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Oi; GI^JLDTKI.T MTTirDS TVh KTWSkClWX, 
C0N9TRJLINn) KAIIMA1 

by 

Kanrieth J, Arrov 
Leonid liurvlc^ 

i.   A Qradiinti Müd lor UaaBMliBUnad LtelBft« 

Let X be a real-valued function of the n-diaenalonol variable 

x = (x,!«..,» ).    The n-dlmonaional Euclidean space of the i'f vdll be 

denoted by X •    Suppose x aaxjaizea*" X over && apace .x I.e., 

(1) f U) ^ f (x) for all i in 1. 

3 A Suppose X 1* analytic and strictly concave.  Then It Is known that the 

•ysten of differential equations, 

(2) dXj/dt = Jf/ Jx^ 1 = l,...,n, 

has a set of solutions, 

(3) x1 = I1 [t, 1(0)], i = l,...,n, 

converging to the marlnua.    I.e., 

U)     11a     X. [ti I(C}] = i,, i = l,...,n. 
t-»--    1 1 

Btoause the vector f   ~ (J f/^x.,..., jf/Jx ) is known as the 

rr&Aitmt of the function X>  the process deflnoc by (2) is collod the 

rrarilnnti nrMW«5 

1. This is a noro technical exposition of tlie ideas oketoliod in   jlj. 

2. IHnlfldsation of g is equivalent to naxlnilsatlon of - £, 

3. The function X i* sfi^ t0 be  (strfxtiy) ooncave if for any x   ^ it 
and any 9, 0 < © < 1, f ^0 X1 +  (l - e) x"J= (>) & fCx1) +  (1-^) f(X^). 

4«    Set  [2J1 pp. 3C1-2. 

5.    When the gradient method is applied to a Iniaization problen, it 
is aooetioes oaJLlod the raethod of fftoepea^. desotmt. 
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Ita IntcrMt in the present oonteott 1» due to the faot that it can be uaod 

as a computational technique for solving eactreolzation probloas«    This is 

done by oonstmotinc finite difference approxiB«tiona to (2) and carrying 

on the process until the x.'s appear to be undergoing little change« 

It is natural to oonsider two types of artenslons of the grodiant 

process«    On the one hand» one might wish to apply it to a "stationary" 

point other than an «xtreonxa, Yi2>f to the IfWlfllTTlQ^t pf q HTKI^Iflna    Cn 

the other hand, one may use it in connection with BÜCMft BlfaJJBJ« jfl 

ÄlBaLcalflLifl»    In tiw light of the fuhn-Tuckor theorem cited in section 4 

beloi'i  the two aztonsions are closely related« 

3«   A finuUmt. liitiwl fnr Sadditt^atoJa» 

Let U and (/   be Euclidean spaces of dlaenaionalitiea JJ am! ^ 

respectively-1 and let UC[|, VC\/ be some given fixed subsets«      A rool- 

valued function V  (u, v), u e U, v c V, is said to have a nflMJft-nMfrt 

over Uf V at (u, v) i£ u £ U, v t V, 

and, 

V (u, v) ^    V (u, v) ^ V (u, v) 

for ^"n  u c U, v & V«  (Any unconstrained maximization (resp« ninialr.ation) 

probleoi nay be viewed as a special case cT such a saddle-point with q = 0 

and U = /,/ (resp« p = 0 and V = I/)») 

Gince the aaddlo-point  (u, v) lo a ooximia in ^ and a ainimga in Xt 

it is natural to devise a gradient process of the fonsif 

1,    In subsequent application,  U and V ore oonv»»x cones with vertices 
at the origin« 
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d^/dt =    cK/J ^,        dv /dt = - J v'/ J v , 

(vlth additional rules for polnti on the boundarl«« of U and V). 

Con«ld«r th» oa«o wher«| for fooe flxod V   I—    ;l,,,.,pl, 

U=     [(^»...»Up). u^ 0, U^'j, 

V=     J(vx,#.., vq)i Vj ^0, J cPJ, 

daftne the grodleot proo^aa bj' the differential oqmtlona, 

(5) fc if ^ = 0,   Jy/Juj < 0 and Up' , 

I  J V/j u. othenrfjiei 

dv./dt =    (o if v   = 0,  J iy J v. > n    and J£ Q', 

-Jv/Jv,    otherrlon, 
L 

and write the selutlono of (5) ac, 

u   [t| u(0), v(c)],      V, [tj u(0), v(   )], 

Under whot oonditions do we have eonvergenoo In u.     (i.e.» llffl   u. (t) = «-   , 

1 = !»•••> p)?    A partial answer waa clven In  [3j»    ^o state the roault, 

note that, at the «addlfr-point (u, v), 

j^/j^ ^ 0 for oaoh 1 = 1,..., p 

yl/J^ = 0 for oaoh i^P' , 

and 

(6) Uj = r if ) //j^ < 0 at (u, v). 

