobe) .    It 

is important to remember that each envelope was normalized with respect to 

11 



its own peak value, so that the decrease in the peak value does not show in the 

figure. 

Figure 4 is similar to Fig. 3.   It shows E' and AE as functions of t" for 
a 

3 
the 10, 000:1 system and for a radial velocity of 10   meters/second.    The differ- 

ence between E ' and E ' is still rather small, 
e a 

Figure 5 depicts the worst case considered, system No. 2, for a target 

4 
velocity of V = 10   meters/second.   Now the exact envelope is sufficiently differ- 

ent from the approximate envelope to be noticeable when plotted on the same 

scale.    It can be seen clearly in the figure that E ', the exact envelope, does 

not take on zero values but has minima at those points where E ', the approxi- 
3, 

mate envelope, goes to zero.   Again, the difference between the two envelopes 

is largest at the zero points closest to the main lobe. 

We note that the overall behavior of E ' approaches that of E ' more and 
e a 

more closely as ]t"| increases.    This is consistent with our theoretical predic- 

tions.    Note that the approximations are quite good, even in the immediate 

vicinity of t" = 0.    This far exceeds our expectations. 

Let us next consider the difference between the exact and the approximate 

phase expressions, A6 = 0   - 6 .   We had originally (in Ref. [l] ) ignored the 

/W"\2 
term I -— I       in the expression for 6 , and the numerical calculations were 

made on this basis; i. e. , we computed 

12 



(03IJIN9VH XOD.3V 

J 
c 
i       c 
>        c 

> 
>             < >       \ \       \ 

! > 

/ / 

• J 

i" 3 a 

u • • 
< 

1 

I! 
•           • 
>       > in 

22 \ 
>> 

•MS M   M 
c m 

T at*. 

; 

H^v 
^ 

>* 

<s s P y 
i 
r 

\ \ 

^ N 

k 
3            < U 

\ 
o 

> 

-o 
c 
D 

CL 

I 
c 

X 
c 

o        o        o        o 

13 



( 0 3 I Jl NO VW ),3V 

> 

< 

D 

_o 

LU 

X 

X 
c 

en 

1*1 *"*« )l 

14 



0) a. _o 
> 
c 

u 
o 
X 

c 
o 
<v 
O- 

_o 

> c 

x 
c 

o o ° ° ° o ° 

.lOVXiONvlM'"!*)! 

15 



"-ite^o")1—-1 S(Ul)-S(u2) 

C(Ul) - C(u2)_, 
(15) 

In arriving at this expression, a 6   was used which is the same as in (5b), 
3, 

/W"\2 
except that the I —x-j      term is missing.   Since W" is not a function of time, 

the A6 obtained from (15) can readily be adjusted to account for this missing 

term. 

It can be shown that both terms in (15) have even symmetry, so that A0 

need only be computed for positive (or negative) values of t".    Figures 6 through 

9 show graphs of A0 versus t".   As discussed before,  9   was adjusted (by adding 

IT radians at appropriate times) to account for the abrupt phase change which 

occurs when E   changes sign (]E  ] and E   are never negative), 
a a e 

3 
Figure 6 applies to system No.  1 with V = 10   meters/second.    Note that 

the vertical scale has been expanded near A0 = 0 to show greater detail (Fig. 

6a).    The discontinuities in the graph may appear strange at first sight, but 

can be explained in the following way:   0   makes a sudden jump of IT radians at 

the points where |E  | = 0 (i. e., at the times when E   changes sign).    This can 
a a 

be depicted by a step function, as shown.    The exact phase function,   6 , also 

goes through a phase change of TT radians, but does it in a gradual fashion, as 

indicated.    The difference, A0, has the same shape as in Fig. 6. 

16 
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Fig. 6a.   Expansion of Vertical Scale 

Except for these discontinuities, A0 is seen to approach the dashed line 

indicated in Fig. 6a.    This dashed line would be the zero axis if we had not 

/W"\2 

omitted the I ——- )      term in Eq.  (5b).    It can be seen that the curve is quite 

flat in the vicinity of t" = 0. 

