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SUMMARY 

The purpose of this brief note Is to show that we can obtain 

a monotone increasing sequence of approximations to the solution 

of the differential equation 

(1)      IH - ()(u.t). u(o) - c, 
dt 

provided that we assume that ^(u,t) is a twice dlfferentlable 

convex function of u In some t-lnterval [o,t ].  Similarly, 

monotone decreasing sequences can be obtained If 4 Is concave. 
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A NOTE ON MONOTONb CONVERGENCE TO SOLUTIONS OF 

FIRST ORDER DIFFERENTIAL EQUATIONS 

By 

Richard Bellman 

jl.  Introduction. 

Tha purpose of this brief note Is to show that we can obtain 

a monotone increasing sequence of approximations to the solution 

of the differential equation. 

(1) — - *(u,t), u(o) - c, 
dt 

provided that we assume  that (|(u,t)  is a twice differentlable 

convex  function of u  in  some  t-interval   1,0,t0j.    Similarly, 

monotone decreasing sequences can be obtained  if 4 Is  concave. 

The connection between  the methods and  results discussed 

here and  the theory  of dynamic programming  is  treated  in   [l]. 

§2.    The Rlccati Equation. 

Let us begin by considering a particularly  important  case, 

the Rlccati equation, 

(!) 1H . u2 ^ a(t),  u(o) - c. 
dt 

Assume that a(t) is Integrable over some initial interval 

The basic relation we shall employ is 

(2) u2 - Max  (2uv - v2). 
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We can then wrltt (1) In tht form 

(3) ^ - Max [ 2uv-v2 > a(t) ], u(o) - c, 
dt    v 

where v ranges over all functions defined over [o,t j. 

As pointed out In [l], (3) leads to the result 

(4) u - Max IT (v,t), 
v 

wnere IT Is the solution of 

(3) £?. ^TTv-v" + a(t),   TTto)  - c, 
dt 

for a fixed function v - v(t). 

Let us now use the representation In (3) to obtain a monotone 

Increasing sequence of approximation» to the solution of (I). 

Let v (t) be an Integrable function over [o,t ], and let u be 

defined as the solution of 

(6) —2-2 uovo - vo
2 + a(t), u0(o) - c. 

dt 

Let v^t)  be the function which maximizes thd quantity 

(7) g(v)  - 2 uov - v2 ^ a(t), 

wnlch  Is to say  v,   *  u   .    Now define  the  next approximation u, 

as  the solution of 
du, 2 
  - 2 u^v,   ~ vi     ^ a(t),   u,(o)  - c. 
dt 

In tnls  way we  obtain the recurrence relations 

(C) ^ii. 2 un+1 Un-un
2 + a(t),  un+1(o)  - c, 

dt 

n-0,1,?,..., which we recognize as Newton's method applied to 

the original equation In (l). 
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Let us note in passing that the method we have employed 

to derive this sequence of approximations Is a particular 

application of the concept of "approximation in policy space", 

of. [2], 

We wish to show tnat 

(9) uo ^ ul ^ 1 un 1 • • •» 

for O ^ t ^ t,,  where   iPi^iJ   l8 eome common interval of defini- 

tion. 

It is easy to show  using standard  techniques  that  we can 

ensure a common interval.    Let us consequently turn to   the 

proof of aonotonicity.    We have 

du P P 
(XO) -n . 2 u^^ - u ^ + a(t)  < 2 unun - u^  . a(t), 

at 

since v ■ u„ o^ximlzes 2 u^v - v -f a(t). Comparing this n n        % /    r   w 

last equation with (Ö), we see that we will have established the 

desired monotonlcity if we can prove 

(: Let x(t) be a function satisfying the inequality 

dx (ID 2± < p(t)x + q(t). xjo) - c, t > o, 
dt 

and y(t) satisfy the equality 

(12)     ^ - p(t)y 4 q(t), y(o) - c, t ^ o, 
dt 

then 

(13) x(t) $ y(t), 

for t 2 0 
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Proof; The relation In (11) is equivalent to 

(U)     Si . p(t)x ♦ q(t) - r(t), x(o) - c, 
dt 

with r(t) > o.     Solving for x  we  see  that 
t    y;1 p(z)dt 

(15) x - y - v/r(8)e 8 de, 
o 

which demonstratee   (13)* 

§3.    The General One-Ditnenaional Case. 

Consider the equation 

(1) äH - ()(u,t),    u(o) - c. 
dt 

Let us now prove 

Theorem 1. The aequence of Approxltnatione { u | defined by 

{?) —^ - 4(volt) + (uo-vo) ^{w0,t).  u0(o) - c, 
dt 

^±i . ,(un,t) + ("„,!-«„) 9'(ua.t). Un+1(0) - o, 

('  denotes the partial derivative with respect to u) 

is monotone increaeing, u    < u,   <   ...  < u    <   ...,    within a coamon 

interval   [o,t J,  provided that  v   (t)   i£ an integrable  function 

over some  interval   [o^t,],  and  that  the function (|(u,t)  posaeaseB 

a non-negative second derivative  in u for o < t < t,. 

Proof;    The first  point to observe  is  that the generalization 

of   (2.?)  le 

(3) c>(u,t)  -    Max      <Kv,t)  ♦  (u-v) V(v,t) 1. 
v      L J 
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Tht txisttnct of a common Interval of exlettncc followB standard 

lints, and the remainder of tne proof follows the lines of §?. 

§k.    Multi-Dlaenaional Case. 

If fCx^xt) and g(x,y,t) are convex functions of x and y 

within some t—Interval, it is easy to see that we may write the 

system of equations 

(1) & . f(xfy,t), x(o) - a, 
dt 

^ - g(x,y,t), y(o) - b, 
dt 

in the form 

(2) ^ - Max  rf(u,v,t) > (x-u) ^ * (y-v) iL 1, x(o) - a, 
dt  u,v L du 0v J 

&  . Max  rg(u.v,t) > (x-u) &  * (y-v) ^ ], y(o) - b, 
dt  u,v  L <?u       ^v -i 

The analogue of the Lemma in §2 is not unrestrictedly true, 

however.  If x and y satisfy the inequalities 

(3) ~ ^ a11(t)x + a12(t)y > r1(t)l x(o) - c, 
d t 

äZ ^ a21(t)x ♦ a2?(t)y + r2(t), y(o) - c, 
dt 

it is not always true that x and y are respectively bounded by 

the solutions of equalities. 

For the ease where the a., are constant?, a necessary and 

sufficient condition that this be so Is that a. < > o, 1 4 J» and 

for the general case a simple sufficient condition is a« .(t) ^ o, 

with a neceeea.y condition of quite complicated and unusable type, 

of. [3], p. 14. 
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