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SUMMARY

In a recent paper, Ikebe and Kato discussed the use of the
@®
variational problem of minimizing J(u) -‘/’(u'2 + % u5/2x-1/2)dx
o
in connection with the numerical solution of the Emden—Fowler-

Thomas—Fermi equation u'' — u}/‘?x"l/2 e« 0, u(0) = 1,u(m) = 0.

In this paper, we consider the application of the theory of
dynamic programming to this minimization problem and present
two approaches. Computaiional results will be precented sub-

sequently.
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DYNAMIC PROGRAMMING AND THE VARIATIONAL SOLUTION OF THE
THOMAS—-FERMI EQUATION
By

Richard Bellman

§1. Introduction

In a recent paper, Ikebe and Kato, [8), considered the

problem of the numerical integration of the nonlinear equation

(1) utt = w12 L6, u(0) = 1,u(@) = 0,

which arises in connection with the Thomas—Fermi! statistical

model of a free neutral atom.

The general equation

(2) u'' —ux =0, —-®<Cmn<c®,

arose a8 number of years before in connection with some astroj hy—
sical problems, see Emden, '4,. Thls equation, together with

the equations

(3) u'' + u™"” = 0, u''s @"Tu = C,

was discussed in painstaking detaill by Fowler in a series of
papers, (5], [6,, 7, where Emden'r resulte are considerably
extended. A unified and in some cases simplified presentation
of Powler's results is contained in the author's book, (3].

A later treatment of tnhese equaticne is given in Sansone, [9].

In their paper, lkebe and Kato treat the problem of Jeter—

mining u'(0) by means of the assoclated variational problem:
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Minimize the functional
®

(4) 3u) = (ur? e 205/l 2 )4y
o 5

over the functions for which the integral exists, and which satiafy

tne constraints

(%) u(0) = 1, u(m) = 0.

In this paper, we wish to indicate a new numerical technique
for integrating nonlinear differential equations satiafying two—
point boundary conditions which arise from variational problems.
This 1s rtased upon the new approach to the calculus of variations
embodied in the theory of dynamic programming, (1], [2].

Detailed computations based upon these results will be
presented subsequently. Here we wish to derive an interesting
first order nonlinear differential equation associated with
the variational problem, derived from the functional equation
tech.nique of dynamic programming. A correeponding result may

be obtained for the variational problem assoclated with
(6) u't - %™ - 0.

§2. Dynamic Programming and Two—Point Boundary Problems

Consider the nonlinear differential equation

(1) u'! +%%§(pr) =@

u(a) = ¢, u(b) = cyo

taken to be the Euler equation >f the variational problem:
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Minimize

b
(2) th)vsu/“ [u'2 + g(u,x)]dx
a
over all functions u(x) satiefying u(a) = ¢, u(b) = c,-

Por fixed upper limit b and boundary value Cys let us regard
the minimum of J(u) as a function of the lower limit a, and the

value of u(a), namely c, for the range of values — ®< a < b,

—mecC®
We write
(3) f(a,c) = Min J(u)

u
Then, as we have shown before, (1, [2],the function f(a,c)

satisfies tie nonlinear partial differential equation

[ -

of | .2 af |
%) - == = Min ve + g(c,a) + v == ',
( aa v L &C J
which ylelds
of . 1 (af 2 _
(5) S 17 ()" -elea).

We must be careful about imposing boundary condi{tione, since as
a - b, assuming thatu/° (u,x)dx —> O, we have
(C-c )
(6) f(a,c) or
(b—a)
Actually, for numerical purposes, it is better to use a discrete
version of the original problem than a finite difference scheme

associated with (5), cf. [1]. We shall discuss these matters

in a subsequent paper.
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The slope u'(a) 1s equal to the minimizing v in (&),
wnhich in this case hars the value
(7) W= L2t

Thus the determination of the function f(a,c) ylelds all

essential information.

§3. A Pirst Order Differential Equation

Let us now apply the fOregoing results to the case where

g(u,x) = u"™x . Consider the function defined by
® 5 M
(1) f(a,c) = Min b/” (u' + = ) ax, u(a) = ¢,
u a X

for a > 0.

We begin with the following transformations

(2) x = ay, w(y) = u(ay)a™,
ylelding
o8] m
(3) f(a,c) = Miny/ﬂ (a2k-lu'2 + gkl !ﬁ ) dx,
w 1 X
w(l) = c/ak.

Now choose k so that the exponents of a are equal, 2k-1 = km-n+l, or

N

(4) k= 52 .

We assume that m ¢ 2, 1.e. the Euler equation is actually nonlinear.

Thus 2+m—2n
T o—m ® .
(5) fla,c) = a Min U{A (w'€ + =) dx,
W x

(2—n)/(2-m)
w(l) =0 / a .
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FProm this we see that r(a,c) satisfies the functional relation

2+m—2n

o—m (2-n)/(2-m)
(6) f(a,c) = a f(l,c/a L
We can then write 2 +m—2n

o—m (2-n)/(2—m)
(7) f(a,c) = a ¢(c/a D
with
(€) d(x) = £(1,x).

Let us aow apply the partial differential equation of (2.5),

w..ich {n this case 18

(9) gg - % ( ;% )2 ~ cMa™
We have 2 (men
—m (2-n)/(2—m)
(10) 3= (52 )a 4 (c/a )
o8 -4 ~ 2-n + 1) 2+m—2n
5 2-m (2-n)/ (2—m) o—m
- (3 ) ca ¢! (c/a ) a ,
st R o ( 52 (2-n)/(2-m)
50 = @ 9'(c,/a
(2—n)/(2—4n)
Now set x = c/& and substitute in '9). The resultant
equation for ¢(x) 1s
\ 2
(11) (28220 ) o(x) - (320 ) xor(x) - L 42,

Stnce ¢(x) = f(1,x), we see that 9(o) = o.

Since this {18 a singular differential equation, its numerical
integration requires some care. Observe that if f(a,l) 1s

continuous in a, (whicn can be demonstrated), we have
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2+m-2n
o—m (2=n)/(2-m)
(12) £(0,1) = 1im f(a,l) = lim a 9(1/a )
a-->0 a—>0
2n—m—2
2
= lim x 9(x),
X=> O

provided that m < 2, n ¢ 2. It 18 clear that we actually want

n <1, in order that the integral in (3.1) exist.

We shall diecuss this in detail in a subsequent paper

devoted to computational results.

§4. The Equatic. u'' - ( —- ) e

In similar fashion, consider the variational problem:

"Minimize
®©
2 AX m
(1) J(u) = (v'® + e 7u") dx,
A

over all functions u for which the integral exists and for which

u(a) = ¢."”
Define
(2) f(a,c) = Min J(u).

u
Tnen, as above, we obtain the relation

24a _ Aa
(3) f(a,c) = e &m f(0,ce ™)
2{2 _ Aa

= e oo d(ce 2 ).

Using the partial differential equation of (2.5), ~e obtain a

first order differential equation for ¢(x) similar to that of (3.11).
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