The same comments apply to Figs. 7,  8, and 9.   Note that we are still 

using an expanded scale for Figs.  7 and 8, but not for Fig. 9.    Figure 9 depicts 

4 
the worst case, i. e., the 10, 000:1 system with V = 10   meters/second.    The 

difference between the abrupt and the gradual transitions is considerably 

greater than in the other cases.    Even for this worst case, however, A0 is 

fairly constant in the immediate vicinity of t" = 0. 

Let A0 (0) be the value of A0 in the flat region near t" = 0.   In each of the 

four cases we have considered it turned out that 

18 
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A9(0)   =   | W"\2      2TVc 

(c-V)2Wj 
(16) 

2 /W"\2 

This is —   times the (—5-)     term in (5b), which was originally ignored.   We 

shall assume that the empirical relation (16) will hold, in general, since the 

behavior of A0 and AE has been quite consistent so far.   We have found (16) to 

3 4 
hold for large values of velocity (V = 10   and V = 10   meters/second).   Both 

Eq. (16) and intuitive reasoning indicate that A0 (0) is small for low velocities 

(say for V < 100 meters/second).    Thus, even if (16) should not hold, in gen- 

eral, only a small error would result by assuming that it does.   We shall, 

therefore, approximate the exact phase near t" = 0 by using the approximate 

phase expression plus the above correction term; i. e., we let 

0    =   6   + A0(O), for small values of t". 
e a v 

Using (5b), and (16), we obtain 

2 
6     -   „"t»+        2TVC 
e 0        - 211T (c-V)   W 

(a,-)2-   MW- v 0 ' 3 \   2 
(17) 

Even in the worst case (as depicted by Fig. 9), this expression is quite good 

for values of |t"| _<   —    T, where T is the pulse width defined previously. 

Thus, we can obtain very good point estimates of phase by integrating the phase 

over a symmetrical region (with respect to t" = 0) which is not greater than 

T/4.    Fortunately, this is exactly where we want to make our phase measure- 

ment, because the signal-to-noise ratio is highest near the peak of the envelope. 
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Consider a phase measurement technique similar in principle to that used 

[2] 
in the sequential Doppler processor     .   Suppose we use a single reference 

oscillator of frequency f , which is phase-locked to the transmitted signal; i.e., 

suppose we have available the reference signal r   (t) = A cos u>   t, where A is a 

constant.   Let us call o>„ t, the reference phase,   6   so that 
0 r 

r    (t)   =   A cos 6     =   A cos or t 
c r 0 

(18) 

If we pass this signal through a 90-degree phase shifter, we obtain 

r   (t)  =  A sin 6    =  A cos . 
s r \   r       2 

(19) 

Let us mix (i. e., multiply) the output function, y   (t), with both r   (t) and r   (t). 
6 C 5 

We have 

rc (t) yfi (t)  =  (A cos 6r) (Ee cos y 

AE 
—  [cos (er - ee) + cos ($T + ejl . (20) 

Similarly, 

r (t) ye (*) = s e 
A cos I 6 

r       2 
E   cos 6 

e e 

AE 
- e  -  £ ] + cos (e + e - -£ 

r       e        2/ \ r       e       2 
(21) 

[2]„ Determination of Signal Frequency, Phase and Amplitude from the Outputs 
of the Sequential Processor Fine Doppler Integrators," Bequaert and Manasse, 
MITRE,  October 1962, AF19(628)-2390,  TM-3410 (ESD-TDR-63-203). 
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Suppose we filter the high-frequency components and call the remaining signals 

y   (t) and y   (t), respectively; i. e. , 
c s 

yc(t) 

ys (t) = 

cos (6   - 6 )   , 
r      e 

AE 

~~2~ 

AE 
——-  cos (e - e  - — 

2 \  r       e        2 

AE 
sin (6   - 0 ) 

r       e 

(22) 

As stated before, we wish to obtain the phase measurements near the peak of 

the envelope; i. e., near t" = 0.    The reference phase 6   can be expressed as a 
r 

linear function of t".   Now if we restrict ourselves to an interval I about t" =0, 

which is no larger than   —   of the pulse width,  6   can also be represented by a 

linear function of t". 

