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ON GPADIENT METHUDS FOI APPROACIONG
CONSTRAINID MAXIIWA

by

Kannuweth J. Arrow
Leonid lhuowic:

1. A Gxadient latded for Ungonatrodned loximg.
let £ be a real-valued function of the n-dimensional varieble
X = (xl""”h)° The n—-dimansional Fuclidean space of the x's will be
denoted byx Suppose x rm.xi.xnizea2 L over the aprnoe X 1.00y
(1) £(2) 2 £(x) for all x in Y.
Suppose { 1s analytic and striotly concave.” Then 1t is known® that the
system of differential equations,
(2) dxi/dt = )r/ )xi, { = 1yeeeyny
hns a set of solutions,
(3) x, =X, [ty x(0Uy £ = Lyeeeyn,y
oonverging to the maximsm, I.e.,
(4) lim xi[t; 1(c)] = Qi, 1= Lyeeeyns

L=

Because the vector f_ = ()f/a\’xi,..., Jf/)xn) 1s kmown as the
coadient of the functior £, the process definec by (2) 1s called the

an-5

1. This 1s & moro technical exposition of the ideas sketched in [1].
2 Iinimization of g is ocquivnlent to maximization of - g.

3. The function £ is sgid to be (s t..l\vgooncaeiftortmyl;‘{q
and any 8y 0 < 6 <1, £ Jo - + (1 -8) x7[2 (O) € £(x) + (1<) £(x),

he See [2_], pp. X 1-2,

5. Whan the gradient method is applied to a minimization problem, it
is sometimes called the method of gtagpest desgent.
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Its interest in the presont ocontext is due to the fast that it ocan be usod
cs a computatienal teshnique for solving extremization moblems. This s
done by oconstructing finite difference approximations to (2) aad earrying
on the process until the xi'l appeer to be undergoing little change.

2. Qubar Kioda of Extregu.

It is patural to oconsider two types of extensions of the gradient
process. On the one hand, one might wish to apply it to a "stationary"
point other than an extremm, yiz., to the saddle-point of a fmotigne Cn
the other hand, one may use it in oonnection wvith gxirame subieat i@
sonatrointae In the light of the Kuhn-Tucker theorem cited in section 4
beloi'y the two axtensions are alosely related.

Jo A Gxadlent lathed for Saddle-Iodnta.

Let U and |7 be Puelidean spaces of dimensionalitios g and g,
respectivaly, and let UC({y VC |/ be somo given fixod subsete.® A real-
valued function ¢ (uy, v), u € Uy v € V, 1s sald to have a ggddle-point
arer Uy ¥ at (uy V) L uety vev,
and,

Ve WS Y (o V) ST (U, v)
for all u € Uy v € V. (Any unconstruined maximization (resp. minimjzation)
prohlem may be viewed as & special case cf such a saddle~point with ¢ = O
and U =]{ (resp. p = C and V =VV).)

Since tho saddle-point (-\-1,:) is a maximm in y and a odnimm in y,

it 1s notural to devise a gradient process of the form,

l. In subaequent application, U and V are oonvex cones with vertices
at the origin.
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\ v,
dui/dt.: . ,/)ui, dvj/dt'-:*)w/.,vj,
(vith edditional rules for points on the boundaries of U and V),

Consider the oaso where, for some fixod p C_; {l,...,p},
. .
OC_ {l,.oo’ Q} )
{(u.l,...,up)x u1 :é O, 15)’”},
V= {(Vl,ooo’ vq)‘ VJ g Oy J € Q“F’
define the gradient precses by the differentinl equations,

U

(5) o /it - ¢ 1.: u; g )4/)u1 < 0 and uP’,
O)\/J uioth.nrile,

dv,/dt = (0 4f v

j J,=O’):’/<)vj>0 and je (),

-) ) v, otherwisn,

and write the selutions of (5) as,
u, [t; u(0), v(C)}, v, [t; u(0)y v(’ )J.