If (6) holds for 1 = 1 , we eliall call 1    a nn-mnr lrxlflpff othorviac an 

Ifltflflflr ifldg-    We write u ■- (u     , u      ^Mhereir      oonslnts of corner 
(2) 

Indloes, u       of Intorlor Indloca,    /uialo^'ously, J la a oomor indox for 

^ if v    = n and  J r/Jv. <       at  {u, v),    Thooren 1  in  [3] then states the 

followinfi 
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Let V (u, v) be JInnftr    in Xf possess c. saddle-point at (u, v) over 

U = | (i^,..., u^)i i^ - 0, 1 = l,...,pl, 

V = J(v1,...,  v^)!  Vj ^ 0,  J = l,...,q L 

tuid be analytic in aono nolgliborhood of (u» v),    3\ippose fvcrthar that, 

(a) )| J "V /J^,4-     ^      || l8 nogQtiv6 deflniu at (Ü, Y), 

(b) U- > C.| v. > 0 for every Interior Indax 1 or J. 

Then for crver^' initial position (u , v ) in a suffioiently snail neighbor- 

hood of (u, ▼), there is a unique lolutlon u^Ct^ u , v ), v.(tj u , v ) of 

the gradient equations suoh that, 

UA     u-(ti u , v ^ = u., 1 - I,.«., p. 
t~^ ac 

Thla result was extended by H» Usava in 1955 In o^ unpÄihllahed note5 

he shoved that the assertion of the procedine thoorm is also valid in the 

large (and not only for (u , v0) close to (u, v)) when  / is assuaed 

strictly cononve in ^ for each x» 

i.   A fittdlsgt üeüttd lax SflBfltoüacd Mrtirmn* 

It is natural to Inquire (as Samuolson has done in the linear oase\ 

see [u\ pp. 17-22,  74-78) whether or not some variant of the gradient 

procosfl could bo used In probleas where mmrtiiM-.nt.1nn may be subleot to 

irfinfllrH^^g-    ^0 ohrJJ. consider the case v*-.ore 

1,    Thoorem 2 of \J}j treats the case of V (u, v^ oonveoc in x» 

?.,    Extension to the onao where 'J and V are ooro general Is izmodinto. 
(2) 3.    That is,   ,   is Looally strictly ooncave in u        • 

4«    Condition  (b) of the above theoran is not nnedod for Uzawa's 
results. 
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''i)  la replooed bj-, 

(7)  f(i) ^ f(x) for all i tn J( such that, 

(7.1) gjCx) ^ 0, J ..% A, 2,...,mj, 

(7.2) x^ ^ C, 1« Ly'T', yf'C^K = jl, 2, ...,n . , 

"rfhore^f anrVor^K nny bo eopty, so that the oaae of an unconatmlned 

aaxlnvna la covered.    The caao of equality oonatralnta la aloo in«luded, 

since 

h(x) = 0, 

la equivalent to the pair of Inoqualltlesj 

h(x) ^ 0, - h(x) ^ C. 

In vlev of the applicability of gradient proceaaoa to soJdlo-points, 

a method of deriving a gradient p'ocoas for a conatmlned raoxlnun la 

■xiggaated bj' the Kuhn-Tuoker [5] reaulta vhlch oatabllshoß the ociulvalence 

of the two klnda of problcma when X wad nil   the c«'3 QT(i oonoave and 

subject to a regularity condition (the "Conatraint Qualifloation") on 

the g'a which wo ahall tacitl^' aesuae in whcvt followe.    The Kttkn-Tvkaker 

theorea atatoa that,  provided the functionc X ^^ E/ r^e concave,    the 

Logran^Hon «xpresaion, 

^(u, v) = f(x) + y,g(x), 

has a saddle-point x at  (x, y) over, 

X =   ^M.., xh): x^ ^0,  V  tA'l 

y-  {(yp..., yQ)' yj 2 n, J ^ Ai, 

with x = x, whore x nroclni-os f(x) aubjoct to  (7.1) ami  (7.2). 