Hence, the phase difference is a linear function of t", i. e. , we let 

e  - e   - ft'' + 0 r       e 
(23) 

where f and 0 are functions of R and V.    Using (17), we obtain, after some 

algebra, 

V W 
c+V  I  0 2 

(24) 

. 2R \ T   12V 
«0    —    +TJ±   w     c—   w0 

c2+V2 / 2Vc \ W 
2 „2    U0 + (    "     2 „2J  2 

2Vc 
2     2 2 

(c -V ) 

c -V 

' 2 

c -V 

'/-   Wo-WU -   u   WVc 
3       0 

(25) 
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We assume the envelope E   to be fairly constant* (say, E   = K), in the interval I. 

Then, using (23), we can write (22) as 

AK 
yc (t) =   T cos(ft"+0) - 

AK 
yg(t)   =    -y   sin (ft" +0) 

(26) 

Averaging these functions over I, we obtain 

1/2 

-1/2 

YC=i ri^*- - ¥ •«••*(§). (27) 

1/2 
Yg   =    1    j^  ys(t)df   =    ^    sin 0 sin (f). (28) 

Division of (28) by (27) yields 

Y 
— =   tan 0   . (29) 

c 

Note that this ratio is independent of the integration interval I, provided, 

of course, that the interval is symmetric about the line t" = 0.   (An error of 

AI in the determination of the center line t" = 0 would not result in a large 

error if AI < < I, because we are dividing by I.)   The phase angle 0 thus mea- 

sured is identical with what we would obtain if we were able to obtain a spot 

measurement of phase exactly at the peak of the envelope.   It is very close 

(within 2 degrees in the worst case) to a spot measurement obtained anywhere 

*In practice, the output function is passed through a limiter to make the enve- 
lope exactly flat in the desired interval and to eliminate dynamic range problems. 
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in the immediate vicinity of t" = 0 (|t" | _< 1/8 of the pulsewidth), because the 

time-varying term ft" is a slowly varying function. 

Let us now investigate how we might relate a sequence of phase measure- 

ments to the coefficient of the range polynomial of a given target.   We shall use 

(25) as a description of each phase measurement.   Rewriting (25) in an abbre- 

viated form, we have 

0   =   kx + k2 R+ F(V)   , (30) 

where 

/ 2u>a \ 
k   and k   are constants  (k    =  o>    T, k    =     I , and 

1 2 \l 02 c   / 

F(V) is a smooth function of V, which can be very well represented 
by a polynomial in V over the region 0 <^ V£ 104 meters/second. 

We emphasize again that R and V refer to the range and radial velocity, 

respectively, at the time that the target is being illuminated.   Suppose this time 

were known.   We could then plot two sets of points of measured phase vs time, 

one set corresponding to FM up, the other to FM down.    The ambiguities for 

both sets of data can be resolved in the same way as is presently done with the 

MITRE Department D-82 radar.    Each point would be plotted at the proper time 

of illumination.    The two curves connecting these points would be smooth, 

since R and F(V) are both smooth functions.    The FM-up curve would deviate 

from the curve k   + k   R by + F(V), and the FM-down curve would deviate from 

k   + k   R by - F(V).   The average of the two curves would, therefore, be equal 
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to k   + k   R.    Except for the additive constant k   and the scale factor k , this 
1 Z 1 2 

average curve would then be identical to the range polynomial R(t).   Since k 

and k   are known constants, we can consider the problem of determining the 

coefficients of our range polynomial as being virtually solved, provided that the 

illumination times can be determined. 