(1.90’ 1im ui(t) = nl b

L4

1 = lyeeey p)7 A partial answer wus given in [3]. To statc the result,

Under what oonditions do we have convergence in v,

note that, at the saddle-point (uy v),
)‘V/)ni $ ¢ for each 1 = lyesey P
)“'/a)u = 0 for easch ifj)'
i i ,
and
(6) \-11 =C if ) ;/’)ui < O at (-\-1, V).
If (6) holds for { = 1,y we shall call 1 o gorner indexy otharvise an

interior udex. We write u = (ull)
indices, u(z) of intorior indiccs. Analogously, J is c corner index for

gl

y u(")),\dnrou(l) oonsists of corner

y if ;J = 0 and j './C)v.j < at (uy v)e Thoorem 1 in [3] then statos the

followingy



_————__——'—-_—*

R-1015
2=1-57
-4

Let '« (uy Vv) be Linear’ tn ¥y possess o saddlo-point at (u, v) over?

U= {(ul,..., w1 wy 20,12 1’"'”’}’

Vo= {(Vl’ooo, Vq)’ VJ Z O’ J = l"",Q}

and be analytic in somo nolghborhood of (W, v). OSuppose further that,

(@) || )% /c')“nsz) Q“hsz) Il 15 nogative definite at (uy ),

(b) ;1 > (y ;J > O for every interior index j or J.
Then for cvery initial position (u°y v®) in a sufficiently amall neighbor—
hood of (uy ¥v)y there is o wntque salution ui(tg v, v°), vJ(tg u®, v°) of
the gradient equoitions such that,

lim ui(t; uo, Vo) =

oy Y 1 = 1lyeeey Pe

This result wns extended by He Ucawvn in 1958 in an wnpublished notey
he showed that the assertion of the preceding thoorem is also valid in tho
large (and not only for (uo, v°) alose to (Tx, v)) vhen ! is assumed

strictly conoave in y for each 1.1'

» A CGradiant ilethed for Construined ZXtriemo.

It 1s natural to inquire (as Samuslson has dono in the linear casej
sco (4])y pp. 17-22, 74-T8) whethor or not somc variant of the grodient
process could be used in problams where poxdmizatiop mny be gubieqt to
sonatraints. ‘Yo shnll consider the case w-ore

le Theorem Z of [3] treats the case of (uy v) oonvex in y.

2« TI'xtension to the cnsc where U and V are moro gencrol is immedinte.
D )

3. That 13y . 18 loeally strictly ooncave in u (‘“).

4e fondition (L) of the ahove theoram is not noedod for Uzawa's
results,
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‘1) 1s replaoced by,
(7)  £(&) £ £(x) for all x inXauch that,

(7.1) GJ(X) 2 Qy J ATE {1’ 3’000)‘“}’

(7e2) X, 2 Cy 11 L//Y', /‘/'g_ /V:: {l, 2 ...,n},

'.rhere/q&nd/br /t/,my be empty, so that the onse of an unconstrained
moximm {s coverede The case of equality constmaints is also ineluded,
since

h(x) = ¢,
1s equivalent to the pair of inoqualities,

h(x) € 0y - h(x) £ C.

In view of the applicability of ¢rndient processes to saddle-points,
a method of deriving a grodient pocess for a constrained maximm 4s
suggested by the Kum—Tucker [5] results which establishes the equivalence
of the two kinds of problems when { anu all the Cj's are oonoave and
subject to o regularity ocondition (the "Constrnint Qualification") on
the gj'u which wo shall tacitly assume in whni follows. The Kukn-Tucker
theoren states that, provided the functions £ and Bj rre oonczwe,l the
Lagrangian expression,

g(uy v) = £(x) + y'g(x),

has a saddle-point x at (x, ¥) over,

S Y/
((xl,..., x )i x, ' 50, 1! Vﬂ%

-zf‘,JEM%,

wvith x = x, whare x mrxdmizes f(x) subjoct to (7.1) and (7.2).