In turn, one may apply tho gradient proooaa to the Ingrongion axpros- 

bion ^(x, y) and,  in the light of the preceding aoction, oonvergenc« in the 

1«   Dot« thftt «4MA am «qvOit^ MMtr&lnt h(x) « 0 
LMi h(x) ä 0 and - h(x) ft 0f the oonosvi^ 

both h(x) oad - h(x) 
two ^xeqmlitl< :) ^ C and 

that]» 

XM i<|r«MuUd tor 
oonosvi^y raqwln—1» tar 

be linear. 
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x-ooapononts will occur provldad that ^(x, y) la atriqtlv ooncave in i for 

oach x»    ^^ lf ^(X) y) Ifl tx> be fltrlctly  »ncave in i for oach X) it Ifl 

not sufficient that X &r^ tJa« g'a bc nerely ooncave In i«    Cn the other 

hand, It 1& aufflclwit If X 1« strictly concave while the g.'s arc ooncave. 

5.   Ttu, T.<n^»r f>,pi   ^^^ rffinYtrTflnfip 

.x> for, we ore In Q poaltlon to treat by gradient processes (via 

conversion to saddlo-points) any constrained naxlialzatlon prohleo vhsore 

the constraint functions g. ore all concave and the rtfrxlwrr^ X •trlotly 

ooncave.    In particular, the g's might be linear.    Ilovover, the requlro- 

acnt that X be strictly ooncave exclvkles the possibility of a linear 

aarjaond.      lience, one Is led to look for a dovloe that would aoko it 

posslhlo to handle a prohlea that Is oooplotely linear, or, aorc generally, 

where X ^^ ^e C/8 ^e ooncave but not nocessorlly strictly ooncave. 

A device of this type was explored In   [_6j, whore the liigranglan eas 

prosjlon,        ^ = f + y'g,        was replaced by a qr^i^11^ LaflaadflB »«yir^n<nn. 

hj = hjCx) = i - gjU), 

It wee aluDwn In   [C\ that subject to certain regularity conditions   4 cai. 

bo node ItfTftIV st^rlotlv ooncave in the Interior oonpononte of j by 

selecting sufficiently large values of the f]  'o.    (This atatonant. In 

fact, holds for n^v sufficiently regular t ^^d L'i»)    ^n combination with 

the preceding results,  It follovc  that the grodlmt process applied to 

1,    3aiauolaon, as noted above,  applied  the gradient process to the 
purely linear casej he obtained constant amplitude oscillations rather 
than convergence. 
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the oodifled lAgr&nglAn eaqpreffion oonvergvs to the oenstralnad wmxifmm 

If the Initial po&ition is nfflclently olose« 

6.  Thn III mar Caan  Gifltaii SttaiEM 
In 1955-6,  the problao of oouv«rg©noe in the linear oaae was reosn- 

•idered under the dtimulation of the ooaputatlonftl applie&tiona of the 

oodifled lAgr&nglAn gradient method oarrled on at RAKD t^r T« Marsohak 

in oonneotion with linear programaing probldna«     The pa-ohlea of ohief 

interest uat whetlier or not oonvergence in the large oeuLd be «xpected« 
2 

Thifl wjrk    led to resulte shoving that if the aodiflod Lagrangian gradient 

aethod is applied to a linear programing rroblcn, convorgonoe in the 

large of the ao-ooapononts is guaranteed, althoxigh it may be nooossary to 

use a tariant (to be drscribed below) of the modifiod lagranglan eocprosalon. 

To state those results, we seist first Introduce a concept which fits 

between oonoovlty and strict oonoavity,  to be oallod partial strict 

Qancavltya 

D^flnit.ipn.    h(x) is said to be parti.illy strictly concave if, for 

any i1, x2 such that Mx1) ^ 0, h(x?) = 0, the function H(ö) = h[(l-ö) X1 

21 <      <. + & tj , 0 - d - 1,  is a oonoave but not linear function of d« 

To simplify the exposition, conelder the case where a unique naxi- 
^ 

mizlne point x is known to exist.    Then it tovs been shown that, 
A 

XlidBIflULA»    '"^ch x. v'JLl oonverge to x. vtnder the Kradient process 

applied to the unmodified I/igrta^lan axpression d provided £ is oonoave, 

1. Gee Appendix« 
2, Carried out by the authors under the auspices of the Office of 

Naval Research and the Canter for Advanced Ctudy in the Dehaviorol 
Gcienoes, respectively. 
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each g. is partiftUy ■trioUjr oonoftr« In 2» «"*! all fmactiotui are aoeOortl«. 

But this thaorara, by Itaalf,  la In&daquat« to daal with the oaae 

uhare X and &^ ^^ ß/1 ^^^ linear.    Thus ve mat fall back on a aodi- 

fled lAfranglan «ocpression. 