Let us therefore turn to the problem of relating the time when the envelope 

peaks to the time when the pulse strikes the target.    Let us refer to the former 

as t   , the time of measurement, which, from (8), is equal to 

2R       „,        T / 2V 
t„  =        + T +    — 
M c -   W \c-V w>-!ix!V ;A 

0 \    2     2 I        2   1 2     2 
c -V   / \ c -V 

(31) 

It is assumed that the pulse was transmitted at time t = 0.    The time of illumina- 

R 
tion is given by t    =    —    .    Letting G(V) be equal to the term following the + 

sign, we can write (31) as 

t„   =   2 t   + T + G(V)   . (32) 
M I        — 

If we knew V, the radial velocity at time, t , exactly, we could evaluate 

G(V) and determine t  exactly.   If we had a fairly good estimate of V we might 

be able to determine t  to a high enough accuracy. 

4 
Now,  G(V) is a smooth function which for 0 _< V_< 10   meters/second 

T /2V 
approximately linear with slope   — I—    o>   I  .   We believe that we can esti- 

W   \ C 0 / 

mate radial velocity from two consecutive target returns to an accuracy of 10 

meters/second.    The resulting error in the determination of t would then be 
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approximately 0. 085 /Lisec., for the 1000:1 system, and 0. 034 usec. for the 

10, 000:1 system.   (This error is of the same order of magnitude as the error 

in determining where the peak of the envelope occurs.)   The corresponding 

4 
maximum range error (for V = 10   meters/second) is less than 1 millimeter. 

Moreover, this type of error is "noise-like, " and would be further reduced by 

smoothing, thus making it negligible. 

We conclude, therefore, that it is quite feasible,  in principle, to obtain 

accurate estimates of the pertinent target parameters by obtaining phase mea- 

surements on the compressed pulse.    Note that the reasoning employed in 

arriving at this conclusion is valid, regardless of the degree of the range poly- 

nomial,  R(t).   In fact,  R(t) need not even be a polynomial - any smooth function 

which allows interpolation between sample points would do.   The same is true 

for the function F(V), which is a measure of the deviation of the sampled phase 

function from R(t).    The only requirement on F(V) is that it be a smooth func- 

tion which is the same for FM up and for FM down. 

Furthermore,  it is not necessary to use a uniform repetition rate or any 

particular FM up-down pattern.    The only requirement is that the up-down 

pattern allows the construction of two phase plots (one for FM-up, one for 

FM-down) which are valid over a common time interval.    For the sake of being 

explicit, let us outline a procedure for relating the phase measurements to 

R(t).   Suppose N-coded pulses are transmitted at times T , T ,  .  .  .  , T   . 
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Let tj. be the time it takes the j    pulse to reach the target [which would then 

be at ranee R. = R(t.), where t. = T. + tT 1.    Let tM. be the time at the peak of 
J J J       J      Ij MJ 

the j    compressed pulse measured from T , and let 0. be the phase measured 

at time T. + TM.- 
J J 

Figure 10 is a rough sketch of the relationship between the various quanti- 

ties. 

Vvi 

-I'M ... iv,-n ... 177 
•N       TN+V 

(TIME OF FIRST       j»*  SECTION 
MEASUREMENT) 

Fig.  10.   Relationship Between Various Quantities 

There are four pieces of data to be stored for each transmitted pulse. 

t h 
For the j     pulse, these are T.,  Tjyj., 0. and the mode of transmission (FM up 

or down). 
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Let us assume that a good estimate of V   is available.   Using that value 

of V,  G(V) in (32) can be computed, and tj   can be obtained with the aid of (32). 

The measured value of phase can then be associated with the time, t . 

If this procedure is followed for all N pulses and if an up-down pattern is 

used which allows the construction of a curve for both FM up and FM down over 

a common region, one can obtain curves that look something like those sketched 

in Fig.  11. 

Since the absolute value of phase cannot be determined from phase mea- 

surements alone, the position of the zero axis in Fig.  11 is arbitrary. 