X

Y = {(yl,..., ym)x ¥ 5
In twrn, one muy apply the gradient process to tae lagranglon axpres-
sion ¢(xy y) and, in the light of the preoceding seotion, convergenoe in the

‘' ls dete timt nqulivn:-muth(x)-ouww
two .nequalities hsx) O and - h(x) € 0y tho oenoavity requirement for
bot.hh(x)o.nd-l'x(x means that }} mwt be linear,
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x-ocomponents will ocour provided thnt ¢(x, y) is gtrigtly ooncave in x for
oach ye DBut if ¢(xy y) 18 0 be strictly soncave in x for each y, it is
not sufficlent that £ and the gJ'l be nerely gouncave in xe On the other

hand, it g sufficient if { is strictly oconccve while the gJ'a arc oonoave,.

5« 1ho Lineax Cagei Jocal Convergance
So far, we are in a position to treat by grndient processes (yia
conversion to saddle-points) any constroined maximizatien problem vhere
the constraint functions gJ are all ooncave cnd the maximand £ strictly
ooncave, In partioular, the gj's might be linoar., However, tho require-
nent that £ be gtrigtly concove excludes the possibility of a linear
mximnd.l Hence, one is led to look for o device that would mcke it
possible to handle a problem that is ocomplotely linear, or, more generally,
where f and the gj'a are concave but not nocesscrily strictly ooncave,
A device of this type wus explored in [6], where the lagrangian ex-
pression, ¢ = f + y'g, wos repluced by a podified Lograngion cxure.alod,
e y)5r+j£/§( v, (L-ntt ),
by Z hy(x) 21 - g(x),

2 .
QJ C

It wog shown in [6] that subjeot to cortain regularity oconditions q‘ ca.
be made Jogoglly atydatly concave in the interior oomponents of g Ly
solecting sufficiaontly large wilues of the ”j'u' (This statement, in
fact, holds for gy sufficiently rogular { and gJ.) In oombination with

the preceding results, it follows that the gradiemt process appliod to

l. Samuelson, as noted nbove, cppliecd the gradient procoses to the
purcly linear casey he obtainel constunt amplitude oscillations rather
Lhan convergence.
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the modified lagrangian expression converges to the oconstreined maxiynm
if the initial position is sufficiently close.

6. ZIha Linesr Cassi Clolel Cenvergence.

In 1955-6, the problem of oconvergence in the linear osse was reoen-
sidered under the stimulatien of the oomputational applieations of the
modified lagrengian groadient method oarried on at FAND by T. Marschak

1 The problem ef ahlef

in oonnection with linear progreming problems.
interest was whetlwsr or not convergence in the large oeuld be expected.
This work® led to results shewing that if the modificd lagrenglan gredient
method is applied to a linear programuing rrohlem, convergenoe in the
large of the x-oomponents is guaranteed, although it may be necessary to
use a variant (to be deseribed helow) of the modificd lagrangian expression.

To state these results, ve must first introdune a conocept whish fits
between oonoavity and strict ooncavity, to be otclled partial atrigt
Laneavity.

Dafinitden. h(x) is said to be parts.lly strictly concave if, for
ary x*y x° such that h(x*) # ¢, h(x*) = (, the function i(®) = h[(1) x*
+0x),0%0%1, 1s 0 concave tut not linear Nmction of 6.