Ptf1n1tilnn*   The function, 

^ (x, y) = f{x) +   j ^        yj      ß [^(x)] , 

Li called the j^jJttUIIttiL I^graaflan axpreeaion for tha aaudalaatloc 

of X fubjeot to g.{x) ^ 0, J e/( if the functlonji f. are «trlotlor lx>- 

oreaalng and   f Ao) = 0, 

We than have» 
A 

TIWTM Be    ^b 'i ^m oonvarge to x. under the gradient proeeee 

applied to the P-nodified I^granglan «xpreeelon provided X and g. are 

oonoave and analytic and each   P, is strictly oonoave« 

In thi« case the oexnetrainte   /. [g.Cx)]   * 0 aro equivalent to the 

oonatrainte g.(x) ~ 0 but the foraer satisfy the oonditlons of Theorem i« 

Theorom B is applicable to ooapletely linear problansf since X ajad 

g. are only required to b© conoave. 

The modified lAgrongian eczpression in section 5 above oorreeponds to 

ohoosingi 

F^ (w) = l- (l-v)1+ ^J,      nj>0, 

which satisfies the requireiaents of Theorem 13 for w < 1«    It cannot be 

to insure convergence in a linear prograxsning problem unless 

g.  (x) < 1 throughout the gradient process«    On the other hand, 

/y2' („) = 1. . - v ,   ^ > 0, 
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ha.a the required pro port lea for ail ^ and oan safely be uaod In Uxe largo) 

I.e., for ajay Initial value», the gradient prooeas appilod to the /^-•odi- 

flod I/igroBglan axpreeelon for a linear (or any ooncsave) prograj«»lng 

problem vill oomrerge. 

In T. Marecbak'a experinental computa tiena, the oodified Lagrangian 

axpreaelon waa fermad ualng  ^       » **& a cheok-oalunn vaa oorried to 

aake «urc that g.(x) remained leaa than 1 during the process* 

k check of tha experijaental ooBputationa was also offered br,' verily- 

ing that the "distanoe function," 

always decreased with tine,    (The thaorenß on convergence are tmsod or. 

the fact that dD /dt < C   in a gradient prooeas.)    This chock is only of 

interest in the experimental coeiputatlens, since it requires knovlodge 

of tho unknown of the problea, xL,«» ^    ^or ^8 oomputatioiw thensclveu, 

*m UM lpp«ndlx. 
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T. Marflchak 

ThlB apporvllx report« on nome oosxputatlona In which Uw gmdlont 

OBthod waa applied to th«    /ö-modified Lagranglan «xpreaelon of section 

6 - vlth the funotlonj P. taking the form      p^   ' ~ for \,\K> linear prograia- 

nlng prohlecu.    In the oemputatlons the q. uere taken to be the tame for 

all J|  l«e«f  Hi =  H» J s l»«««»a» 

The atae of the ooaputatlo&s were (l) to explore Xi* oajor diffloultlea 

enoountered  in progr«awing the gradient method (an applied to oonetralned 

aaxlnizatlona ppohleca) for a digital computer}    (2) to obtain eone pro- 

llminary evidence aa to the efficiency of the method in eolving linear 

prograraning prohlena of different alzea as well as the effect of varying 

fj and varying the Euclidean diatanc© of the Initial point from the 

equilibrium point, 

(1)    ;jfi,lgf HTPgnWlInf fllfflflttU^i« 

Two major prograaalng problems were encounteredi     (a) the modification 

of a stable method for approximating differential equation syataas so as 

to allow for "oornor" oondltlona^   (b) satiafaotlon of the oonstraint on 

the range of numbera which may ooerur« 

(a)   tto^fyinf ft flt^bit agnm^aftUnr ncJÜbad« 

If a digital computer la to be uaed in obtaining the patha of 

varlablea» ao determined bj' a eyatem of differential oquatlona and 

1.    The RAM) Johnnlac waa the aachJjifi uaod:    t2ic coding and nachine 
work wero done \TJ Mirvln Shapiro, 
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uji Inltlfli point,   tho LyBton nuat firat bo approxlnatod by a syoton 

of diffcrencu orjuf^tlonB.    The almplest epproxlflötlon to a aysteo 

cl 2. /..  = F    (a,,,,, i»  )»  1 = l,.t.,r,  la,  of ooiirse, the dtffereno»- 

equatlon fyetoa 

z^ (t) = a1 (t - i) + h i^ [z1 (t - i),...., gr (t -i}] 

" 2    (t - 1) + h F    (t - 1) (h > o) 

Tills  syatoo deflnea for each variable a series of oonnected •tral^ht- 

llne secants approxloating tiio tru« path of the variable (aa defined by 

the dlfferöntlal-aiiuatlon systeia),    'Jnloss Jj Is taken sufflcltntJ^y aaall, 

however,  Uiere la a danger that when the tme path of a variable B.  under- 

goes a sharp cli&n^e In slope between t and t + 1,  the approrLnatln^ path 

between t + 1 and t + 2 (being bajed on the slope of tha approxiaatlng 

path at t) will be an extrapolation of the true path aa It was prior to 

tlie ahirp change In alope»    The approxlaatln^ path may then deviate 

further and  further froa the true one.    To exclude this danger aay require 

^ to  be no  snail that convercenco  Is uselessly alow. 

