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SUMMARY

The purpose of this brief note is to show that we can obtain
a monotone increasing sequence of approximations to the solution
of the differential equation

(1) Q-Q(U,t), U(O) = C,
dt

provided that we assume that 9¢(u,t) 1s a twice differentiable
convex function of u in some t-interval [b,toj. Similarly,

monotone decreasing sequences can be obtained if ¢ is concave.
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A NOTE ON MONOTONE CONVERGENCE TO SOLUTIONS OF
PIRST ORDER DIFPERENTIAL EQUATIONS
By

Richard Bellman

gl. Introduction.

The purpose of this brief note is to show that we can obtain
a monotone increasing sequence of approximations to the solution
of the differential equation.

(1) 8Y . 9(u,t), u(o) = ¢,
dt

provided that we assume that 9(u,t) 1s a twice differentiable
convex function of u in some t-interval (o,t ). Similarly,
monotone decreasing sequences can be obtalned if ¢ is concave.

The connection between the methoda and results discussed

here and the theory of dynamic programming is treated in [1].

§2. The Riccati Equation.

Let us begin by considering a particularly important case,

the Riccati equation,

(1) PR a(t), u(o) = c.
dt

Assume that a(t) is integrable o>ver some initial interval

ogtgt,.
The basic relation we shall employ 1is
(2) u2 = Max (2uv - v?).

v
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We can then write (1) in the form

(3) du o Max [ Suv—v® + a(t) 3, u(o) =,
at v

where v rangee over all functions defined over Entoj.

Ae pointed out in [1;, (3) leads to the result

(4) u = Max T (v,t),
v

where U {8 the solution of

(5) j“;’- 2Wv—v° + a(t), Tlo) = c,

for a fixed function v = v(t).

Let us now use the representation in (3) to obtain a monotone
increasing sequence of approximations to the solution of (1).
Let v _(t) be an integrable function over [b,to], and let u_ be

defined as the solution of
du

(o} 2
(6) g:— =2 u v, —v. "+ a(t), uo(o) = C.

Let vl(t) be the function which maximizes the quantity

(7) g(v) = 2 u v - v 4 a(t),
which 18 to say Vi = Y- Now de{ine the next approximation Uy

as the solution of
du1 o
—= =2 uvy, -V, " . a(t), ul(o) = C.
dt

In this ~ay we obtaln the recurrence relations
du

n+l 2
— =2 u qu, -+ a(t), Un+1(°) = C,

(t)

n=0,1,2,..., which we recognize as Newton's method applied to

the original equation in (1).
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Let us note in passing that the method we have employed
to derive this sequence of approximations 1s a particular
application of the concept of "approximation in policy space",
of. [2].

We wish to show tnat
(9) Ug Uy € e UK e

for o { t S t,, where [o,tlj 1s some common interval of defini-—
tion.

It is easy to show using standard techniques that we can
ensure a8 common interval. Let us consequently turn to the
proof of monotonicity. We have

du 5

n
(10) ;:— =2uu. -y

2

+ a(t) ¢2 R L a(t),

since v = u_ maximizes 2 u v - vl 4 a(t). Comparing this

last equation with (8), we see that we will have established the
desired monotonicity if we can prove

Lemma: Let x(t) be a function satisfying the inequality

(11) :—:sp(t)X+q(t). xjo) = c, t >o0,

and y(t) satisfy the equality

(12) if = p(t)y + q(t), y(o) = c, t > o,

then

(13)  x(t) < ¥(t),

for t > o.

— .
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Proof: The relation in (l1) 1s equivalent to

(14) %f = p(t)x ¢+ q(t) - r(t), x(o) = ¢,

with r(t) > o. Solving for x we see that
t
t f p(z)dt
(15) x=y - r(s)e 8 ds,
(5

which demonstrates (13).

§3. The General One-Dimensional Case.

Consider the equation

(1) ¥ . 9(u,t), ufo) = c.
dt

Let us now prove

Theorem 1. The sequence of Approximations {um'}derlnod by

du
(2) —2 = 4(vg0t) + (ug=vg) @' (vg,t), ug(o) = e,

du

n+l .
= a(u ,t) + (u =) o' (u,t), u (o) = c,

dt

(' denotes the partial derivative with respect %o u)
P JY -0

n+l

within a common

*

N

is monotone lncreasing, u° S u1 S vee £ un

interval [o,to], provided that vo(t) 1s an integrable function

over some interval [b,tlj, and that the function 9(u,t) possesses

a non-negative second derivative 1in u for o < t < tl.

The first point to observe {8 that the generalization

Proof:
of (2.2) 1
(3) alu,t) = Max [o(v.n) o (u=v) ¢ (v,t) ]

v
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The existence of a common interval of exirtence follows standard

lines, and the remainder of tne proof follows the lines of §2.

gh. Multi-Dimensional Case.

If f(x,y,t) and g(x,y,t) are convex functions of x and y
within some t—interval, it is easy to see that we may write the

system of equations

dx

(1) = < r(x)ylt)’ X(O) = 3a,
dt
& . g(x,y,t), y(o) = b,
dat
in the form
(2) 94X . Max ['r(u,v,t) + (x-u) af , (y-v) 2£-'. x(o) = a,
dt u,v éu ov J

'd'l = Max [S(U,V,t) + (X—U) 28 + (y-v) 28 -!' y(O) = b,
dat u,v du av 4

The analogue of the Lemma in §2 1s not unrestrictedly true,

however. If x and y satisfy the inequalities

(3) %f S ay (t)x +ap,(t)y + r (L), x(o) = c,

ff S 8y (t)x + ay,(t)y + ry(t), y(o) = c,

it i{s not always true that x and y are respectively bounded by
the solutions of equalities.
For the case where the 31J are constants, a necessary and
sufficient condition that this be so 1s that a1J >o, 1 %), and
{ for the general case a simple sufficient condition 1is aij(t) > o,

with & necessary condition of quite complicated and unueable type,

of. (3], p. 4.

L
%3
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