To eimplify the exposition, consider the case where a2 unique mnxi-
mizing point x s known to exist. Then it has boen shown that,

Iheoram Ae ©ach x, w'1ll oonverge to 9(1 under the gradient mrocess

applied to the wnmodified Lagrunginn expression § mrovided £ is vonoave,

l. Jee Appandix,

2, Carried out by the authors under the auspices of the Office of
liaval Nesearch and the Canter for Advanced Ctudy in the Behaviorel

Cciences, rospectivelye.
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each g is partially strictly oonomve in z, and all functions are anmslytise.
But this thecrem, by itsslf, 1s inadequate to deal with the oase
where £ and all the gj‘- are linear., Thus we must fall back on a modi-

fied lagrangian exjression.
Daliniidap. The funotion,

d/o (x) y) 2 £(x) + C/g('- vy f e,01,
1> oalled th‘}E_-mﬂm lagrengian expression for the maximisation
of[mbjoottogj(x)zo, J t:/’fifth.ﬁmctinm /OJ are strioctly in-
creasing and /OJ(O) = 0,

We then have,

Iheorem Bs Fach x4 vill oonverge to Qi unler the gradient proeess
applied to the J-modified Iagrangian expression provided £ and g axe
conoave and analytic and each /ZG {s strictly oonoave.

In this oase the constraints ,%ﬁ [g,(x)] 2 0 are squivalent to the
constraints g,(x) 2 0 but the former satisfy the conditions ef Theorem A.

Theorem B is applicable to completely linear prohlems, since { and
g, are only required to be conoave.

The modified lagrangian expression in section 5 above ocerresponds to

Olm!mg,
/Dj(l) (V)=l-(l-v)l+nja 'lj>0)

which satisfies the requirements of Theorem U for w < l. It oannot be

pmoenteed to insure oonvergence in 2 lineAr programming problem unless
o (x) < 1 throughout the gradient process. On the other hand,

/05(2) (W)=1-0e" 0%, a,>0
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has the required properties for all y and oan safely be used in the largo,
1.0y for agy initial values, the gradiont process applind to the /U-mdi-
fied lagrangian expressien for & linear (or any concave) progremaing

problem will converge.

7. Jemarka on Compuiations.

In T. Merschak's experimental computatiens, the modified Lagrangian
expression was formed using ¢ (1), but & check-celumn was oarried to
mke sure that gj(x) remained less than 1 during the process.

A check of tha experimental oomputations wus also offered by verity-

ing that the "distance function,"

D = {' (x, - ;1)2 + ?(}'J _;J)E,
always decreased with time., (The theorems on convergence are bnsed or.
the fact that dD /dt < C in a gredient process.) This check is only of
intereat in the experimental computatiens, since it requires knowledge

of thn unlown of the problem, yii., X. For the camputations themse Lves,
see the Appendix.
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T. Marschak

This appendix reports on some ocomputations in which the gradient
method was applied to the /O-modinod Lagrangian expressio:: of section
6 - with the hmotiomlﬁjmking the form P(l) ~ for two linear progran-
ming problems. In the cemputations the qj were taken to be the same for
all j, .64y qJ = ) §= 1yeeeyle

The aims of the oomputations were (1) to explore t'.e major difficulties
encountered in progremming the greadient method (as applied to oonstrained
maximizations problems) for a digital computar;l (2) to obtain some pre-
lininary evidence as to the efficiency of the method in solving linear
pogreaming problems of different sizes as well as the effect of varying
n and varying the Suclidean distance of the initial point from the

equilibrium point.

(1) eder mrogromming diffiqulties.
Two mnjor programing problems were encountared: (a) the modification
of a stable method for apmeximating differential equation systems sc as
to allow for "oorner" oonditionsj (b) satisfaction of the constraint on
the range of numbers whish may oceour.
(2) liedifying 4 stable apmroximetins metbed.
1If a digital computer is to be used in obtaining the paths of

variables, as determined Ly a system of differential equations and

l. The PAND Jolmniac was the machine usely the coding anl mchine
woTk werc done by Marvin Shapiro.
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an initial point, the Lystem rmust first be approxinated by a systenm
of difference equations. The simplest spproximation to a system

o Zi/dt = Fi (ﬁl,...,ﬁr), i-= l,ooo,r, 15’ of ocourse, the difference—

equation systan

il

3, (t) =3, (t-1)+n¥F [B) (t=1)yeeuy 8 (t-1)]

3, (t-1)+nh7?