CM 
O 

1 < 

4>U) / 
/ 

s 

r"lS^-^i    ^-»*V£   (,)! 
kfsr-tT     '          !       i 
1   i    3i         II 
I'll 

!   !     !        !    !              !                  !               !       , 
\ t2    t3      t4  t5            i,                t„             tN 

Fig.   11 .   Curves for FM Up and FM Down over a Common Region 
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In the figure, 0     (t) and 0 (t) denote the polynomials which have been 

fitted to the data points corresponding to FM up and FM down, respectively. 

Letting 0       (t) be the average of these two curves; i. e.,   0       (t)   = —  [ 0    (t) 
avg & "avg w       2  L   upv ' 

+ 0H        (t)] , we obtain, using Eq. (30), 

2co 

0        (t)   =   Co. T +         R(t)   . (32) 
avg 0 c ' 

If 0       (t) is described by a polynomial of degree n, i.e., 

2 n 
0       (t)  = a   + a   t + a   t   + . . . + a   t    , 

avg 0       1 2 n 

we can let 

R(t)    =  b   + b   t + b   t2 + .  .  . + b   tn   , 
-.'..Li- It 

and solve for all the b coefficients, except b , from the known a coefficients by 

letting 

b.   =   -1-   a.    ,     i  =   1, 2,  .  .  .  , n   . 

If R(t) is known, except for the initial value b , V(t) is readily obtained by 

differentiating R(t).    The knowledge of V(t), in turn, allows the determination 

of b„ from the t,, measurements with the aid of Eq.  (31).    This finishes the 
0 M 

problem if, as was assumed, we indeed had a good initial estimate of radial 

velocity.   If such an estimate were not available, it could be obtained by 
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transmitting first an FM-down pulse at time T , followed by an FM-up pulse at 

time T   (or vice versa), and observing the times tjyr   and t^j .    From (31) we 

have, approximately, 

2R1 T /2V1 ) 
t        =    —-    + T -    — I —-    CO   / , 
M c W \ c 0/ 

(33) 
2R m  /2V \ 

t        =         + T +    — I      a;    J . 
M c W \ c 0/ 

z 

If we let V be the average value of V   and V , and let R   be approximately equal 

to R   + V(T   - T ),  (33) becomes 
J. _ 1 

2R1 T /2V \ 
t        =     + T -   —    —    co M c wye       0    ' 

2R1 2     - T /2V ' 
t        =     +T+    -    V(T   -T)+   —    —   co 
M c c        K   2       V       Wlc        0 

Subtracting tM, from t]yj , we obtain 
1 & 

2V  / 2T \ 
4M2 " 

tM1   "    ~ (T2 " Tl +    "W    "OJ ' 

so that 

V  = 

t       - t 
_M2       Mx 

2T 
2 IT   - T   +    —    co 1    2        1 WO, 

Note that the same procedure would apply if the exact expression (31) were 

used.   We would only have to solve a more complicated expression for V. 
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The value V thus obtained is not very different from either V   or V   for 
12 

any reasonable repetition frequency.   Say a prf of 30 sec     is used, and consider 

2 
a (very conservative) maximum radial target acceleration of 200 meters/second . 

Then V   is approximately equal to 

V    = [V   +   -TTT) meters/second, 

and 

V   w  V. +3.33 meters/second , 

which is well within the error of 10 meters/second we had previously considered. 

Clearly, estimates of all successive values of V can be obtained by using 

the last available estimate.    These estimates can be improved as more and more 

data points become available.   We shall not go into any detailed discussion at 

this time of how the data processing might best be accomplished.   It may be 

necessary to use an iterative technique to obtain a high enough accuracy in the 

estimation of the target parameters. 

The next step in this theoretical investigation will be to consider what 

effect certain deviations from the idealized spectrum of the transmitted signal 

would have on the output function.    In particular, we wish to know whether these 

effects are serious enough to invalidate our way of measuring and interpreting 

the data.   We shall also consider the effects of noise, and what would be gained 

if we approached a matched filter more closely. 

M. H. Ueberschaer 
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