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SUMMARY 

In a recent paper, Ikebe and Kato dlecueeed the use of the 

varlatlonal problem of minimizing J(u) -^(u'2 *  - u^2x~1/2)dx 
o       ^ 

In connection with the numerical eolutlon of the Emden—Fowler- 

Thomaa-Perml equation u'' - u*'2x '2 - 0, u(0) - 1,U(GD ) - 0. 

In thle paper, we consider the application of the theory of 

dynamic programming to this minimization problem and preeent 

I    two approaches. Computational results will be precented sub- 

sequently . 
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DYNAMIC PROGRAMMING AND THE VARIATIONAL SOLUTION OP THE 

THOMAS-FERMI EQUATION 

By 

Richard  Bellman 

§1.  Introduction 

In a recent paper, Ikebe and Kato, [8], considered the 

problem of the numerical Integration of the nonlinear equation 

(1) u" - u^V"1/2 - 0, u(0) - 1,U(QD ) - 0, 

which arlsee In connection with the Thomas—Fermi statistical 

model of a free neutral atom. 

The general equation 

(2) u ' ' - umxn -0,  -oo<mln<CD, 

arose a number of years before In connection with some astro^hy- 

slcal problems, see Emden, [4] .  This equation, together with 

the equations 

(3) u^-fux -0,u,,>e u »C, 

was discussed In painstaking detail by Fowler In a series of 

papers, [yj ,   [6], [7j, ^here Emden'r results are considerably 

extended.  A unified and In some cases simplified presentation 

of Fowler's results Is contained In the author's book, [j]. 

A later treatment of tnese equations Is given In Sansone, [9]. 

In their paper, Ikebe and Kato treat the problem of deter- 

mining u'(0) by means of the associated varlatlonal problem: 
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Mlnlmlze the functional 

(4)      J(u) - / (u'2 * - u5/2x"1/2)dx 
o        ^ 

over the functions for which the Integral exists, and which satisfy 

tne constraints 

(3)      u(0) - 1. u(ao ) - 0. 

In  this paper,  we  wish to  Indicate a new numerical  technique 

for  Integrating nonlinear differential  equations  satisfying  two- 

point  boundary conditions  which arise  from  varlatlonal  problems. 

This   Is  based upon  the  new approach  to    the  calculus  of variations 

embodied  In the  theory  of dynamic  programnlng,   [l],   [?]. 

Detailed computations  based upon these  results will  be 

presented  subsequently.     Here we wish to derive an  Interesting 

first  order nonlinear    differential equation associated with 

the  varlatlonal problem,   derived from    the  functional equation 

technique of dynamic  programming.    A corresponding result may 

be obtained for the  varlatlonal  problem associated with 

(6) u"  - eAxutn -  0. 

§2.     Dynamic  Programming and Two—Point Boundary  Problems 

Consider  the  nonlinear differential  equation 

u(a)  - c,   u(b)   - c^ 

taken   to  be  the Euler equation   ;f the  varlatlonal  problem: 



p-io;j8 

->- 

Mlnlmlz« 

(2) J(u) -jT   [u-2 ♦ g(u.x)Jdx 
a 

over all functions u(x) oatlefylng u(a) - c, u(b) - c,. 

For fixed upper limit b and boundary value c,, let us regard 

the mlnlaua of J(u) as a function of the lower limit a, and the 

i/alue of u(a), namely c, for the range of values - CD < a < b, 

- 00 < C < CD 

We write 

(3) f(a,c) - Min J(u) 
u 

Then, as we have shown before, [ll, [2]»the function f(a,c) 

satisfies tne nonlinear partial differential equation 

(4) _|f . «in  jV + g{c,«) + v||], 

which yields 

(5) ll- f (35 )2-6(c.a). 

We must be careful about imposing boundary conditions, since as 
b 

a -> b, assuming that /^ g(u,x)dx —^ 0, we have 

(c-c, ) 
(6) f(a,c) or — . 