. t - 1) (h > o)

g

This systen definea for each variable a series of oonnected streight-
line sements approximating the true path of the variahble (as defined by
the differantial-equation system). 'nless j is taken sufficiently small,
hovever, tliere is a danger that when the true path of a variable Bi under-
goes a sharp change in slope between t and t + 1, the approximating path
Letween t + 1 and t + 2 (being based on the slope of the approximating
path at t) will be an extrapolation of the true path as it was prior to
the sharp change in slope. The approximating path may then deviate
further and further from the true one., 7o exclude thlis danger may require
L to be so smnll that convergence is uselessly slow.

Chiefly for this reason, more stable approximation methods have been
deviged, One of tho most widaly used is the lunge-Futta method ([A] ,

ppe 3C1-2) which was used in the experimental computations. In this method

the iteration leading from 3, (t~1) to By (t) consists of the following

st.epst

(1) ﬁli‘(t):hFi [zl (t = 1)yeuey B ( t -1)]

(2) z‘i (t) =h F, Lzl (L - 1)+ 12 ai (t)yeeey B (t - 1)+ L2 srl1 (t - 1)]
(3) Zi (t) = b F, [zl (t = 1) + 1/ zl (t)yeaey B (L = 1)+ 1/2 z‘; (c)]
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(4) z’l’ (t) = h Ey [zl (t = 1)+ si (Eh ey 8 (¢t - 1)+ %i (t)]

1 2
(5) 8, (t) =1/ [ﬁi (t)+ 28 (t)+2 si (L) + 9,/1‘ (t)] +3, (t-1).

This method has a low "inherent error,"” of the order of h? (See fﬂ, p. 302).

liowy, in our case I',, in the differential-equation system, is of the

1)
form

r o= Fi. if the ith argument is > O
max (F{, C) if the ith arpument is = O.

No variable, is allowed, in other words, to become negative.

In formulating the Runge-Kutta approximntion so as to give effect to
this oondition, it is clear that we cammwot leave steps (1) to (5) as they
are. lor if F; takes o large (in absolute value) negativc value for the
arguasents shown on the right-hand side of an equation defining one of
the above steps (l.e., 1f F, takos guch u value and if the ith arpument is
positive), then even for small h, Xy (t) may be nogative. To solve the
difficulty several possibilities suggest themselves:

(1) We can impose the condition that B, (t) be the maximum of zero
and the weighted average just givaen (in step (5)).

(114) We can rewrite steps (1)-(4), everywhore replacing r ty " and

k
i

expression on the right~hand side of the equality defining step (k),

oan then impose the condition that 3, (t) be the maximm of zero and the
k= l,ooo,‘o
(114) When the value 51 (t) obtainod at the end of the iteration 1is

negutive, we can repeat the iteration (starting again with 2, (t - 1))

g
fox o smaller he Tf the value of 8, (t) then obtained is agnin negntive
we repeat the iteraution with o still ameller h. This process continues

't 81 (t) falls in & sacll jre-selected interval ( - €, £), € > 0. At
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thut point 3, (t) 18 set equnl to zero. IFor h sufficiently small, By (L)
must fall in the given interval,

In choosing between these alternatives we must rely on intuition
about the relative protection t.ey afford against major deviation from
the true paths of the variahles, and on actual experience in using the
alternatives,

Alternative (1) wns attempted and failed to work properly: the
"distance function," given in sectlon O, fluctuated instead of dusreasing
monotonically. If alternative (1) is used there is a danger that the
following may ocowr (and this may have caused the "distance" fluctuation):

one of the Bt (t), say 31;

hand side of the equation defining step (k) is large (in nbsolute valus) and

(t), may, because the value of F, on the right~

nepative, become large and negative. The diserepancy between I: (t) and
the ocorresponding trues value of 31 {s then wnusurlly large (as oompared
to the disercpancy in an intervul where neithor true nor approximating
values are near zero). Then averaging the Z}i{ (t) (in step (5)) and
taking the maxirnm of the result and zerc may well not erese the large
discrepancy, e.g.y the true value corresponding to a zero B (t) may be
larpe (and positive).