Chiefly for this reason, noro atable approximation methods have been 

devised.    One of tlio moat widely uaed It the Runge-Kutta method  ( [AJ , 

pp. 301-2) which waa us«i In the experimental conputatlona.    In this method 

tha Iteration loading from Z.   (t-l) to 8.   (t) ocnaista of the following 

stepai 

(1) ^ (t) = h F1 [Z1 (t - 1),..., »n ( t - 1)] 

(2) H^  (t) = h ?i [Z1  (t - 1) +  1/2 ZJ  (t),...,  an  (t - 1) + 1/] 8^  (t -  1)] 

(3) Z^  (t) = h F1  [Z1 (t - 1) +  1/2 Z^ (t),...,  2n  (t - 1) + 1/2 Z^  (t)] 
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(4) z^ (t) = h F1 Cz^^ (t - 1) + *l (t),..., an (t - 1) + «^ (t)] 

(5) g1 (t) = 176 ^ (t) + 2 a; (t) + .1 8^ (t) + aj (t)] + 21 (t - 1). 

Thlo method has a low "Lnherant error," of the ord«r of h    (See LAj, p.  302)» 

Now,  In our case F.,  In the differential-equation syateia, Is of the 

fona 

P    _ J F.* If the 1th argument la > 0 

1  max    (F*, C)  If the 1th argument is - 0. 

No variable,  la allowed,  in other words, to beoone negative. 

In formulating the P.unge-Kutta approxlnntlcn so as to give effect to 

this oondition,  it is clear that we cannot leave stops  (1) to (5) as they 

are.    For if F" takes a large  (in absolute value) negative value for the 

arguments shown on the right-hand side of an equation defining one of 

the above steps  (i.e.,  if F    takos  ouch u value and if the 1th argument  is 

positive),  then even for small h,  x.   (t) may be nogatlva.    To solve the 

difficulty several possibilities suggest themselves« 

(l)    We can impose the oondition that 3    (t) be the moxinrura of zero 

and the weighted average Just given  (in step (5))» 

(11)    Ve can rewrite steps (l)-(4), everywhere replacing F by F* and 
if 

oan then impose the oondition that 3.   (t) be the laaxlmua of zero and  the 

expression on the right-hand side of the equality defining step (k), 

(ill)    When the value 3    (t) obtainod at the end of the Iteration la 

negative,  we con repent the Iteration  (starting again with d.   (t - 1)) 

fflf ft gncJilflr h'    ^ the value of a     (t) then obtained is again negative 

we repeat  tlie iteration with a  still smaller h.    This process continues 

untLT 8    (t) falls in a amall pre-selectod interval ( - e,  c), £ > 0.    At 
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thut point 2    (t) lo sot equal to rero.    For h ffufflolwntly snail, a.   (t) 

nmat fall In the given interval. 

In ohooslnc between those altemntlveo wr nmat rely on Intuition 

about tho relative protection t^iey afford against major deviation from 

the true path* of tlxe variables,  and on actual experience in using the 

alternatives. 

Alternative (l) was att«apted and failed to work properly:    the 

"dletance function," clvon in section 6,  fluctuated instead of dooroasing 

ao no tonic ally,    If alternative  (i) is used there is a danger that the 

foULoving nay occur (and this nvay have caused the "distance'' fluctuation)» 

one of the 2.  (t),  oay 3.   (t), nay, because the value of F. on the right- 

hand side of the equation defining step (k) is large  (in absolute value) and 

negative, beoooe large and negative.    The disereponoy between 8.   (t) and 

the oorre«ponding true value of 2.  is then unusually large (as ooapered 

to the disorcpancy in an interval where neither true nor approxlmoting 

values are near ^ero).    Then averaging tho 2    (t) (in step (5)) awi 

taking the maxinum of the result and zero taay wall not erase the large 

discrepanoy, s.g,,  the true value oorrosponding to a zero R.   (t) may b© 

large (and positive). 

Alternative (il) on the other hand is certainly risky, since the 

true functions F    ore not used in the app(rexiiaation.    Thus unless h is 

aaol]   enough, there is a danger that, after tnl.^ng a positive value, B 

in the true path descends sharply (with a large negative slope F.) towards 

zoro,  but without reaching seroj while in the approxlnating path B.   is 

suddenly civö11 ^e value zero. 