(b^a) 

Actually,for numerical purposes. It Is better to ust a discrete 

version of the original problem than a finite difference scbeme 

associated with (3), cf. [1]. We shall discuss these matters 

in a subsequent paper. 
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The elopt u'Ca) Is equal to the minimizing v in (4), 

wnlch In this case hae the value 

(7)       v --1*1 . v ' 2 do. 

Thus the determination of the function f(a,c) yields all 

essential Information. 

§3.  A First Order Differential Equation 

Let us now apply the foregoing results to the case where 

g(u,x) « umx~n.  Consider trie function defined by 

m 
(1) 

for a > 0. 

We begin with the following transformations 

(2) x - ay, w(y) - u(ay)a"k, 

yielding 

(3) f(a,c) - Mln />{.2k-1.'2 * «km-ntl 4 ) d». 
w  1 X 

w(l) - c/ak. 

Now choose k so that the exponents of a are equal, 2k-l - lov-n-fl, or 

f)        "-IS- 
We  assume  that  m 4 2*   !•*•   the Euler equation  Is actually  nonlinear. 

Thus 2-»-m-2n 
TZT CD ?      -■ 

(3) f(a,c)  -    a «my" (-'     4 ^ ) dx, 
w       1 x 

(2-n)/(2-«) 
w(l)  • c / a 
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Fröre this we see that f(a,c) eatisfles the functional relation 
2'<-m--2n 

?=«"       (2-n)/(2-(n) 
(6)     f(a,c) - a     f(l,c/a ). 

We can then write  2-Hiv-2n 
T^T (2_n)/(2-ra) 

(7) f(a.c) - a      ()(c/a ), 

with 

(8) <Kx) - f(l,x). 

Let us now apply the partial differential equation of (2.5), 

w..lch In this caee Is 

,nS af       1   /  ^f   v2        tnQ-n 

HST (2-n)/(2-m) 
)  a (>   (c/a ) 

/   2-n       , x 2-Hi>-2n 
~ ^ 73n *  l) (2-n)/(2-m) 2-m 

a $* (c/a )  a 

We have 

(10) 
at       ,   2-Hi>-2n 

/   2-n   x 
(  ?^   )   ' 

at     m     ?-«" 
JT * a 

* 

-  (  |~   ) (2-n)/(2-m) 

(2-n)/(2-m) 
Now set x  - c/a and substitute In '%9).  The resultant 

equation for 4(x) Is 

•m—2ri x (u)      (£±s^i) ^(x). (^ )xo'(x).iii£i!-xr 

Since ()(x) - f(l,x), we see that ()(o) - o. 

Since this Is a singular differential equation, Its numerical 

Integration requires some care.  Observe tnat If f(a,l) Is 

continuous In a, (whlcn can be demonstrated), we have 
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2*m~2n 
2-m (2-n)/(2-m) 

(12)     f(0,l) - 11m f(a,l) - Um a     4(l/a ) 
a->0        a->0 

2n-m-2 

- lln»   x      (Kx), 
X->00 

provided that m < 2, n < ?.  It Is clear that we actually want 

n < 1, In order that the Integral In (3.1) exist. 

We shall dlecuss this In detail In a subsequent paper 

devoted to computational results. 

§4. The Equatlc   y" - ( ^ ) e^xum - 0. 

In similar fashion, consider the varlatlonal problem: 

"Minimize 

(1)      J(u) - /M«'2 > e^u11) dx, 
^a 

over all functions u for which the Integral exists and for which 

u(a) - c. m 

Define 

(2) f(a,c) -  Mln  J(u). 
u 

Then, as above, we obtain the relation 
2^a      _ ^a 

(3) f(a,c) - e ^  f(0,ce ^^ ) 

2*& Ja 
= e ^ (^(ce   ^^ ). 

Using the partial differential equation of (2.5), we obtain a 

first order differential equation for ^(x) similar to that of (3.11) 
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