Alternative (11) on the other hand is certainly risky, since the
true functions I, are not used in the appreximation. Thus unless h is

1
snall enoughy there is a danger thmt, after tal.!ng a positive value, B

»
R
zerc, but without reaching zeroj while in the apmreoximating path 8

i

in the true path descends sharply (with e large negative slope F,) towards

¢ is
suddenly piven the value zero.
Alternative (411) appears to be the Lest of the three, cocording as

1t does with the generel intuitive notion that tha approximating "grid"
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needs to be "finer" at points of discontinuity in the derivative of Lhe
true path, This alternative las been used and has worked quite well,
Specifically, in the routine used, L. 18 successively cut in half until
31 (t) fulls in the interval (- ¢, €), € was chosen to Le just slightly

greater than the average round-off error expectod on the machine.

vn the IAND Johnnianc, using a floating-point code (as was Jone
in these computations), only numbers betwsen 10" and 12°° oan be
dealt with.l lenco not all sets of values of h and n and of initial
values of the varisbles can be used., Thus for u given n, tho initiacl
values and the values of h have to be chosen with some care. Though
a large 1 may lead to rapld oonvergence for any piven hy the largest
value of h consistent with the range constraint for such an 1 may be
ganll enough so that the actual time required for oconvergence is

longer than for same amnller n.

In a linecr mrogramming prollem of the form:

v L =
Find x such that 15// cixi max

2 5 >
aubjecttoxi g t/Vn'i_j X, bj’ J(/‘(

the (D—modified Lagrang;isn expression of section G - with the functions

p, taking the fomm ,O(l) :mdallquq-ie
o

xal’)' l+'ﬂ

¢ 5 ‘ y
( fe A/ %1 %" Z/}{ [l - (1}'»7/4/ LA =RE ML) .
Jt

1

The gradiert process, which oconverpes to the rejquired solution (for

ary initial values of xi), 1s given by the Aifferential-ejuntion systen

1. On the I.B.M. 704, the permissitle range is smaller.



3 - - 3 8 L - 1
ax, / _dq“Q/gti'ci-(l+Q) jLi}’(ai'jJ(iC/{/aijxi bJ+l)

oLl
if x1 >
moxioum of this and zero if xi

1

dyj/": "9,‘@/()}': = iZE/V(atj Xi—bj+l

(Ve

wodmea of this and zero 4f y, = ¢

(¢) Asdrer-varinlle three-inequality uroblug
“he first problem trocted was as followsi

“ind Xy Xy X, ( 2 0) such that

rr:xl+;bg,,+313=m&xaubjoctw

SRR
-x - xy xR
-x ¢ ’5(2 >
The solutlon is x.i = 1/3, xg =N 7o, xg = 1/2, for which
m= 13/6 = 2,167,
In the first computntion n was token to be 2, for which the equilib-
rium values of the y, cre

+

¥y = 18 = 'y ¥ = 5A8 = e, ¥ = 1= 1t

The initinl values chosen wero 1 for Xy 5 for Ly 3 for Xq9 3 for

Y19 = for v, and 3 for 3.

In the second computatien, n was taxen equal o 7§ for this ocase, the

equilibrium values of thc '\'j are

;i = 13/48 = 2T, ¥2 = 5/48 = J04T, yg = L2 = J415,

£

In the computation for the case n = 2 the initial value for h was
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156, In the computation for the case 1, = 7, use of the sane h would
have beun impossible, because very larye numbers would have resulted in
the expressions involving tlie exponient n + 1, while in olhier expressions
there would .usve occured numbers so much smaller as to violate the restrio-
tion on range. The initial h used in the cese r = 7 was . 1. The initial
viulues of h used {n the two cases were rpproxini‘el; as large aa ‘hey
could be without violating the range constrainty from a pr.ctical point
of view ({.e. if fast convergence is the aim) they cre the proper values
to choosa., !lievertheless, they are suf{iciently different so that the
conparison o!f' the two cases with respect to the affoct of varying n is
difficult, A f{loating-poin’ oode wns usci.