Alternative (ill) appears to be the best of the three, aooording as 

it does with the general intuitive notion that the approxiraating ■grid" 
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neoile  to bo "finer" at points of Jiscontlnuity  In the derlvntlvo of  the 

true path.    Thla alternative Ikis l^een uaed and has worked quit« weJJ. 

SpecifIcaily,  In the routine uaod, h is ffucceBaively cut in half until 

ä    (t) fall» in the interval  (- L,  t),    e was chosen to be juat slightly 

^Teater tha/5 the average rouiul-off error expected on the machine. 

(b)  ttoftUflg UM aaactoalat Bü Ute MraLgalUIa raatJi ol fflluafl« 

On the RAND JoJmniaC) ualn^' a flo ft ting-point cede  (QB was done 

in theae ooaputAtlona)|  onl;,r numbers between 10 J    and 10      oan bo 

dealt with.      Hence not all sets of values of h and r\ and of initial 

values of the variahlea  can be used.    Thus for a given q,  the Initial 

values and the values of h have to be choson with oonc care,    "hough 

n larce ^ aay lead to  rapid oouvergence for any ^iven h,   the largest 

value of h oonalotent with the range oonatraint for such an  r, may  be 

aacill enough so that tfve actual tine rooulrod  for oonvor^once is 

longer than for ecoe smaller rj. 

Z.    7ha Unear nroin-airmlmr prohleas to which Uie trradiant method u^« afla^gj. 

In a linear progra.mlng pcxllnr. of tlie form: 

Find x auch that    «^V   x/ c« xi  " rmx 

subject to x1 ^  . ,     ^Jf a^ x^^ ^ ^,   } tJf 

thm   /^-aodified Lagrangian eocpresaion of section 6 - with the functions 

P .  taking the form p ^   ' and all n    =  rj - is 
J J 

-* <*' ^ S     icyV "^^   1 '% t ' {^ ^ Xl " '-' * ^ ' +  ^ 

The gradient process,  which converged  to  the rwjuirod solution  (for 

any initial values of x. ),  is given bj' the diffaorential-equDtion si-stcn 

I.    On the I.P.M.   ?04,   the peralaalble rang« la snalltr. 
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Vdt -• A^\ -~ ci -(i + ^ h)\ aij yj(iL^ G
IJ 

xi" bj+ '^ 

if  Xj^   >   ' 

aaxlaun of this and zero if x. = C) 

i + n dy/,^  -P^/^y.^ ^ (^ x, - V 1)-^ - 1 if yj > r. 

LKixinrua of this and lero  if v . = • 

(a)   A ^etrru-ltkUifi Utf^ft-lnfrinnllVt UTQUIBB 

'.he fii'st prohlen treated was aa  foLLouix 

Find x-t x. , x_.     ( -    0)     such that 

n- - x- + <X, + 3x^ = aax subjoct to 

x- + x_- •♦• x^ - 1 

- ^ - ^ f x3 - G 

The solution ia    x^ = 1/1, x5! ^ l/6, x^ -  l/;:, for viüch 

ix = 11/6 - 2.167". 

In the first ooaputation x\ wng taken to be 2, for which the ©qullib- 

rlun values of  the y,  are 
Si 

y° = UA8 = .722+,  y? = 5A8 -  .278", y° = l/9 = .111+ 

Thi initial values cboaen y«ro 1 for x,,  5 for x^, 3 for x^,  3 for 

y   ,  2 for y^,  and 3  for y^. 

In the seconci computation,  r) was taken equal to 7^ for this oase,  the 

oquilibrlisa valuea of UUJ  V . are 
J 

y° - 13/48 -  .271% y° = 5/48 = .li^, y^ = \jlk - .C415. 

In the computation for the case ^ = 2 the  initial value for h was 
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.'.15b,    In Uie coniput-itlon for tho cane  t| = 7|  UBO of  Uie »a.Tie h uould 

have boon inpoaslble,   becauae vary iftrfce numbers would liavo ronultod In 

th« expresslonÄ Involvlrn' tiie exponent ^ + 1, wliUc In other expreaalone 

tliere would nave occured nunbert ao mach SQftJJ er aa to violate  tlie reatrlo- 

tlon on ran^e.    The Initial h uaed in Uie oaae r, = 7 uaa  ,01.    mhe initial 

VU.1U«Q of h u«od  in the  t\K> caaea were fipproxlnately aa lar^e aa  they 

oould be without violating the rrui^e conatraint^ fron a practical  point 

of view (i.e.   if fast oonveixence Is  the alo.)   they are the proper valuea 

t-o  chooso.    lievertheleaa,   they are aufficlently different ao  that the 

ooapariaon of the  two caae« with reapect  to  the offoct of vai-ylnc  H ^s 

difficult.    A floating-point oode wna uaod. 

The follovin^ table partially auniaarlr.rta  (for aelected iteratlona) 

the results of the oomputationa for the tliree-equatlon problon, for the 

caaea  r] = 2 and  q = 7.     For oach iteration in the table are shown  (to 

three decimal placoa)  the current value of  tho x'a,   the y'a,  h (which 

detemlr.os tho "aize" of the appoxjxinating step),  ir and the  "diatance" 

D = £ Ux.   - x. )*" +  (y.  - y. )'     .     In addition  to tho variables shown 
1=1        "   1        1 1        1    •J 

In the table,  thare wert» printed out (at every tenth iteration) the value« 

of all derivativoa and  the values of tlie left-hand sides of t)iG  tliroe 

Inetiualltios.     Printing out of the latter values raode  It  poajiblo  to keep 

a running ohock as  to violation of the reoulrouent f ,   (x) ^  1 wlilch,  as 
w 

Indicated in tf»ction o,  nmat bo net  if  tiie  conditions of ThooroJn J are to 

guarantee converLence.     In none of  tho  oomputationa—citlier for the 

3-o<iuation or Uie 5-o<iuation probleo—uea this ro<iulreiaent not mot. 

Wo aeo fron the tAble that only at acme  iteration between 330 nml 3L 

did tJi« ooaputatlon for  r, = 7 "oveurtako"  tho oomputation for  r\ =  2 -  In the 



f 
FRAMES nmb«r 

h *! 
X2 

0.000 0 1.000 

10 (19){K)'7) .291 0,000 

20 .0156 .520 ,000 

73 .0156 .576 ,000 

150 .0156 .520 ,000 

300 .0156 .337 .137 

330 .0156 .311 .171 

3^0 .0156 .31$ ,165 

700 .0156 .333327 .I6666r 

Cu« n = 7 

0.000 0 1,000 

10 K)-8 .092 1.077 

20 IC"9 .003 ,967 

70 .01 .501 .044 

15 C .01 .496 .051 

300 .01 .U5 .069 

330 .01 .412 .oa: 

340 .01 .405 .091 

6^ .01 .33333334 .16666663 
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^ 

5.000 L.600 2*000 3.000 33»4?3 

* 

17.000 

2.123 2.992 2.237 3.117 2^91B       ( 6.661 

.284 3.09D 2,405 3.065 23*458       | 1.373 

.096 2.531 1.723 2.342 13.844 .864 

•241 1.739 »Hfl 1.206 4*K)6       i 
i 

1.242 

.471 .865 .279 •HO •166 
i 

2*023 

.483 .806 •274 •109 •088 2.102 

•4ß6 .791 •275 •120 .072 2.108 

.499990 .177721 •277 B          •UUID .000042 2.16662 

5.000 1.60G 2.000 3.00c 33.470 i 17^000 

5,008 i.6U 2.010 3^)01 35.558 
1 

17.272 

4.867 1.661 2^)17 3.001 X.354 1 

1 

16.579 

,221 2.025 2.189 2.866 15.701 1 
1 1.251 

.257 1.316 1.417 2.073 6.603 ♦ .708 

.44« .316 .126 •602 .350 l.SCJ'/ 

.496 060 •2« .317 .092 
1 

2.066 

.496 .453 ^287 .226 .047 1 2.080 

.5000... .7??2?3 .2777 ■..,,    •mil... (137) (K)' 
1 

2.16666. 
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atjjuic! ol" exhibiting a ajaailor i:uclidoa:i dlatance fron thu o(;ulIlbrlun point, 

After Ulla  Iteration tiic diat&nce In the oonputation for r] =  7 decrooaoa 

oonslderably rnorr  mpldly  (with roopect to number of Iteratlorus)  than thn 

distance In the ooiaputatlon for q = 2«    Vor ooaunple|  (thla  Is not ahown In 

the table)  the distance lx)OUaefi loos  tluin .'! 1 at itemtlon 30"  for  r\ --  7, 

but r>ot until Iteration 55^   for rj = -.     In both oomp..tatlonfl  it la 

uoceasary to cut tlie sl^c of h at aone  iteration,  prUnarlly,  ac it liappena, 

at early iterations«    /iach Iteration averaged about four aooondn for 'i - *. 

(allowing for print-out tine at over,'  tenth iteration) and about five 

Goconda for  q ~   7. 

(I)    A nine-varlaLLLeT  flve-lneuuglltv arobio^ 

(2 

(j 

(4 

(5 

x   ^ 1 

^     r 

The aeoojid probleia treated was   to atodmlze   ' - x,   * x    + 5/4 x. 