The “ollowing table pariially sumnrizes (for selectel ite-rtions)
the results of the ocomputations for the tliree-ejuation problemy for the
cases 1 = . and 1 = 7, For oach 1teration in the table are shown (‘o
three decimal places) the current value of the x'sy the y'sy h (which

determiros the "size" of the approximating step), 7 and the "disiance®

2 { 0\< [V RV
D=L (g = %)+ (yy - ¥,)
1=1 h

] o« In addition o the vmriaules shown
in the table, there were printed out (a: every tenth iterntio:n) the vnluea
of all derlvatives and the values of the left-hand sides of the llcue
inequclitios. Printing out of the lutler values made U possibtle o xegp
a running check as to violation of thc requirenent ¢, (x) « 1 which, eos
Indicrted in saction vy musl Lo net i{f tue condilions of Theorem ./ are to
guarantee convergence. In none of thic computa‘ions—eitiier for tae
3—ojuatlion or tie S-equation moblar—wes this rouirenent not me'.

We ace frem the tnhle that only vt some iteration betwean 33 and 34

14d the oomputation for r = 7 Movertaxe" the oomputation for q = 22 - {n the
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scine of exhibiting a amaller luclidean distance from the equilibrium point.
Aftar this {teration thc distance ir the computation for n = 7 decreases
considerally more iupidly {wilh respect to number of iterations) than the
distance in the ocouputation for nq = ., For conmple, (this is uot chown in
the telle) the distance booumes less than . 1 ut {terntion 38 for n = 7,
but not until iteratinn 55C for n = 2. In both comp.tations it 1
nocessary to cut the siie of L et some iterction, primarily, as il huppena,
nt early iterrtions. ‘ach {lermation cveragei nlout four seconds for 1 = .
(rllowing for print-out time at every tenth Lterntion) and about five
seconds for n = 7.
(b) ' . -

The second proble:n treated wes lo mAxinize . = x, + X, + 5/4, x,

+ 2xg + x4 5/4 Xy = X, subject to x, 20,1 2 1y00ey9 und
(1) X @ )

(=) x1+13-l/"fx9~f

“

The solution 1is x.i = Ly JL?, = 1/, x,.; = 45X
£ = 10y 5y G =

In the two computations which were performed n wos taken = 7 so that

at equilibrim y, = T Udy y., = 312y vy = 273, ¥, * 5/ - 2/3.

b :/'5
{1 the first coaputation the {:itial point chosen was that shown

(Lteration C) in the first part of the followlng taule, for which the
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distance from equilitrium is .327'. In the second computation the initial
point was that shown in the second part of the table (iteration 0) for
which the distance from equiliteium is 14{3.1l. The initial value of h was
taken to be Ol in both computations. Both computations are summerized,
for selected iterations, in the table.

It is seen that at any iteration up to about the 2000th, there has
been achieved in the distant-point case a much grecter absolute decrease
in distance from the equilibrium point than in the nesx-point case, though
roughly the same relative decrease in distance has been achieved. In
both computations it is necessary at some iteration to cut the size of
he Tt 4s worth noting that it is pgt true that once a variable attains
the value zero, it stays at zero if zero is its value at equilibrium.

The variable X¢9 in the distant-point computation, provides the counter-
example,

axlld GGl

———

(A) Scarborough, J. B., fumericy] Mathemptice) Anglysis, Baltimore,

hl']llnd: Johns !bpkinl Prese, l”s. Pe 157.
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