+ 2x- +  r%, 4- 5/4 XQ - x^   subject to x.  - C,   i = 1,...,9 and 

(1; 

x. + x. - 1/;: x, - 3/8 x   ^ 
,14 <- o 

x7 + Xg - 1/3 x   - 5/3 ib ^ 

The solution  is x,   = 1,  X, -  l/., x-,  -     » x/  "  ■^»  ^  ~ -^^J  xf   "     » 

x^ = I/o,  x^ = 1 ,  x^   -  1,   v = 7/4B. 

In  the  two coaputationo uhlch vore  j^erforaed  q was  taken ":  T  so  that 

at equillhrlunj y1 = 7/U4, y., = 31/7:?, y3 = 2/*?, y    = 5A2, y5   - ?./3. 

In  the first corapwt/iLion the initial point ciiosen was  that ahown 

(iteration C)  In  the first pert of  the foilouln^ bible,  for which the 



Itcration 
nuiabcr 

h ^ 

Clnno.   \vMlal  DQliil 

ir 

13t 

-'5' 

:2. K 

.3.: 7 .25' 

.01 .3(9 ,22B 

.1^,1 .216 .uL'1 

. < 1 _'-| ■"•; .uL; 

. 1 . a.. .iUl 

. -1 . -- u .Uo3 

.4 

.439 

.411 

.5 > 

ini tial  joint 

29.5 ' 5.- - !' 

-^■fcM^k- 

U3.i- . v> 

L, .^Xl 141.53' 4.29 2.489       1. 

13 1 "0   1. 7.541 n.^'j 1.798 1.319 

Ji ■ .1               Ci.  .         , .u59 • . r 

L:5 . 1       ."5.439 .ac5 .. '-> .188 

170 .. 1         1.851 .913 v .(XA'' ..3(6 

i ,1                 ,. ÜU .393 .^ .371 
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"5 k6 ^ ^ ^ y-; y5 

»• • • f .3 r       l.o .08 .625 1.0 .6 1.0 

.160 .U2 J21 .152 l.Ui .-83 .603 .961 .^89 1.02 

.125 .1 6 X'Cl .18 1.1 1 .U* .550 .882 .516 .950 

.125 .1 7 
1 

.; 16 1.015 .L04 .549 .878 .513 .9^47 

.15' .151 J„v . ?1 .95. .85 .472 .753 .427 .81 

.25 ..-r; I .166 1.:^ ■ .049 .431 .6o7 .418 .667 

• 4. 14 ' 5.0- -i 3.XC 4.00C 5,OOG 4,000 3.000 2.00C 

» i O t 3.695 

| 

4935 4.753 1.753 3.3L- 4.031 5.312 4.125 3.127 2.243 

.092 1.884 ^46 3.X9 • > 3.321 4U89 5.911 4.642 ^.678 3.229 

• . 06 if A   1 . o ' .v^K? ,0( 6 4.495 5.553 4.613 3.792 3.592 

. ' y..- :* •'•59 J.C  " . * ' .8f5 1.745 2.9B7 3.015 2.847 0,740 

• #064 0,0a r',iXK 0.913 ; .286 o.y/i 1.272 1.150 1.27/ 

. u5 .171 n «Ov v .048 W .913 D.OOO C^Ol 0.665 JL35 0,732 



clbtaDoe tra equUlbrl\11 u .J'Zl. In the second ~tion the initial 

point .... that •bown in the aeooDd part or the table {iteration 0 ) ror 

Wloh the diatance fl"CCIIl equUil::ri.\D 18 1.43.1. The init1al value ot h ,... 

taken to be .01 in both oomputationa. Both ~tiona are 8UIIIIIrised, 

for •el.ected iterat.ioD8, in the table. 

It U aeen that at an;y iteration up to about the 2000th, there bas 

been achieved 1n the d1atan~po1nt oue a IIUCh greater abloll.;te decnaae 

1n distance trom the equ1llbrl\ll point than in the MR-po1nt oaae, though 

roughly the INUile r8l.ative decrr.ae 1n diatance haa bMn achin-ed. In 

both aomputationa it 1a neoeeaary at some iteration to out the size of 

h. I t u wrth not ing that it ia m;t true that onoe n variable attaina 

the value zero, it staya nt zero if zero ie its value at equilibrium. 

The variable x6, in the distant-point computation, provides the co\Ulte~ 

a:ample. 

Wmnf' 

[A] Scarboi"'QQb, J • B., l!l~biiiLI~-~M,Ja~W, 

111J7ludr Johu IID)Ikiu ,._., rss, P• 157. 
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